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Abstract: <p>Applying a chemical potentia bias to a conductor drives the system out of equilibrium into a current carrying non-equilibrium
state.& nbsp; This current flow is associated with entropy production in the leads, but it remains poorly understood under what conditions the system
isdriven to local equilibrium by this process.& nbsp; We investigate this problem using two toy models for coherent quantum transport of diffusive
fermions: & nbsp;Anderson models in the conducting phase and a class of random quantum circuits acting on a chain of qubits, which exactly maps
to an interacting fermion problem. Under certain conditions, we find that the long-time states in both models exhibit volume-law mutual information
and entanglement, in striking violation of local equilibrium.& nbsp; Extending this analysis to Anderson metal-insulator transitions, we find that the
volume-law entanglement scaling persists at the critical point up to mobility edge effects.&nbsp; This work points towards a broad class of
examples of physical systems where volume-law entanglement can be sustained, and potentially harnessed, despite strong coupling of the system to
its surrounding environment.& nbsp;</p>
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Statistical Mechanics of Entanglement

Entanglement is central to our understanding of few-body systems
Quantum information science has taught us that entanglement in many-
body systems likely plays an even deeper role - “more is different”

- Entanglement is the central thermodynamic resource for
a quantum computer

- Microscopic origin of entropy - eigenstate thermalization hypothesis

Entanglement in large-scale systems is Direct measurements
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Statistical Mechanics of Entanglement

Steam engine Phase diagram of water
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Statistical Physics of Current-Driven Systems

System

L=l

ny Currents ' np
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Arrow of Time in Quantum Thermalization

How do we reconcile the reversible, unitary time evolution of quantum
mechanics with the irreversible process of thermalization?
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Arrow of Time in Quantum Thermalization

How do we reconcile the reversible, unitary time evolution of quantum
mechanics with the irreversible process of thermalization?

One answer to this problem: eigenstate thermalization hypothesis (ETH)

Srednicki PRE (1994).
D’Alessio, Kafri, Polkovnikov, Rigol Adv Phys (2009).
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Arrow of Time in Quantum Thermalization

How do we reconcile the reversible, unitary time evolution of quantum
mechanics with the irreversible process of thermalization?

One answer to this problem: eigenstate thermalization hypothesis (ETH)

(H,[F), A)

(

\

Srednicki PRE (1994).

I) Single eigenstates are in thermal
equilibrium

TI"A-: [IE) <E ] g rlwrch [()fﬂff]

Ac acts as a bath for region A

D’Alessio, Kafri, Polkovnikov, Rigol Adv Phys (2009).
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Diffusion and the Arrow of Time

Diffusion describes how conserved quantities (energy, density, magnetization)
spread through interacting or disordered systems - precursor to thermalization

Understanding the emergence (and failure) of diffusion in quantum many-body
systems provides insight into the arrow of time

Why?

The diffusion equation is fundamentally a dissipative equation

‘ 2
on = DV*n
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Emergence of Diffusion: Examples

2D random walk

Diffusion emerges only after
coarse graining or averaging

Electron transport

Fermi liquid theory

o(w) o< D(w)p(w)
DOS

Castellani, Kotliar, Lee, PRL (1987)
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Emergence of Diffusion: Dissipation

Scrambling is sufficient for emergence of dissipation needed to realize diffusion

Khemani,Vishwanath, Huse, arxiv (2017)
Rakovszky, Pollmann, von Keyserlingk, arxiv (2017)
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Emergence of Diffusion: Dissipation

Scrambling is sufficient for emergence of dissipation needed to realize diffusion

Khemani,Vishwanath, Huse, arxiv (2017)
Rakovszky, Pollmann, von Keyserlingk, arxiv (2017)

t

Single operator dynamics - What happens to the full many-body state?

Progress in using similar ideas to develop approximate numerical methods
for quantum chaotic |1D systems:

White, Zalatel, Mong, Refael, arxiv (2017)
Leviatan, Pollman, Bardensen, Huse, Altman, arxiv (2017)
Brandao, Haegeman, Scholz, Verstraete, arxiv (2017)
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Boundary-Driven Random Circuit

Distribute nearest neighbor gates by a 2-parameter family:

dp = (1 = p1 — p2)dpo + prdus + padps
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Boundary-Driven Random Circuit

Distribute nearest neighbor gates by a 2-parameter family:
dp = (1 = p1 — p2)dpo + prdus + padps

Diffusion constant: [) ~ |

Butterfly velocity: 'Uf; ~ min(\/p1p2, p2)

I »1 = 0: Discrete Hopping

IIUIIIIIVII | (A |

—_—

t
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Boundary-Driven Random Circuit

Distribute nearest neighbor gates by a 2-parameter family:
dp = (1 = p1 — p2)dpo + prdus + padps

Diffusion constant: [) ~ ]

Butterfly velocity: 'Uf; ~ min(y/p1p2, p2)

I »1 = 0: Discrete Hopping

IIvIIIIIvII | (A |

—_—
t
II »2 = 0: Non-Interacting Fermions 111 1,92 # 0: Quantum Chaotic
1 ) v
A [ R ()5
Spin Coherence
Represent qubits by fermions Interacting fermions
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Gate Set in Random Circuit

Gat :
aes are ol 0 0 0 Middle matrix is Haar

random on SU(2

o u—| 0 Uw Ui 0 (2)
0 U, Ug 0 Generated by
0 0 0 e Hamiltonians that are

bilinear in fermions
i—1 Terhal, DiVincenzo, PRA (2002)
Jordan-Wigner & = H O,Ek)g(_‘t)
transformation z
k

Induce interactions between fermions - no partial swaps

b2 U = e uyuy + €' uyds A c’i%dmz - dida,
[]2 = SWAP []1? Ui = I+ O-Eﬂ d: = 1 - (I_.E;?.')
by — T = ————

i 2
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Qualitative Picture: Random Circuit Model

Generic behavior

t . ) - Boundary trace acts like a local
VDt density measurement and
converts entanglement into
classical correlations
- Classical violations of local
hydrodynamics remain
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Qualitative Picture: Random Circuit Model

Generic behavior

Fine tuned behavior: vz L*/D — 0
Thouless time: 1.2/ D

t

Boundary trace acts like a local
density measurement and
converts entanglement into
classical correlations

Classical violations of local
hydrodynamics remain

Non-conserved operators
transported to boundary by
diffusion

Violations of local hydrodynamics
encoded in entanglement
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Models. Il. Driven Anderson Model

Anderson model = Coherent quantum transport - diffusion emerges
only after disorder averaging

H=—t Z Cj:(-'-j \ Z Vi C-:;fc',: V, € [~W/2,W/2]

(i)
Ballistic Disordered Ballistic
W
(ne,T) ¢ (1R, T)

L

Anderson, Absence of diffusion in certain random lattice models, Phys Rev (1958)
Interacting case: Imbrie, PRL (2014); Review: Nandkishore, Huse, Ann Rev CMP (2015)
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Implications for Mesoscopic Transport

Metals at low temperature governed by 4 length scales

Mean free path  Phase coherence  Electron Electron phonon
length scattering length  scattering length
50 nm | pm 10 pm 10 mm

Theory:
Altshuler, Aronov, Khmelnitsky (1982)
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Outline

Overview
- Diffusion and the arrow of time
- Models and results
Analysis
- Non-equilibrium steady states in classical stochastic lattice gases
- Entanglement structure of current-driven diffusive fermion systems
arXiv:1804.00010

- Entanglement phase transition in the driven Anderson model

Outlook
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Non-equilibrium Steady States of Classical Systems

Stochastic lattice gas with hard core interactions: simple exclusion processes

§
a Il\. /1'\ IIVL ~N
— 00 o ® |
nr, VR Y N TR N N S— L L8 PR
-~ o’

Spohn (1983). Kipnis, Landim, Scaling limits of interacting particle systems (1999).
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Non-equilibrium Steady States of Classical Systems

Stochastic lattice gas with hard core interactions: simple exclusion processes
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Configuration probability evolves according to master equation:

IP
( Z ‘rl (v 1/ (wl)

Classical analog of the random circuit

Spohn (1983). Kipnis, Landim, Scaling limits of interacting particle systems (1999).
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Non-equilibrium Steady States of Classical Systems

Density: 7VL Current: J = O n(x) =

0
L

nR -
> 0 =nyp —NRg

0?n(x) =0

In 1D a matrix product state has been found for P(C) with bond dimension L
Exact solution: Derrida, et al (1991-93). Review: Derrida, ] Stat Mech (2007)
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Non-equilibrium Steady States of Classical Systems

Density: 7VL Current: J = O n(x) =

0
L

nR S , /
> 0 =nyp —NRg

0?n(x) =0

In 1D a matrix product state has been found for P(C) with bond dimension L
Exact solution: Derrida, et al (1991-93). Review: Derrida, ] Stat Mech (2007)
)

Density-density correlation: (T-;_-ﬁ,)c- = —fiff(" - ';"/) 7L ]:(7"-(51’)1 J)

S

b

Strong violation of local hydrodynamics!
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Boundary-Driven Random Circuit

4 Random
circuit

I'J|:|I:| —— Unitary with U(I)
" spin-z conservation

= = swar

Local conservation of magnetization
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Non-equilibrium Attracting States

Long-time state of system is independent of initial conditions [) ~ |

oY YOX lol | .OOOO‘b Random realizations of circuits induce a

distribution over density matrices

, O

. O
et O P(P)

O

O

How do we characterize this distribution?

000000

X

Our approach: Look at moments using replica methods
Average E)ehavior: (‘)tﬁ — C(p’)
p = / dppP(p) L(p) - Master equation for SSEP

Exact solution for steady-state average
- independent of (pi,p2)
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Summary: Boundary-driven random circuit

Characterize deviation from local equilibrium through Renyi entropy

| | . 1
ASﬂ, (f)) - ‘S’n(/—)LE) o S‘n(p) S'”—-(p) - 1

— N

lOg rlwr [F)’H_. ]
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Summary: Boundary-driven random circuit

Characterize deviation from local equilibrium through Renyi entropy

| | . 1
AS,(p) = Sn(pLe) — Sn(p)  S.(p) = 1

— N

lOg rlwr [F)’H ]

Replicas give direct access to: Tr|[p"| = e(1—n)Sy, (p)

Computing A5 (p) reveals 3 distinct phases

I Flow diagram

Transport  Operator AS I(L:R)

Spreading
I Diffusive/  Diffusive  Volume 0
Ohm’s law
P2 111 I1 " Diffusive ~ Volume  Volume
[11 g Ballistic Area Area

l1-11l; Perturbative result in reservoir
magnetization difference 0 = mj; — Mmp

0

P1 1T 1
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Entanglement in Phase |l

Logarithmic negativity Vidal,Werner, PRA (2002)
0.2 - |

— &)/ L ’
—&ip)/L -

p—
—
.

—

Entanglement density

—_—
—
P

0 0.25 0.5 0.75 l

0
Upper and lower bound on logarithmic negativity (both efficiently
computable in number of fermions for Gaussian states)

Eisert, Eisler, Zimboras, arXiv (2016)
Shapourian, Shiozaki, Ryu, PRB (2017)
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Phase Il: (p2=0) Non-interacting Fermions

Attracting density matrix is a Gaussian fermionic state -
determined entirely by two-point function

Gi; =Tr [p(?.:f ¢,

x(l —vy)
‘<('1'J£._1_:CL'U>’2 - L(Tg)()z

Violations of local hydrodynamics encoded in
long-range, off-diagonal coherences
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Phase lll: Quantum chaotic phase

Action of gates on fermion operators: Need both gates to act for an
Non-interacting fermion gates: operator to “grow” in length
p, . 7 —;T ) > 3
P1 Ny = CCiy1, Ci = Cit1 Butterfly velocity
Interaction gates: 2 . ,
& vy ~ min(\/p1pz, p2)

P2 in; — ni4+1, G —> CiTi41
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Phase lll: Quantum chaotic phase

Action of gates on fermion operators: Need both gates to act for an
Non-interacting fermion gates: operator to “grow" in length
P . 7 —;T - ] >
P1 My =7 C;Cig1, C =7 Ciq Butterfly velocity
Interaction gates: 2 " gl
& vy ~ min(y/p1p2, p2)

P2 Ny —> Nyjgp1, C —> CiNygq

Analysis: Derived exact equations for 0 ) O in terms of 6-species
stochastic lattice gas

Solved this model perturbatively in ¢ and ]/L

AS ap a2\ o a3 o %)
— = <+ J I(L:R)=—3J° J=—
L (pl P2 ) ( ) pl;/z d L
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Crossover Scales

Derived hydrodynamic equations that describe entire phase diagram

AS~ LY I(L:
P2r; _ I
(o, 3) = (1,0) I (e,0)
|
1 |
- I
L Lol
1 [
7 |
) e
|
L
L—.% L—H’
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Overview: Random Circuit

Phase Il

t . ) - Boundary trace acts like a local
VDt density measurement and
converts entanglement into
classical correlations
- Classical violations of local
hydrodynamics remain
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