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Abstract: <p>We discuss some algebraic quantum field theory (AQFT) ingredients that should be useful in defining a tensor network describing a
Lorentzian space-time.</p>

<p>We look into toy models that approximate Minkowski space and show how Lorentz boosts are approximately recovered, and obtain Rindler
modes that can be compared with the entanglement spectrum.& nbsp;</p>

<p>We make connections of these approximations of Lorentz boosts with the corner transfer matrices in integrable models, and comment on the
discrete realization of the Reeh-Schlieder theorem that governs entanglement in a Hilbert space with lower bounded energy.& nbsp;</p>
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Motivation

* Tensor network vs AdS/CFT XK K
« Mostly a snapshot at a given time | PENNHHHH A HHA

* or Euclidean spacetime
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¢ Black holes, Hawking radiation etc
physics of the horizon is best understood in Lorentzian signature.
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¢ QObtain a tensor network description of Lorentzian spacetime?
modest version : a toy version of Minkowski space at least?

* a discrete version would also allow for experimental simulations,
opening up many interesting possibilities
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AQFT—a rough guide

* AQFT is a set of rules to attach an algebra to a spacetime M

* There are some basic assumptions about M:

M as a topological space is Hausdorff, connected and paracompact

M has a metric defining a casual structure with causal curves (time-
like/null-like)
2 points are space-like separated if they cannot be connected by a

causal curve

Cauchy surface foliation, locally Y x R

collection B C M forms a directed set. i.e.

01,0, € B, 30 : 0, C0:05, C O
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AQFT

* 1) AQFT maps a region to an algebra O C M, O — U(O)
» (This algebra is usually taken to be a C* algebra)
e think of this as having a Hilbert space H with an inner
product <, >

norms of the operators in U(O) : sup ||a€|| |£ € H

e adjoint: A € U(0), AT : (AT, B) = (o, AB)
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AQFT

e 2)lIsoto
el O C O, UO) C U0

e 3) Locality (Einstein causality)
for causally disconnected regions O and O’

AcUO), A €cUO) = [A,A]=0

e 4) time slice axiom
U(N) is isomorphic to U (M)

e N a causally convex neighbourhood of a Cauchy surface
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AQFT vs Tensor Network

* There is a vector space on each link. There is an operator
acting on this space. i.e. We can define U(O) to be the
operator algebra acting on the collection of links O

the tensor network is a map between links
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AQFT vs Tensor Network

operator pushing:

rX = Xr
A A
7t
T
causal structure : requires that T is unitary in 1 direction.

two legs related by a (series) of unitary transformations are
causally connected

Cauchy surface ~ maximal set of legs such that not two legs
are causally connected
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AQFT vs Tensor Network

e Time-slice axiom:

A given observer:
a collection of Cauchy surfaces
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Correlation functions

note that small c is NOT the usual continuous time limit. Yet it still recovers the expected

physics of the Lorentz invariant theory
‘qf‘l = AMm[Coy) —
. d ] 0 R
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: x x ;
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When c approaches 0 the dispersion relation becomes linear. Correlation function looks

like a Lorentz invariant theory!
(It is pointed out to us: our fermion model has a non-standard kinetic term. When the

space/time spacing matches, it gives a linear spectrum without any doubling problem. )
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Toy example: Free Fermions

e Strategy

e 1. Spectra of an “inertial observer”

2. Defining a Boost operator

3. Spectra of the Boost operator (Comparison with the
Rindler observers )

* 4. Compare with entanglement Hamiltonian
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1. Spectra

» Solved by recursion relation by using

B L-3
= Ziz_LJr% (f?ia'% + .QQz'—i-la?i-{-l)

Ua,U™! =Xa,.  c=cos(aAt), s = sin(@At).

2 2
foic® + goivr1¢8+ f2i—28° — gai—1¢c8 = A fa,

2 2
g2i+1C° + g2;4+38° + f2¢+2 SC— sz' SC= )\927:+1-

Pirsa: 18100090 Page 13/33



Correlation functions

note that small c is NOT the usual continuous time limit. Yet it still recovers the expected

physics of the Lorentz invariant theory

p— §im[Co1) — -
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c=0.1 c=1

When c approaches 0 the dispersion relation becomes linear. Correlation function looks
like a Lorentz invariant theory!

(It is pointed out to us: our fermion model has a non-standard kinetic term. When the
space/time spacing matches, it gives a linear spectrum without any doubling problem. )
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2.0-Guess of a boost

r 4 3 4
1
6 4 3 2 1 0 1 2 3 4 6
1
4 3 2
7 6
oddsites I = 25 — 1, Ax = ws, where w = 2
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2.1-Action of boost

Explicit solution of the spectrum of the boost operator at c=0

B(J;q)()Bil :N'Z § : C?,((l+1IJ/2)H)pf-1q.~Jap+Cf'i,((l+w/2)s)pf-1qsb;)
p>0,s

= Z cila—(14+w/2)p) /2 sin(L(g — (1 + w/2)p))
e 2Lsin((g — (1 +w/2)p)/2)
ei(q—{—(l%—w)/?)p}/2 SIH(L(Q i (1 S ?1)/2)]))) bT i
2Lsin((qg+ (1 +w/2)p)/2) P
Almost preserve ground state

Wt (1)

e for small q it is very close to

A (1 -+ w / 2) = 9 in the previous diagram
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3.Spectra of boost

AR =3, oWn(®)aza—1. BARB! = ng(x)AR

‘{’ .

Vi (p) = P, V(D) = 3 pu0 Vu(T)eP?

(k) = (1 +w/2)% = e = eine

candefine K = —1€ to be the positive energy modes where ¢ > ()

need to do the same for the x<0 modes. We recognise they are related to the “inertial”
modes by a Bogoliubov transformation just like in the Rindler observers
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Comparison with the
entanglement Hamiltonian

e For any finite size system having constructed the “ground
state” we can obtain the actual entanglement Hamiltonian

Casini, Huerta

e Obtain the reduced density matrix and take log.
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Actual Entanglement
Hamiltonian

e Near:
it bas

T 1‘ : . IL .
A\ 1 1
‘ T S
M M el
8 , { ‘
Y - ‘
,; e ‘.
Im[H3, 2 x.2] | O |
A |
Lo—
|
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| | |
i

N

H="— :
— . \ 2L 1 UL LT & ""Z.I‘.+'.{""‘-"'! '
(4
e

compare with N = j dr x TOO
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Actual Entanglement
Hamiltonian

EEESSEan
HEEE
e Near to the boundary, o A ,+' w L
. " . e i ’ XTI 1
it basically looks like o Drw /-
Im[H] ‘I'. j/ X J m i
N (L -z
H=— Z ( ( 5T ) + .'/g)(a.g_ragﬂg - (I$I+2(12$) + (odd sublattice) - - - |
!

compare with = j dr x TOO
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Actual Entanglement
Hamiltonian

For ¢ approaching 1

Im[Hjy1,1]

N z(2L —
H= = Z ( ( 17 ) +u)(alaz —al, a,), 1~ 1y,
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Actual Entanglement
Hamiltonian

Full modular Hamiltonian

N o0
== Z (z — 1/)(&3‘,_,(12(‘.,;“) — ag(IH)agw),

I=—00

Commutation relations with the momenta eigenmodes

[Fap]= N_Z_: aze"P(sin pr + 5((1 —v)e P 4+ ve'?)).
The x sin p term behaves like Bpap

The entanglement Hamiltonian behaves pretty much like our guess.
It does generate something like a boost that ~shifts p, which is what our guess does at
least for ¢c=0. There is subtlety with bc at infinity to account for the extra terms.
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4.Generalization to other
integrable models

e discrete space time has been considered in the literature
based on statistical integrable lattice models

Fadeev et al

e can think of our tensor network as one building from the
“diagonal-to-diagonal” basis of the transfer matrices (or
inhomogeneous transfer matrix) in integrable models

To describe a quantum Lorentzian model: there is the issue of analytic continuation!

The Lorentzian model is obtained by analytically continuing the “spectral parameter”
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6 vertex model

e example: the 6 vertex model . . .
b b
a = sin(A — u), b = sinu, ¢ = sin A, A = —cos .
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Analytic continuation

Ry, p,(@ — b) Ly s, (a)Lin 5,(b) = Ln 5, (b) Ln, s, (@) Ry, 5,(a — b),

transfer matrix  taking the solution R = L

Ty(v) = (Lng(u)Ln-1,s(w) - - Ly f(u)), T(v) = trp(Lng(u)Lln-1,f(u)--- Ly s(u))
Lorentzian transfer matrix T(u) = TE (iu).

Looking ahead, to build a network, Fadeev introduced “inhomogenous transfer matrix”

Ty(u,v) = Loy s(u + v)Loy_1 g(u —v) - - Lo f(u + v) Ly s(u — v),
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6 vertex model

Uy = tr;Tp(w, w), U = tr;Tf(—w,w).

exp(—iH) = UpUZ* = V [ lanan-1(20)V " [Jlasen2w)
— H [211+l.2n(2u—“) H 1211.,211.—1(2“:’) y

* solve all eigenstates using a coordinate Bethe’/Ansatz tavies

Ln,f(u) — Rl.,fln,f(u) )

i“.’u ].u(f\ et u_;') i;g,,.,,(/\ + .,d)

Uy = exp(—i(H — P)/2), U.

Flatness condition: Lona(A+w)Lon- L, (A +w) Lon-ra(A—w)  ~@)Us.
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Boost using the classical
model: Corner Transfer Matrix

e |tis observed that there
is exact symmetry rotating
the graph by 90 degrees.
The rotation transformation
is effected by the “corner transfer
matrix” saxter

picture courtesy Thacker

* The corner transfer matrix is the Euclidean version of our
Lorentz transformation generating an exact symmetry of
the Euclidean lattice. (A generates 90 deg rotation)

AP (u) = exp(—uK).

Page 27/33



Corner Transfer Matrix

e |t has been shown that

K= __nHxxz(nn+1)

o Hxxz(n,n -+ ].) — _%(Jano-n+l + Jo, O-n—}-l T Ko 0n+1)

It has been noted that the reduced density matrix carayetc.. pPp = A.B.C.D
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Some symmetry algebra
related to the CTM

o0

K.=K-K-= Z nHxyz(n,n+ 1).

n=-—0o0

K., Tj{r f(v)] = (f)_,_,TJ,’\}"‘ f(«u), This expression follows from the YB equation

e/\eiv =1

P
P S

it’s a shift of the momentum. how does that compare with the free fermion case?
it has to do with some boundary conditions.....

(The boost operator can be used to build a Virasoro algebra.)
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Corner Transfer Matrix

* The corner transfer matrix gives rise to a “boost operator”

K : it generates shifts in the rapidity

in the limit c— 0 the dispersion relation also becomes linear.

eigen-wavefunctions of K can be compared with the wavefunctions
we have for free fermions. We find that it approaches our resulit.
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Final comment on the
Reeh-Schlieder theorem

* |In the ferromagnetic state, S
the ground state only has 7
short range entanglement. "
in fact the reference ground Z
state is simply all spin up =
direct product state. In some
limit dispersion of spinons
becomes linear like the fermions

AN
ALY R

e the reference state remains AbsiCog)
exactly invariant under the
action of this boost. GS no entanglement?!?!
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Final comment on the
Reeh-Schlieder theorem

For a spectrum that is lower bounded in energy:

Qt2)=Q*+Q +Q°, QIR =Q*"Q) =0,

C;)i i / ddp e~ iPot }m'ﬂ(:);(ﬂn-[i;)- (:)+(Pl]-[)i)|sz> = (:)’_ (1)”,1),-)JQ> = 0.

Boundedness of energy implies that the ground state is annihilated by a set of non-local
operators

In the ferromagnetic model: there is no notion of positive vs negative energy. Violates
the boundedness of energy assumed in the Reeh-Schlieder Theorem. No entanglement
even with translation and (approximate) Lorentz invariance
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Conclusion and Outlook

 We have attempted to put the tensor network in the
framework of the AQFT.

* We show very simple examples that basic features,
including the Unruh effect, can be recovered in a discrete
tensor network without actually taking the continuous limit.

* This is a broader feature that can be readily investigated in
other simple models such as integrable models.

* We are looking toward generalization to curved
backgrounds, and also to higher dimensions.

(There is a mystery about Bosons.)
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