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Abstract: <p>We consider implications of superrotations as an asymptotic symmetry of asymptotically flat spacetimes. & nbsp;Beginning with a
review of the rich structure of interconnections between soft theorems, asymptotic symmetries,
and& nbsp; & nbsp; & nbsp; & nbsp; & Nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp;&nbsp;  memory  effects, we
describe the superrotation iteration. & nbsp; The subleading soft graviton theorem can be cast as a Ward identity for this asymptotic symmetry in 4D,
and also as one for the stress tensor of a putative CFT2. &nbsp;We detail & nbsp;the change of scattering basis motivated by this asymptotic
symmetry and discuss recent progress.</p>
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Motivation

What can IR physics teach us about gravitational scattering?

More Symmetries = More Constraints

The asymptotic symmetry group of asymptotically flat spacetimes is much larger than Poincare
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A Triangle of Relations

What can IR physics teach us about gravitational scattering?

There exists a generic pattern of connections between asymptotic symmetries, soft theorems, and
memory effects...

Soft Theorems
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A Triangle of Relations

What can IR physics teach us about gravitational scattering?

There exists a generic pattern of connections between asymptotic symmetries, soft theorems, and
memory effects...

I

Such that by understanding simpler
examples we can identify missing SOft Th eorems

components of new iterations...

]llv
A e

Memories Symmetries

Page 7 of 48
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A Triangle of Relations

What can IR physics teach us about gravitational scattering?

There exists a generic pattern of connections between asymptotic symmetries, soft theorems, and
memory effects...
I

Soft Theorems

In this manner a brand new iteration was

completed corresponding to superrotations.

This iteration is related to a generalization of

Lorentz transformations and has motivated ]“”Pu e
looking at §-matrix elements in a new basis

with definite SL(2,C) weights Memories Symmetries
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A Simple Example

1ssive particles exit

Consider the conformal
compactification of
Minkowski spacetime

s enter here
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A Simple Example

In gauge theories there are constraints that
need to be satisfied for the initial data on a
Cauchy slice

Pirsa: 18100085 Page 8/39



A Simple Example

Pushing the Cauchy slice up to null
infinity the constraints relate radiative
data to changes in charge kinematics
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A Simple Example

Pushing the Cauchy slice up to null
infinity the constraints relate radiative
data to changes in charge kinematics

ILP)OHC
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A Simple Example

Some more details:

Radial Expansion:
A, (r,u,2,2) = A (u,2,2) + Z u, z,2)

n=1
00

n) _—
Aulryu,zB) = L Au(u,2,2) + 30 A()
n=l

ASG that preserves this expansion:

0eAz(u, 2,2) = 0.€(2, 2)

Mode Expansion: Coordinate Conventions:

(l (i L o iq-x
Z/ 271-)3 zw fu q)flu(qj‘ ’ (#(q‘)uu(q‘)?l! q ]

ds® = —du® — 2dudr + 2r°~,:dzdz
2

Constraint Equation: 2 — % tan g 7
— ¢ “}(ét - (1 +ZZ)2

| OuAu = 0u(D*A. + D*A;) + €%, 2
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A Simple Example

Two key points:

Saddle point at large r picks out a gauge boson momentum pointing in the same direction as
where an observer near null infinity would detect it. As a result, one ends up with a mode
expansion where the angular integral localizes, and (u, @) remain as Fourier conjugates.

1
, . . .. i 2e
Jig-x —iwu—iwr(l—qg-&) A 7)) = —
e =g = 2(u, 2, 2) 821423

a0
[ dw (a4 (wE)e " — a_(wE)Te'"]
0 :

f du picks out @ = 0. As such we can relate the soft factors to the constraint equations:
1
Fourier transform of a pole — is a step function

k

(szrla Zn+2; ...|(1,, (Q)‘S|zlv 22, ) = S(n)_ (szrl: Zn+2; ...|S|Z], 22y e
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A Simple Example

Integrate the constraint equation along u
E, - Q‘ L
Amr? 42(1 — B - 1)?

AA, = 2D*AA, + ¢ [ dujy,

e 3 2+ o(0)+ 2 ax— c(0)— _.2Q 1
hin_ﬂjw[l) ars,y T+ D% S]] = —e e T o

I

The soft factor indicates that typical scattering some conventions:
processes will produce a nonzero u integrated i _ (1, 7) SO = eQ’;fq
electric field.

+

e

AA; = —— &+ s+
] N r *
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A Simple Example

Upshot: The residue of the Weinberg pole indicates a nonzero value for certain
low-energy radiation observables aka “memory effects”

Since setting these modes to zero would trivialize the allowed scattering events, we
get with this class of boundary conditions a larger class of gauge transformations
that preserve the radial order of the falloffs while shifting the boundary values aka
“large gauge transformations”

A,

symmetry

Pirsa: 18100085 Page 14/39



A Triangle of Relations

relate S-matrix elements for states with and without
extra soft gauge particle

Soft Theorems

Memories Symmetries

non-zero net effects in a typical scattering process ot change) what we're after:

forces us to have asymptotic behavior that allows them,  ' I. G P More Symmetries = More Constraints on §-matrix
these extra symmetries then act non-trivially it e !
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A Triangle of Relations

i) Weinberg — photon O( i)
ii) Weinberg — graviton O(tl})

iii) Cachazo & Strominger — graviton O(1)

Soft Theorems

Memories Symmetries

(global)
i) Liénard-Wiechert / Bieri & Garfinkle i) e-charge
ii) Zeldovich & Polnarev / Christodoulou i) By
iii) Pasterski, Strominger, & Zhiboedov i) J v

(asymptotic)

large U(1)
supertranslations
superrotations
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Asymptotically Flat Spacetimes

ds? = —dt? + dx? + dy? + dz*

Want to consider non-trivial
gravitational backgrounds that
are “close” to being flat

Approach flat spacetime
far away from sources

BMS 1960's
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Asymptotically Flat Spacetimes

Interested in set of diffeomorphisms
that preserve class of asymptotically
flat metrics, characterized by radial
fall-off near null infinity

allowed gauge symmetries

ASG =

trivial gauge symmetries
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Asymptotically Flat Spacetimes

Radial Expansion:

ds* = —du® — 2dudr + 2r%y,zdzdz + 2™ du?
+(rC;.dz? + D*C,.dudz + }(}N, — ;8.(C,.C**))dudz + c.c.) + ...

ASG that preserves this expansion:

1+ ;‘ YY+:8, — ; D*D,Y**8; - ;(u+r]l):Y"0,. + fz‘uzy 58, + c.c
T T

+ £+, — N(D*f*0, + DEf*8,) + D*D,f*0,
:

Coordinate Conventions:

0 2

2 =T (14 22)
ff=Ff"(z,2) 8:YT*=0

2z = €' tan
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Superrotation Charge

We can demonstrate a semiclassical Ward identity for superrotations using the
subleading soft graviton theorem [ ].

< out|QTY]S —SQ[Y]|in >=0
N

8TGQT[Y] = / d,fu,/ (izzﬁﬁ,t[—quADAmB +YAN, + i)

1
(')umB = i(')u [DE(:ZZ + Dg(:zz] _ Tuu

8N, = id [D2C** — D2C*] + 8,mp — Tus
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Superrotation Charge

We can demonstrate a semiclassical Ward identity for superrotations using the
subleading soft graviton theorem [ ].

QY] = QY]+ Qy[Y]
.

1 /‘"‘ p - ) o B .
QY] = = / dud?2D%Y *ud,C?, QL[Y]= lim / dy €*n§ T,
- 2 T+ YT b))
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Superrotation Charge

We can demonstrate a semiclassical Ward identity for superrotations using the
subleading soft graviton theorem [ ].

iq-x —itwu—iwr(l—q4-%)

(& = €

as Fourier mode dpos © qmom & lim & [ du
W~

oVn‘eld op_eraror

(out|a—_(q)S|in) = (S(O)_ + S(l)—) (out|S|in) + O(w)

g(1) :,izphe‘ " o
; Prq

'.
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Superrotation Charge

Looking again at the superrotation vector field near null infinity, we notice we
have two copies of the Witt algebra:

) u
£+|J+ - Y+zaz + §D2Y+zan 7= C.C.
1
Moreover, for a particular choice of ¥~ '~ we find that the soft part of the
charge takes the form of a putative 2D stress tensor | ].
T.. = = [d*w-L-D2 D? [ duud,Cyy

27 BnG z—w W

= & [k, ; fone.
(T..0,---0,) = Z [( hi E P /L. N ! (8., — |8k | (O ---0,) Weight Conventions:
z— 2
k=1

22— 2k 2 — 2

1 1
h=o(s+1+iBp) h= (-s+1+iEp)

A=h+h s=h-h
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Superrotation Charge

Looking again at the superrotation vector field near null infinity, we notice we
have two copies of the Witt algebra:

f+|3+ =Y*%9, + 3D2Y+28q£ + c.c.

1
Moreover, for a particular choice of v*~ - lw we find that the soft part of the

charge takes the form of a putative 2D stress tensor | ].
T.. = = [d*w-L-D2 D? [ duud,Cyy

27 BnG z—w W

- " [2x : P
(20, 0n) = 3 [ Me wthop g L9, —ai0,,)| (- 0,) Weight Conventions:
= (z— ) z— 2 z— 2k

- 1 1
h=o(s+1+iBp) h= (-s+1+iEp)

We need Rindler energy eigenstates! A=hth s=h-h
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Constructing A Conformal-Primary Basis

Using that the Lorentz group SO(1,d+1) in R+ acts as the conformal group
on R% define the massive scalar conformal primary wavefunction to:

satisfy the (d+2)-dimensional massive Klein-Gordon equation of mass m:

a 0 9 oty
((f)X" 5X. —m )dJA(X ;) =0

transform covariantly as a scalar conformal primary operator in d dimensions under
an SO(1,d+1) transformation:

ow’ /
o

da (A, XY 0" (W) =
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Constructing A Conformal-Primary Basis

Using that the Lorentz group SO(1,d+1) in R+ acts as the conformal group
on R% define the massive scalar conformal primary wavefunction to:

satisfy the (d+2)-dimensional massive Klein-Gordon equation of mass m:

a 0 9 oty
((f)X" 5X. —m )dJA(X ;) =0

transform covariantly as a scalar conformal primary operator in d dimensions under
an SO(1,d+1) transformation:

ow’ /
o

da (A, XY 0" (W) =
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Constructing A Conformal-Primary Basis

. dy? +dz-dz
2 . J

dsHuu - y2
] L+y°+2°

]

71—y - IE'TZ)
2y v’ 2y
Neg g 'y, Z") = A¥p¥

p=mp . q

it =

AN
N

¢* (W) = (1+ |[w]?, 20, 1 - |i|*)

f’)?ﬁ A'ul'-’qp (11‘;)

(') =
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Constructing A Conformal-Primary Basis

The desired properties are met by the convolution:

= | (X @) = / (dp) G a(p; @) exp [ £imp - X |
/ Hg

N
Interpretation as bulk-to-boundary propagationin
momentum space

Have plane wave = highest-weight, what about
reverse?

Page 28/39



Pirsa: 18100085

Constructing A Conformal-Primary Basis

The orthogonality conditions f dv p(v) fd"wf}(,‘:“”(ﬁ];?H)(,‘g_w(;‘;g;;-EI) = 5“9t (5, pa)

. o o Ny A (¢ 4 a)rd —w)
/n. 1IdPJ Cgran(Pi )G 115 (P102) = uv) = 4112'" 11‘(1':/)1%(—1'!/)
L) (—ir)

r¢¢ +a)r(¢lha)

['(iv) (v - ) 1

(v + )69 (4@, — 0, 4+ opitl
( y ( 1 1) F(’z’ 4 if’) |1151 ujz"s‘(‘}"w) ]

21|'d +1

Imply we can go in the opposite direction highest-weight = plane wave

o0
+4 b X p o — L. 4 + -4
e='mEaA = 2/(; du,u,(u)/d w Ggﬂ-,,(i”: w) ¢§+w(X“:"'”)
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Constructing A Conformal-Primary Basis

By forming the combination w = % we can further use the boundary behavior

-

of G, to explore the massless analog:

: d I‘(A - fgi) d—4A ¢ ~ yd
Y S NN 27 - (d) iz _ PR
Galy, 2;w) m—_b—:] T2 [(A) Y 8'(Z—w) + 7= wp?a +

The first term results in a Mellin transform of the energy, in which the
reference direction is the same as the momentum, and satisfies the desired
properties of a massless conformal primary.

(F2)2I(A)
(—q(W) - X F1€)d

o0
Wi(X”;uf) —f dw w1 eFwaX—ew _
0
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Amplitude Transforms

Note that transforming momentum space
amplitudes directly, is an alternative to previous
approaches [ , ]
towards flat space holography, which have looked
at a foliation of Minkowski space to reproduce
AdS/CFT, dS/CFT on each slice.
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Constructing A Conformal-Primary Basis

Photon

. . p H b i’ —-(A-1)/d
(oxe o, ~ o ) A (X5 =0 ADE (N, X508 (@) = 5 | S A, AL (XP;d)
w

X7 8X, " aXvax,) e na

Graviton

— he_\.?

Jgpiyagag ?

a a a 14 — et
“a{yauil M;ﬂlﬂr’z + agaﬂh l’;ﬂlﬂ'.e S Bufguh a0z * ‘9 aﬂfl}lu;ﬂlﬂg - (] .+ 7"_\‘.? ér"'."lA'+ 70

by pziaza, o paie ag

VY Y (‘j.wbl {L)'UJ!U o4 -(A-2)/d
R+ (A2, X35 (1)) = o2 OW™

H1p2a1a2 (')"J!!ll (')mra-'z

A Wil i

1y K2 Yayagibiby

“ P,
P (XP;0)
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Constructing A Conformal-Primary Basis

Photon
ouwb |ow |~A-1/d
At p L ) I
A (A UX yw (w)) a'lﬂ’“ ()u—}

( 2.0 5. .0 0 )4"‘"()(";?:;)_() a: A2 ANE(X*; )

dX° 09X, v aXvax,) r ob

Graviton
hA.+ - h;.'\.?
a T a o J g ag Jrap e ag
“a{yauil + agaﬂh via)as - Bufguh oia1a2 ‘gpaﬂfl}lu;ﬂlﬂg - (] hA.'T —h
Jyjigiagag Jyjigiagay o

Hiayaz

A+ érl.r-;’iA.+ =0

o paie ag

awbl {L)wb) o' | (A-2)/d

ow'* ow'*? | Ow

At () — 2pA _—
h (AP, XY ;0" () Ao A B o b, (X5 0)

Hi1pz;ayaz

> X
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Constructing A Conformal-Primary Basis

The shadow is linearly independent.

Demanding conformal profile fixes residual gauge transformations but within
gauge equivalence class can return to Mellin representative.

8{1Q;L aaq - X
(—¢- X Fid " (—¢- X Fie)a+1

0 Oaq- X
—eonst 9xn \ (—q- X Fie)d

ARE (XM ) =

pna
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Constructing A Conformal-Primary Basis

The shadow is linearly independent.

Demanding conformal profile fixes residual gauge transformations but within
gauge equivalence class can return to Mellin representative.

8{1Q;L aaq - X
(—¢- X Fid " (—¢- X Fie)a+1

0 Oaq- X
—eonst 9xn \ (—q- X Fie)d

ARE (XM ) =

pna
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Constructing A Conformal-Primary Basis

The orthogonality conditions f1 dv u(v) /‘d"u"G:‘_{‘w(p"j;ui)G_} (Po; @) = 6“4V (), py)

(4 + )4 = iv)

,[H. ' 4] (:“ v it )G’: vio (B3 W2) = uv) = :111‘?' (i) (—iv)
4 7/ k!- -1 { (3
! (e )I (—iv) (v + 1}‘,16“""["21:- u_!'.‘} 4 o3+ 1 ll\“’.] d‘(” - i) 1

Pt oo L T Y
(4 +in)l'(d —iv) 04 + iv) "ldly — 2F ) ]

Imply we can go in the opposite direction highest-weight = plane wave

etimpX _ 2/ duﬂ(y)fddu—} G{f iu(f);

0
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Amplitude Transforms

Note that transforming momentum space
amplitudes directly, is an alternative to previous
approaches [ , ]
towards flat space holography, which have looked
at a foliation of Minkowski space to reproduce
AdS/CFT, dS/CFT on each slice.
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What Needs To Be Done

The current map interpreting S-matrix elements as 2D CFT correlators seems
to imply either an exotic CFT 2 or that the map needs to be finessed... Options?

Is there a better shadow-related basis?
O\ (w, ) = ¢\ (w, D) /d z Gow)

O, (w, @) = ¢, (w, D) /d 2z s o) I\Q‘j (2, 2)

,,
e

¢' (A(z' 2}

—w)*

The mode combination that decouples in the soft limit is precisely a linear
combination of Mellin and Mellin+shadow in the limit where Im A = 0:

a_ =a_ [dz - wc:+(wu)

Understand the mn/mmof y,mfr limit!
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What Has Been Done

Beautiful expressions for full mellin transform (which inherently probe UV
structure) of string amplitudes | ]

Systematic n-pt NKMHV |
3D example of CB decomposition [ ]

Interesting statments about symplectic pairing of conformally soft modes

[ J
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