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Abstract: <p>Despite considerable effort, magic state distillation remains one of the leading candidates to achieve universal fault-tolerant quantum
computation. However, when analyzing magic state distillation schemes, it is often assumed that gates belonging to the Clifford group can be
implemented perfectly. In many current quantum technologies, two-qubit Cliffords gates are amongst the noisiest components of quantum
computers. In thistalk | will present a new scheme for preparing magic states with very low overhead that uses flag qubits. | will then compare our
scheme to leading magic state distillation methods and show that the overhead can be reduced by orders of magnitude.</p>
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Ingredients needed to build a universal
quantum computer

* Qubits with long coherence times.
* Reliable and fast gates/measurements (also fast classical resources).

* Error correction (errors unavoidable, must be able to correct some of
them with high probability).

* Fault-tolerant quantum error correction (must have a way to do error
correction with noisy gates and measurements without errors

spreading too badly).
* Fault-tolerant quantum computation: need the ability to perform
logical gates reliably. Focus of this talk
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[1] B. Eastin and E. Knill, “Restrictions on transversal encoded quantum gate sets," Phys.
Rev. Lett., vol. 102,p. 110502, 2009.

Fault-tolerance with transversal gates

* Transversal operation: 1) Only applies one qubit gates to the qubits in a code block. 2) It only
interacts the it" qubit in one code block with the it" qubit in a different code block or ancilla block

X9 X X‘l X
® X

Example of a transversal * Example of non- )
CNOT gate on a 3-qubit * transversal CNOT gate on
code a 3-qubit code. Not fault-
tolerant
< X
O N X
& N7 ({) .

* Eastin-Knill Theorem: The set of transversal gates for a given code generates a finite group. Cannot
be universal for guantum computation. [1]
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Several schemes to achieve fault-tolerant
guantum computing on a universal gate set

* Magic state distillation (the focus of this talk)

* Universal concatenated quantum codes [2]

e Code switching [3,4]

* Transversal gates + error correction [5]

* Intermediate error correction rounds after non-transversal gates [6]

[2] T. Jochym-O’Connor and R. Laflamme, Phys. Rev. Lett (2014)

[3] J. T. Anderson, G. Duclos-Cianci and D. Poulin, Phys. Rev. Lett. (2014)
[4] H. Bombin N.J.P (2015)

[5] A. Paetznick and B. W. Reichardt Phys. Rev. Lett (2013)

[6] T. J. Yoder, R. Takagi and I. L. Chuang Phys. Rev. X (2016)
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[7] S.Bravyi and A. Kitaev, Phys. Rev. A (2005)

Magic state distillation

* A state that can both be used to achieve universal quantum
computation and be distilled using only Clifford gates (and |0> state
prep + Z basis measurements) [7].

Clifford group: P'r(?,2) — {U . (]_F)[]T - P?gl)VP = P,,gl)}

Generated by: PT(LZ) o (H’l,) S’L; CNOT@j)

1 1 1 1 1 0
i (1) s (20)
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Universal guantum computing with Clifford’s
+ resource states

| | Phase shift gate |

- Suppose you have the resource state |A9> —2(|0) + €L9|1)) and want to apply A( ?‘9) |’¢> where

i 1 0
A(e™) = ( L ) and |¢0) = a|0) + b|1).
Step 1): Prepare ]\I/(_]) = |7,[)) X |A9> and measure S;1 = Z ® Z. Apply CNOT from qubit 1 to qubit 2 and discard

second qubit.
. 0-00-<],
VE) = AED)  agy o

L/

Step 2): Apply circuit repeatedly to get transformations A(eiplg), A(eimg), -+ - for some integers P1,P2, ' obeying random
walk statistics.

Eventually get P = 1. P(‘I’L > N) = CN_l/z. If @ = 1—3271' where P, q € Zi then probability of more than N
q steps decreases exponentially with N .
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Distilling resource states

* |dea is to encode the resource state in an error correcting/detecting
code.

* Measure the state to see if there is a logical fault. Also measure the
error syndrome. If logical fault or non-trivial syndrome, reject the
state.

* Accepted resource states are measured again.

* Above procedure repeated multiple times until resource states have
desired failure rate (depends on the particular algorithm that one
wants to implement).

Above can all be done using only Clifford gates, |O) states and Z-basis measurements.
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Example: Meier-Eastin-Knill (MEK) scheme (1)

: T _ginZ
—izY ((‘Ob%f blns)

. . e T i e . -
Consider the following state: |H) = cos 2 |0) + sin < 1) =T)0) with T'=¢ =\sin® cosZ

Y|H) = —|H) H|+ H) = +|H)

H> So can use ’H) as a resource state.

Related to‘AT‘T)by |Az) = (10) + Gi%ﬂ)) =¢'SHST

-

2

+) 2\

With additional resource states
the circuits use only Clifford’s.

X

Can measure the
Hadamard operator using 77

‘ _m | { H) /”\ﬁw
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Example: Meier-Eastin-Knill (MEK) scheme (2)

Errors in the extra resource states could result in the wrong measurement outcome. Perform an encoded version.
|+) —{ XD ,
E he [[4.2,2 .
. n in

XRXRRIXR®X
VA A A
X1 =XXI®I,
Z1=2Q01I11R Z,
X =XRI®I® X,

Zy=2R2ZR1®1.

Stabilizers [

+) ——1 T 10
H) —p P
Full distillation|  |0) ——@ QT; H HH S T—l HHAH CL S—112)
routine T T T
|H) QD H Y HY P
[+) — T H 5’ J Ll T O
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Problems when Clifford gates are noisy

* With current guantum devices, Clifford gates (in particular two qubit
gates) can be very noisy.

* Must use encoded Clifford operations in Magic state distillation
circuits.

* To achieve very low logical failure rates (< 1071° to 10~1°), will
require encoded Clifford gates in very high distance codes.

* Consequently the qubit and gate overhead for magic state distillation
routines can be very large.
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Example: Meier-Eastin-Knill (MEK) scheme (2)

Errors in the extra resource states could result in the wrong measurement outcome. Perform an encoded version.
En inthe [{4,2,2 .

Full distillation
routine
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Problems when Clifford gates are noisy

* With current guantum devices, Clifford gates (in particular two qubit
gates) can be very noisy.

* Must use encoded Clifford operations in Magic state distillation
circuits.

* To achieve very low logical failure rates (< 1071° to 10~1°), will
require encoded Clifford gates in very high distance codes.

* Consequently the qubit and gate overhead for magic state distillation
routines can be very large.
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Magic state preparation with fault-tolerant

CIrcuits

* Instead of using magic state distillation routines, we can directly
prepare magic states using fault-tolerant circuits.

* Previous methods require large ancilla states and have very low
thresholds.

* Error correction circuits can have a very large footprint.

Example:[8]"
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|Ar/a) 1-exRec

- Requires large cat states

0) {7 o7t} & [T+o{11] S —

that need to be verified
for errors.

- Steane EC has a large
footprint.

[8] P. Aliferis,
D. Gottesman and J.
1 Preskill, QIC (2006).
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Use flag qubits to construct fault-tolerant
circuits to prepare magic states

* Flag qubits were introduced in order to do fault-tolerant error
correction using the minimum number of ancillas [9].

* Further generalizations were obtained in [10,11].

* Can use flag qubits to fault-tolerantly prepare magic states with very
low qubit overhead.

* No need to prepare large ancilla states that need to be verified.
* Lower overhead compared to MEK by several orders of magnitude.

[9] R. Chao and B. Reichardt, Phys. Rev. Lett (2018)
[10] C. Chamberland and M. Beverland, Quantum (2017)
[11] T. Tansuwannont, C. Chamberland and D. Leung (2018)

Pirsa: 18100070 Page 15/19



Error correction and state-preparation circuits

[12] B. Reichardt (2018)
“FEC | = J —~P | ' P [7,1,3] Steane code
+) A (0) e b b He \ =, 91 = XIXIXIX
0)— OO, 1+) =, g =I1ITXXXX
A I B I gy = IXXTIXX
+) I g = 21217217
+) (£ <£ g, = 1112777
Non fault-tolerant circuit = . " I ) I ) | ge = 12711727
for preparing the |H>nf - ?d} (}D — =7
Hadamard eigenstate. 10) | O | X=X
|0) ©) = 27
0} o Z=12
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Magic state preparation protocol

HI |

Imn
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Error detection scheme Error correction scheme
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number of qubits

Overhead analysis of our scheme

Increase distance through code concatenation.

Qubit overhead
A
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number of gates

Gate overhead
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Conclusions

* Difficult to measure high-weight logical Hadamard operators using
flags (we have a circuit for the [[17,1,5]] color code).

* Our scheme requires code concatenation in order to scale to higher
distances.

* Overhead results look very promising.
 Currently noisy Clifford gates seem nearly unavoidable.

* Our results could pave the way for further exploration of fault-
tolerant magic state preparation.
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