Title: TBA

Date: Oct 09, 2018 02:00 PM

URL: http://pirsa.org/18100061

Abstract: Abstract TBD.

Continuous Tensor Network States of Quantum Fields

Antoine Tilloy, with J. Ignacio Cirac Max Planck Institute of Quantum Optics, Garching, Germany

Seminar Perimeter Institute, Canada September 27th, 2018

Alexander von Humboldt Stiftung/Foundation

Problem

Many-body states are complicated.

$$|\psi\rangle = \sum_{i_1,i_2,\cdots,i_n} c_{i_1,i_2,\cdots,i_n} |i_1,\cdots,i_n\rangle$$

 2^n parameters c_{i_1,i_2,\cdots,i_n} .

Typical many-body Hamiltonians are simple.

$$H=\sum_{k=1}^n h_k$$

 \sim const \times *n* parameters.

Variational optimization

To find the ground state:

$$|\mathsf{ground}
angle = \min_{|\psi
angle\in\mathscr{S}}rac{\langle\psi|\mathcal{H}|\psi
angle}{\langle\psi|\psi
angle}$$

Can we find a subspace \mathscr{S} s. t.:

- ► $|\mathscr{S}| \propto n^k \ll e^n$
- ► *S* approximates well interesting states
- bonus $\langle \psi | \mathcal{O}(x) | \psi \rangle$ is computable

An idea popular in many fields

Mean field approximation (of which TNS are an extension)

 $\psi(x_1, x_2, \cdots, x_n) = \psi_1(x_1) \psi_2(x_2) \cdots \psi_n(x_n)$

- Special variational wave functions in Quantum chemistry (whole industry of ansatz)
- Moore-Read wavefunctions in the study of the quantum Hall effect

$$\psi(x_1, x_2, \cdots, x_n) = \left\langle \widehat{\varphi}(x_1) \widehat{\varphi}(x_2) \cdots \widehat{\varphi}(x_n) \right\rangle_{\mathsf{CFT}}$$

Fully connected and convolutional neural networks used in machine learning

Matrix product states

$$|\psi\rangle = \sum_{i_1,i_2,\cdots,i_n} c_{i_1,i_2,\cdots,i_n} |i_1,\cdots,i_n\rangle$$

Matrix Product States (MPS)

$$\mathsf{A},\mathsf{L},\mathsf{R}\rangle = \sum_{i_1,i_2,\cdots,i_n} \langle \mathsf{L}|\mathsf{A}_{i_1}(1)\mathsf{A}_{i_2}(2)\cdots \mathsf{A}_{i_n}(n)|\mathsf{R}\rangle |i_1,\cdots,i_n\rangle$$

- A_i are $D \times D$ complex matrices
- A is a $2 \times D \times D$ tensor $[A_i]_{k,l}$
- ▶ $|L\rangle$ and $|R\rangle$ are *D*-vectors.

 $\diamondsuit{}~n imes 2 imes D^2$ parameters instead of 2^n

 \Diamond *D* is the **bond dimension** and encodes the size of the variational class

Remark: actually equivalent with the density matrix renormalization group (DMRG)

Graphical notation

 $|A, L, R\rangle = \sum_{i_1, i_2, \cdots, i_n} \langle \mathsf{L} | A_{i_1}(1) A_{i_2}(2) \cdots A_{i_n}(n) | \mathsf{R} \rangle | i_1, \cdots, i_n \rangle$

Notation: $[A_i]_{\mathbf{k},\mathbf{l}} = -\mathbf{b}_{\mathbf{k},\mathbf{l}}$ and $\mathbf{k} - ---\mathbf{l} = \sum \delta_{\mathbf{k},\mathbf{l}}$ gives:

The contraction for a d = 1 system, can be seen as an open-system dynamics in d = 0.

Generalizations: different tensor networks

Matrix Product States (MPS)

Projected Entangled Pair States (PEPS)

Multi-scale Entanglement Renormalization Ansatz (MERA)

Some facts

A list of theorems [very colloquially]:

- **Expressiveness** [trivial] Tensor Network States cover \mathscr{H} when $D \propto 2^n$
- Area law The entanglement of a subregion of space scales as its area for a TNS
- Efficiency [gapped] Matrix Product States approximate well the ground states of gapped systems in 1 spatial dimension
- Efficiency [critical] Multi-scale Entanglement Renormalization Ansatz (MERA) approximate well the ground states of critical systems in 1 spatial dimension.
- **Symmetries** Physical symmetries can be implemented locally on the bond space
- Inverse problem TNS are the ground state of a local parent Hamiltonian

Successes and limits

Successes

- \heartsuit Arbitrary precision for 1*d* quantum systems
- \heartsuit Classification of topological phases in 1d and 2d
- ♡ Progress on non-Abelian lattice Gauge theories
- \heartsuit AdS/CFT toy models

Limits

- Hard to contract in $d \ge 2$
- No continuum limit in $d \ge 2$
- Lack of analytic techniques

Can one apply tensor network techniques directly in the continuum, to QFT?

Continuous Matrix Product States (cMPS)

Taking the continuum limit of a MPS

- ▶ the bond dimension *D* stays fixed
- the local physical dimension explodes $\mathbb{C}^2 \otimes \cdots \otimes \mathbb{C}^2 \longrightarrow \mathscr{F}(L^2([x, x + dx])).$
 - \implies Spins become fields (\simeq central limit theorem \simeq quantum noises d ξ , d ξ^{\dagger})
- A cMPS is a quantum field state parameterized by finite dimensional matrices: $|Q, R, \omega\rangle = \langle \omega_L | \mathcal{P} \exp \left\{ \int_0^L dx \ Q(x) \otimes \mathbb{1} + R(x) \otimes \psi^{\dagger}(x) \right\} |\omega_R\rangle |0\rangle$

Continuous Tensor Networks: blocking

Upon blocking:

- ♣ The physical Hilbert space dimension *d* increases (idem cMPS ⇒ physical field)
- The bond dimension D increases too

Choice of trivial tensor

For MPS, not much choice:

We will consider a softer modification of the first version:

Ansatz

1 – Take a "Trivial" tensor:

The indices φ are in \mathbb{R}^D (and not $1,\cdots,D)$

2 – And add a "correction":

$$\exp\left\{-\varepsilon^2 V\left[\phi(1),\cdots,\phi(4)\right]+\varepsilon^2 \alpha\left[\phi(1),\cdots,\phi(4)\right]\psi^{\dagger}(x)\right\}$$

$$|V, B, \alpha\rangle = \int \mathcal{D}\phi \, \mathcal{B}(\phi|_{\partial\Omega}) \exp\left\{-\int_{\Omega} d^d x \, \frac{1}{2} \sum_{k=1}^{D} \left[\nabla \phi_k(x)\right]^2 + V[\phi(x)] - \alpha[\phi(x)] \, \psi^{\dagger}(x)\right\} |0\rangle$$

Operator definition

$$|V,\alpha\rangle = \operatorname{tr}\left[\operatorname{\operatorname{\mathsf{T}exp}}\left(-\int_{0}^{\tau} d\tau \int_{S} dx \; \frac{\hat{\pi}_{k}(x)\hat{\pi}_{k}(x)}{2} + \frac{\nabla \hat{\varphi}_{k}(x)\nabla \hat{\varphi}_{k}(x)}{2} + V[\hat{\varphi}(x)] - \alpha[\hat{\varphi}(x)] \psi^{\dagger}(\tau,x)\right)\right]|0\rangle$$

where:

• $\hat{\phi}_k(x)$ and $\hat{\pi}_k(x)$ are k independent canonically conjugated pairs of (auxiliary) field operators: $[\hat{\phi}_k(x), \hat{\phi}_l(y)] = 0$, $[\hat{\pi}(x)_k, \hat{\pi}_l(y)] = 0$, and $[\hat{\phi}_k(x), \hat{\pi}_l(y)] = i\delta_{k,l} \delta(x - y)$ acting on a space of d - 1 dimensions.

Operator definition

$$|V, B, \alpha\rangle = \operatorname{tr}\left[\widehat{B}\operatorname{T}\exp\left(-\int_{0}^{T} d\tau \int_{S} dx \, \frac{\widehat{\pi}_{k}(x)\widehat{\pi}_{k}(x)}{2} + \frac{\nabla\widehat{\Phi}_{k}(x)\nabla\widehat{\Phi}_{k}(x)}{2} + V[\widehat{\Phi}(x)] - \alpha[\widehat{\Phi}(x)]\psi^{\dagger}(\tau, x)\right)\right]|0\rangle$$

where:

• $\hat{\Phi}_k(x)$ and $\hat{\pi}_k(x)$ are k independent canonically conjugated pairs of (auxiliary) field operators: $[\hat{\Phi}_k(x), \hat{\Phi}_l(y)] = 0$, $[\hat{\pi}(x)_k, \hat{\pi}_l(y)] = 0$, and $[\hat{\Phi}_k(x), \hat{\pi}_l(y)] = i\delta_{k,l} \delta(x - y)$ acting on a space of d - 1 dimensions.

Wave-function definition

A generic state $|\Psi\rangle$ in Fock space can be written:

$$|\Psi\rangle = \sum_{n=0}^{+\infty} \int_{\Omega^n} \frac{\varphi_n(x_1,\cdots,x_n)}{n!} \psi^{\dagger}(x_1)\cdots\psi^{\dagger}(x_n) |0\rangle$$

where ϕ_n is a symmetric *n*-particle wave-function

Functional integral representation

$$\varphi_n = \int d\mu(\varphi) \mathcal{A}_V(\varphi) \alpha[\varphi(x_1)] \cdots \alpha[\varphi(x_n)]$$

with:

- $d\mu(\phi) =$ $\mathcal{D}\phi \exp\left[-\frac{1}{2}\int_{\Omega} d^d x \left[\nabla\phi_k(x)\right]^2\right]$
- $\mathcal{A}_{V}(\phi) = B(\phi|_{\partial\Omega}) \exp\left\{-\int_{\Omega} \mathrm{d}^{d}x \ V[\phi(x)]\right\}$

Operator representation

$$\varphi_n = \operatorname{tr} \left[\hat{B} \ \hat{G}_{\mathcal{T},\tau_n} \, \hat{\alpha}(x_n) \ \hat{G}_{\tau_n,\tau_{n-1}} \, \hat{\alpha}(x_{n-1}) \cdots \hat{\alpha}(x_1) \ \hat{G}_{\tau_1,0} \right]$$

with:

•
$$\hat{G}_{u,v} = \mathcal{T} \exp[-\int_{v}^{u} d\tau \int_{S} dx \mathcal{H}(x)]$$

 \heartsuit Extension of Moore-Read

Expressivity and stability

How big are cTNS?

Stability

The sum of two cTNS of bond field dimension D_1 and D_2 is a cTNS with bond field dimension $D \leq D_1 + D_2 + 1$:

 $|V_1, \alpha_1\rangle + |V_2, \alpha_2\rangle = |W, \beta\rangle$

Expressiveness

All states in the Fock space can be approximated by cTNS:

- A field coherent state is a cTNS with
 D = 0
- Stability allows to get all sums of field coherent states

Note: expressiveness can also be obtained with D = 1 but it is less natural. Flexibility in D makes the expressivity higher for restricted classes of V and α .

Computations

Define generating functional for normal ordered correlation functions

$$\mathcal{Z}_{j',j} = \frac{1}{\langle V, \alpha | V, \alpha \rangle} \langle V, \alpha | \exp\left(\int \mathsf{d} x \, j'(x) \psi^{\dagger}(x)\right) \exp\left(\int \mathsf{d} x \, j(x) \psi(x)\right) | V, \alpha \rangle$$

Functional integral representation

 Use formula for overlap of field coherent states

$$\langle \beta | \alpha \rangle = \exp\left(\int dx \ \beta^*(x) \ \alpha(x)\right)$$

 Compute with Gaussian integration + Feynman diagrams or Monte Carlo

Operator representation

Similar to cMPS

Transfer matrix

$$\langle \mathfrak{O}(x)\mathfrak{O}(y)\rangle = \operatorname{tr}\left(\Phi_{\mathfrak{O}}\cdot e^{-(y-x)T}\Phi_{\mathfrak{O}}\cdot \rho_{\mathsf{stat}}\right)$$

with $\mathcal{T}=Q\otimes \mathbb{1}+\mathbb{1}\otimes ar{Q}+R\otimes ar{R}$ with

$$Q = -\int \frac{\hat{\pi}_k(x)^2 + [\nabla \hat{\Phi}_k(x)]^2}{2} + V(\hat{\Phi}(x))$$

and $R\otimes \bar{R} = \int V(\hat{\varphi}(x)) \otimes V(\hat{\varphi}(x))^{\dagger}$

Redundancies

Discrete redundancy

Different elementary tensors are **equivalent**, they give the same state:

up to **boundary** terms:

Redundancies

Discrete redundancy

Different elementary tensors are **equivalent**, they give the same state:

up to **boundary** terms:

Continuum redundancy

$$V(\phi) \rightarrow V(\phi) + \nabla \cdot \mathscr{F}[x, \phi(x)]$$

Just Stokes' theorem. If Ω has a boundary $\partial \Omega$:

$$\mathcal{D}[\boldsymbol{\varphi}] \to \mathcal{D}[\boldsymbol{\varphi}] \exp\left\{ \oint_{\partial \Omega} \mathrm{d}^{d-1} x \, \mathscr{F}[x, \boldsymbol{\varphi}(x)] \cdot \mathbf{n}(x) \right\}$$

the objective is to find a tensor $T(\lambda)$ of new parameters such that:

$$C(\lambda x_1, \cdots, \lambda x_n) \propto \langle T(\lambda) | \mathcal{O}(x_1) \cdots \mathcal{O}(x_n) | T(\lambda) \rangle.$$

Doable exactly:

$$V o \lambda^d \, V \circ \lambda^{rac{2-d}{2}}$$
 and $lpha o \lambda^{rac{d}{2}} lpha \circ \lambda^{rac{2-d}{2}}$

- -d = 2, All powers of the field in V and α yield relevant couplings
- d = 3, The powers p = 1, 2, 3, 4, 5 of the field in V yield relevant $\Delta > 0$ couplings. p = 6 is marginal in V. For α , p = 1, 2 are relevant and p = 3 is marginal. All other p are irrelevant.

Getting back cMPS

One can get back cMPS with finite bond dimension by:

1. Compactification Take d - 1 dimensions out of d to be very small

$$|V, B, \alpha\rangle \simeq \operatorname{tr}\left[\hat{\boldsymbol{B}}\operatorname{Texp}\left(-\int_{0}^{T} d\tau \sum_{k=1}^{D} \frac{\hat{P}_{k}^{2}}{2} + V[\hat{X}] - \alpha[\hat{X}]\psi^{\dagger}(\tau)\right)\right]|0\rangle$$

 \implies Hilbert space of a quantum particle in *D* space dimensions.

2. Quantization Take V with D deep minima to force the auxiliary field to take only D possibilities

Generalization

For a general Riemanian manifold $\mathcal M$ with boundary $\partial \mathcal M$, define:

$$|V,B,\alpha\rangle = \int \mathcal{D}\phi B(\phi|_{\partial\mathcal{M}}) \exp\left\{-\int_{\mathcal{M}} d^{d}x \sqrt{g}\left(\frac{g^{\mu\nu}\partial_{\mu}\phi_{k}\partial_{\nu}\phi_{k}}{2} + V[\phi,\nabla\phi] - \alpha[\phi,\nabla\phi]\psi^{\dagger}\right)\right\}|0\rangle$$

i.e. add curvature and possible anisotropies in V and α

Example: $\alpha[x, \phi, \nabla \phi]$ localized on the boundary and hyberbolic metrix *g*:

 \rightarrow **cMERA** in *d* - 1 dimensions

Future

Limitations and work for the future

- Quite formal out of the Gaussian regime (back to perturbative)
- Limited to bosonic field theories (so far)
- ► Parent Hamiltonian?
- Gauge invariant states
- ► Topology?

Summary

$$|V, B, \alpha\rangle = \int \mathcal{D}\phi \, B(\phi|_{\partial\Omega}) \exp\left\{-\int_{\Omega} d^d x \, \frac{1}{2} \sum_{k=1}^{D} \left[\nabla \phi_k(x)\right]^2 + V[\phi(x)] - \alpha[\phi(x)] \, \psi^{\dagger}(x)\right\} \, |0\rangle$$

Continuous tensor network states are natural continuum limits of tensor network states and natural higher d extensions of continuous matrix product states.

- 1. Obtained from discrete tensor networks
- 2. Can be made Euclidean invariant
- 3. Have functional and operator representations
- 4. Have a geometrical equivalent of the discrete gauge redundancies
- 5. Have an exact and explicit "renormalization" flow

 $V(\phi) = (V_i^{(a)})\phi_i + (V_i^{(a)})\phi_i \phi_j + \cdots$ $|V_{,x}\rangle$ $\propto (\phi) = \sigma^{(1)}\phi$