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Problem

Many-body states are complicated. Typical many-body Hamiltonians are simple.
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Variational optimization

To find the ground state:

Al otatss lground) = min bl
ey ()
Can we find a subspace . s. t.:
> 7ot < e
= » . approximates well interesting states
Q » bonus (P|O(x)Np) is computable

Interesting states
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An idea popular in many fields

» Mean field approximation (of which TNS are an extension)

11)[X1_,X7, TE aer] - 11’1()(1]11’?()(?] s ‘U,J,,(X,,)

» Special variational wave functions in Quantum chemistry (whole industry of ansatz)

» Moore-Read wavefunctions in the study of the quantum Hall effect

oy Pt N

Q-’(Xl\XQ\ Eo5EE \Xn) . <(1)(X]_]L1)(X2] o -Lb(Xf,)>CFT

» Fully connected and convolutional neural networks used in machine learning
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Convolutions Subsampling Convolutions Subsampling Fully connected

Feature maps
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Matrix product states

|1|)> = Z Cl-i,f-p,‘“ 315 ".1 gl oy ".n>

y12y 0 50n

Matrix Product States (MPS)

Remark: actually equivalent
with the density matrix
renormalization group

(DMRG)

|A,\ L) R> = Z <L|All(1]AQ(2]AI,,(”HR) |".1)"' a’:n>

"-l‘f?\““’-n
» A; are D x D complex matrices
» Aisa2x D x D tensor [A;]x
IL) and |R) are D-vectors.

v

$ n x 2 x D? parameters instead of 2"

$ D is the bond dimension and encodes the size of the variational class
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Graphical notation
|A) L) R> — Zf.l‘f:‘... ‘,'”<L|A."1(]-]Afp[2) R Af,,(r])|R> |i13 ey "-n>

Notation: (Al = 4— and k——/ =) 0y gives:

anm-ed LU LLLLLL L

Example: computation of correlations

(AlO(ik)O(ig)|A) =

can be done by iteration 2 maps:

O = ‘ and @y =

The contraction for a d = 1 system, can be seen as an open-system dynamics in d = 0.
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Generalizations: different tensor networks

Matrix Product States (MPS)

BESEFCNECRDEARBHE B0

Projected Entangled Pair States Multi-scale Entanglement
(PEPS) Renormalization Ansatz (MERA)
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Some facts
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A list of theorems [very colloquially]:

B>

>

>

Expressiveness [trivial] Tensor Network States cover .#° when D x 2"
Area law The entanglement of a subregion of space scales as its area for a TNS

Efficiency [gapped| Matrix Product States approximate well the ground states of gapped
systems in 1 spatial dimension

Efficiency [critical] Multi-scale Entanglement Renormalization Ansatz (MERA)
approximate well the ground states of critical systems in 1 spatial dimension.
Symmetries Physical symmetries can be implemented locally on the bond space

Inverse problem TNS are the ground state of a local parent Hamiltonian
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Successes and limits

Successes —
Limits
(' Arbitrary precision for 1d quantum systems _
& Hard to contract in d > 2

O Classification of topological phases in 1d and 2d _ -
& No continuum limit in d > 2

O Progress on non-Abelian lattice Gauge theories e i
ack of analytic techniques
Q AdS/CFT toy models / d

Can one apply tensor network techniques directly in the continuum, to QFT?
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Continuous Matrix Product States (cMPS)

Taking the continuum limit of a MPS

A deddedided |
- R

» the bond dimension D stays fixed

» the local physical dimension explodes C? @ --- ® C? — Z (L?([x,x + dx])).
= Spins become fields — (~ central limit theorem ~ quantum noises d&, d&')

» A cMPS is a quantum field state parameterized by finite dimensional matrices:
1Q, R, w) = (wi[Pexp { 5 dx Q(x) @ 1+ R(x) © ¥ (x) } lw) [0)
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Continuous Tensor Networks: blocking

Upon blocking:

& The physical Hilbert space
dimension d increases (idem
cMPS = physical field)

& The bond dimension D increases
too
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Choice of trivial tensor
For MPS, not much choice:

e

For TNS in d > 2, many options:
1. Take a & between all legs ~ GHZ state T(0) = ><

> trivial geometry

2. Take two identities 70 = > <
— breakdown of Euclidean invariance
\_/

‘ R 2 e TR IEPP T BRIl od (0 S
3. Take the sum of pairs of identities in both directions T > < F
i, SR
N

We will consider a softer modification of the first version:

_________
A 5
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Ansatz

1 — Take a “Trivial” tensor:

_ o( 2) D(3)
(0)

G(1),d(2),d(3),d(4) \
(1) ~o(4)

D
B exp{ 21 ZM)k(I) q)k(z”z i M)k[Q) q)k(3)]2

k=1

- [0k (3) — bu(4)]% + [dx(4) q)ku)]?}

The indices ¢ are in RP (and not 1,---, D)

2 — And add a “correction”:

exp {—2V [(1),--- , d(4)] + E2x[b(1), -, d(4)] T (x)}
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Functional integral definition

D

Vo = J D exp {—J d9x % Z (Vi (x)]? + VIb(x)] — ald(x)] 11)T(x]} 0)

Q) =
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Functional integral definition

|V, B, a)

boundary tensor

D

VB = J D B(plapn ) exp {J d9x ; Z [Td)k(x]Jz + Vb (x)] — «ldp(x)] 1|)T'(x]} 0)

2 k=1
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Operator definition

V,a) =
T - - A | A - ~ ~
" ".Texp U dfr[ 5 ﬁ“("]f“(” i W"‘(*’;‘b‘*“‘-’ VB — am)(x_]mﬁ(r,x])]lo>
JO JS p
where:

> t]/\);((x] and 7, (x) are k independent canonically conjugated pairs of (auxiliary) field
operators: [Pi(x), Pi(y)] =0, [R(x)k, T (y)] =0, and [pk(x), R(y)] = idk 1 6(x — y)
acting on a space of d — 1 dimensions.
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Operator definition

laux;) |V, B a)

lin) lout)
X

aQout
>
1V, Bopt) =
0T ¢ | ;A 5 " %
tr{f’é':rexp (—J dTJ & ﬁ“(’”f“x’ + v“”‘(’”;“”"(” FVB(x)] — ()] uﬁu,x]” 0y
0 S )
where:

» $i(x) and Ry (x) are k independent canonically conjugated pairs of (auxiliary) field

operators: [Gy(x), di(y)] = 0, [R(x), Ri(y)] = 0, and [Py (x), Ri(y)] = ibss 8(x — y)
acting on a space of d — 1 dimensions.
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Wave-function definition

A generic state |¥) in Fock space can be written:

¥) = Z | ol o) i) ) 0
n (

)H

where ¢, is a symmetric n-particle wave-function

Functional integral representation
Operator representation

e ]du(dwlv(tb] b allE b ]

q)” T
with: tr @ aT"T,, &(Xn] (/;T,,,'T,, 1 &(Xn 1)+ '&(Xl] a-r,‘o
< L with:
Dpexp |1 [ dx (Vi (x)P 5 r
_ > G,,, =Texp[— [ d | o dxH[x]]
> Av(d) = ¢ Extension of Moore-Read

B(dlaa) exp { _f() d9x V[Pp(x)] }
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Expressivity and stability
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How big are cTNS?

Stability

The sum of two ¢ TNS of bond field
dimension D7 and D, is a cTNS with bond
field dimension D < D; + D, + 1:

Vi, &) + [V, a0) = |W, B)

Expressiveness
All states in the Fock space can be
approximated by cTNS:
» A field coherent state is a cTNS with
1B—0
» Stability allows to get all sums of field
coherent states

Note: expressiveness can also be obtained with D =1 but it is less natural. Flexibility in D
makes the expressivity higher for restricted classes of V' and «.
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Computations

Define generating functional for normal ordered correlation functions
1
= (V, | exp

V, oV, ) dx j (x)W "W) exp (

ldxj(x)l])(x]) V500

Operator representation

Similar to cMPS

» Use formula for overlap of field » Transfer matrix
coherent states

Functional integral representation

(O(x)0(y)) = tr ((I)c) cem VT @y . pstat)

(Bloe)y = exp (J dx [3'*‘()(]0(()(]) | :
/ with T=QR®1+1Q Q+ R® R with

» Compute with Gaussian 0= _J' T (X)° + Vi (x)]° + V(H(x))
integration 4+ Feynman diagrams 2 \
or Monte Carlo

N\

and R® R = [ V($(x) ® V(H(x))*
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Redundancies

Discrete redundancy

Different elementary tensors are equivalent,
they give the same state:

D G- 4
when/o/o/—/ ar1db\‘—\

up to boundary terms:
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Redundancies

Discrete redundancy Continuum redundancy

Different elementary tensors are equivalent, V() = V(d)+ V- Flx, b(x)]
they give the same state: _ _ el _

A - o
when/o/o/—/ and\c\.\—\

up to boundary terms:

Just Stokes' theorem. If () has a boundary 9Q):

D(p] — D] exp {alﬂ d9 x Zx, b (x)] - n(x]}

JoQ
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Renormalization

Clxty -+ yxa) = (T(1)|0(x1) - - O(x,)| T (1)),
the objective is to find a tensor T(A) of new parameters such that:
C(Axt,- -+ s Axn) o {TANO(x1) - - O(xa) T(N)).

Doable exactly:
2—d d 2—d
V 5 AV oA 2 and = AZxoAz

— d = 2, All powers of the field in V and « yield relevant couplings

— d =3, The powers p = 1,2,3,4,5 of the field in V yield relevant A > 0 couplings. p =6
is marginal in V. For @, p= 1,2 are relevant and p = 3 is marginal. All other p are
irrelevant.
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Getting back cMPS

One can get back cMPS with finite bond dimension by:

1. Compactification Take d — 1 dimensions out of d to be very small

5 & iE s i %
|V, B, o) ~ tr[B".Texp (—J dTZ 7" + VI[X] — a[X] 1|ﬁ(~r]>] 0)
0 k=1

— Hilbert space of a quantum particle in D space dimensions.

2. Quantization Take V with D deep minima to force the auxiliary field to take only D
possibilities
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Generalization

For a general Riemanian manifold M with boundary 0M, define:

g Ln’a“q)kaVQ)E

|V, B, &) = ‘ D B(dblon) exp {—| 5

.ddx\/g( + V(p, Vo] — «lp, V] 1])T') 1IO}
M /]

i.e. add curvature and possible anisotropies in V and «

Example: «(x,$, V] localized on the boundary and
hyberbolic metrix g:

i A

— ¢cMERA in d — 1 dimensions
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Future

Limitations and work for the future
» Quite formal out of the Gaussian regime (back to perturbative)

Limited to bosonic field theories (so far)

>

» Parent Hamiltonian?
» Gauge invariant states
[>

Topology?
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Summary

D
|v,8,o<>—[;Dq>8u|>|a_g,wexp{ [ >3 (Vi) + Vid(x) omb(xnuﬁ(xi}|o>
: k 1

JO

Continuous tensor network states are natural continuum limits of tensor network states and
natural higher d extensions of continuous matrix product states.

1. Obtained from discrete tensor networks
Can be made Euclidean invariant
Have functional and operator representations

Have a geometrical equivalent of the discrete gauge redundancies

it -l

Have an exact and explicit “renormalization” flow

\*"/
a»* e
i
*ﬁ-‘. :*.‘*:u i -‘:A -
‘t:‘t oy :b e T

‘n;w
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