Title: Null conservation laws for gravity

Date: Oct 11, 2018 02:30 PM

URL: http://pirsa.org/18100058

Abstract: I discuss the canonical degrees of freedom of metric Einstein gravity on a null surface. The constraints are interpreted as conservation equations of a boundary current. Gravitational fluxes are identified, and the Hamiltonians of diffeomorphism symmetry are discussed. Special attention is given to the role of a modification of the phase space at the boundary of the null surface. Based on 1802.06135 with Laurent Freidel.

Pirsa: 18100058 Page 1/26

Null Conservation Laws for Gravity

Florian Hopfmueller

Oct 11 2018, PI QG Seminar

Based on 1802.06135, 1611.03096 with Laurent Freidel.

Page 2/26

 π

Pirsa: 18100058

Pirsa: 18100058 Page 3/26

Canonical GR on a null surface

- > Why null? Null=physically special. Examples
- > Why not gauge fix? Gauge vs. symmetry, edge modes.
- Why canonical conservation laws? Import understanding from null infinity, canonical perspective on membrane paradigm
- > Why worry about corner phase space?
 Different corner phase spaces lead to different Hamiltonians, what does it mean?

Pirsa: 18100058 Page 4/26

Chapters

- > Motivation
- > Degrees of Freedom
- > Conservation Laws
- > Hamiltonians

Pirsa: 18100058 Page 5/26

Degrees of Freedom

 \rightarrow Are contained in **presymplectic potential** θ defined by

$$\delta L = EoM + d\theta$$

- \rightarrow Canonical data on Σ : $\int_{\Sigma} \theta = \int_{\Sigma} \sum P_i \delta Q^i$
- \rightarrow Ambiguities: $\theta \rightarrow \theta + d\alpha + \delta\beta$
- > For Einstein-Hilbert action: Wald symplectic potential

$$\theta_W = \left(\nabla_b \delta g^{ab} - \nabla^a (g^{bc} \delta g_{bc})\right) \epsilon_a$$

- \rightarrow ADM: $\Theta_{ADM} = \sqrt{h}(K^{ab} Kh^{ab})\delta h_{ab}$ doesn't work for null
- --> need to resolve degenerate geometry

DoF - Geometry

Determines area (D-2)-form ϵ_S , "volume form" $dB = du \wedge \epsilon_S$

No gauge choice!

DoF - Extrinsic Geometry

DoF - Variational Data

- > Compare two similar geometries.
- > Restriction: variations leave B null
- $\delta q_{AB} = \delta \gamma_{AB} + \frac{1}{D-2} q_{AB} \delta q$: variation of sphere metric
- $\to \delta L^a \to \delta L^A$: small translation of adjacent cross-sections
- \rightarrow Variation of size of normal geometry $\rightarrow \delta h$

Pirsa: 18100058 Page 9/26

Degrees of Freedom

$$\Theta_W = \int_B \theta_W = \int_B \sqrt{q} L_a \left(\nabla_b \delta g^{ab} - \nabla^a (g^{bc} \delta g_{bc}) \right)$$

- > sprinkle lots of $g_{ab} = q_{ab} + L_a K_b + K_a L_b$, integrate by parts until nothing is left ...
- \rightarrow Result: $\Theta_W = " \int P \delta Q " = \Theta_B + \Theta_{\partial B}$

Pirsa: 18100058 Page 10/26

Degrees of Freedom

$$\Theta_B = \int_B du dS \left(\frac{1}{2} \sqrt{q} \sigma^{AB} \delta \gamma_{AB} - \sqrt{q} \omega_A \delta L^A + \delta \mu \sqrt{q} \right)$$

- > Conformal metric conjugate to its on "time" derivative, well-known
- > Translation conjugate to twist, or Hajicek field twist is momentum in membrane paradigm, gives b.h. angular momentum (Price Thorne McDonald Znajek Damour)
- > spin-0 mom. $\mu = \kappa + \frac{D-3}{D-2}\theta$ involves surface gravity, expansion. For black holes, temperature. In membrane pic, contains pressure and bulk viscosity.
- > Connects to b.h. thermo

Pirsa: 18100058

DoF - Corner Phase Space I

$$\Theta_{\partial B} = \int_{\partial B} \mathrm{d}S \Big(- \tfrac{1}{2} \delta h \sqrt{q} + \tfrac{1}{D-2} \delta (\sqrt{q}) \Big)$$

- > Remember: $\delta L = EoM + \mathrm{d}\theta$, determines θ up to exact piece, Θ up to $\int_{\partial B}$
- \rightarrow Most covariant choice: $\theta_W = \left(\nabla_b \delta g^{ab} \nabla^a (g^{bc} \delta g_{bc})\right) \epsilon_a$
- \rightarrow "Minimal" choice for null surface: Drop $\Theta_{\partial B}$.

Pirsa: 18100058

DoF - The missing momentum

- > Aghapur, Jafari, Golshani 1808.07352
- > We have 5 pairs where is the 6th?
- > What is the momentum conjugate to departure from nullness?
- \rightarrow Answer: $\sim \kappa_K = L_a \nabla_K K^a$ transverse acceleration
- Subtlety: if one wants brackets / Hamiltonians allowing departure from nullness:
 Need to allow non-null configurations in the calculation of all momenta.

Pirsa: 18100058 Page 13/26

Pirsa: 18100058 Page 14/26

Conservation - Example

> Time translation symmetry for massless scalar field:

$$H = \frac{1}{2} \left(\int_{\Sigma} (\partial_t \phi)^2 + (\vec{\nabla} \phi)^2 \right)$$
, EoM $(-\partial_t^2 + \vec{\nabla}^2 \phi) = 0$, then $\frac{\mathrm{d}}{\mathrm{d}t} H = \int_{\partial \Sigma} \partial_n \phi \partial_t \phi$

 \rightarrow Energy conserved, up to flux $P\dot{Q}$ on the boundary.

Gravity: Consider spacetime region bounded by B.

- > Energy -> Energy-momentum, local expression on B
- \rightarrow Conservation $\frac{\mathrm{d}}{\mathrm{d}t} \rightarrow \text{covariant local conservation } \partial_a(\sqrt{q}J_{\xi}^a)$
- > J^a_ξ is the **boundary current** on B, associated with arbitrary local symmetry $\xi^a \parallel B$
 - → what is the boundary current? What are the fluxes?

Pirsa: 18100058

Conservation - Symmetries

- > Diffeomorphism are local symmetries. How do they act?
- → We have introduced background structure (u coordinate)
 → partially breaks covariance
- Define field space Lie derivative, on any tensor T: $\mathfrak{L}_{\xi}T = \frac{\delta T}{\delta g_{ab}} \mathcal{L}_{\xi}g_{ab}$
- Let $\xi^a = fL^a + v^a$, $v \parallel S$: the actions are $\mathfrak{L}_{\xi}\gamma_{AB} = f\sigma_{AB} + D_{<A}v_{B>}$ $\mathfrak{L}_{\xi}\sqrt{q} = \sqrt{q}(f\theta + D_Av^A)$ $\mathfrak{L}_{\xi}L^a = \mathcal{L}_vL^a$ $\mathfrak{L}_{\xi}\mu = v^a\partial_a\mu + L^a\partial_a(f\mu + L^b\partial_bf)$ $\mathfrak{L}_{\xi}h = K_a\nabla_L\xi^a + L_a\nabla_K\xi^a \longleftarrow \text{Odd one out!}$
- \rightarrow transformations are not quite covariant, but under control \rightarrow transfo of h involves transverse derivs of ξ

Pirsa: 18100058

Constraints as Conservation Equations

Want:
$$\partial_a(\sqrt{q}J_{\xi}^a) = \text{flux} = P\mathfrak{L}_{\xi}Q.$$

How: the constraints are $L_a G^a{}_b \xi^b = L_a T^a{}_b \xi^b$. Use $L^a R_{ab} = (\nabla_a \nabla_b - \nabla_b \nabla_a) L^a$ and $g_{ab} = q_{ab} + L_a K_b + K_a L_b$ to find $G_{La}[q_{AB}, L^a, \sigma_{AB}, \theta, \kappa, \omega_A]$. Smear and i.b.p.

Result:

$$\partial_a(\sqrt{q}J_{\xi}^a) = \sqrt{q}\left(T_{L\xi} + \frac{1}{2}\sigma^{AB}(\mathfrak{L}_{\xi}\gamma_{AB}) - \omega_a(\mathfrak{L}_{\xi}L^a) + \mathfrak{L}_{\xi}\mu\right)$$

Recall:
$$\Theta_B = \int_B du dS \left(\frac{1}{2} \sqrt{q} \sigma^{AB} \delta \gamma_{AB} - \sqrt{q} \omega_A \delta L^A + \delta \mu \sqrt{q} \right)$$

Flux =
$$P\mathfrak{L}_{\xi}Q$$

So what is J_{ξ}^a ?

Conservation – The boundary current

So what is J_{ξ}^{a} ? Recall $\xi = fL + v$:

$$J_{fL}^{a} = L^{a} \left(\underbrace{f(\mu - \theta) - L^{b} \partial_{b} f} \right)$$
energy aspect

no spatial energy current!

Conservation - Corner Phase Space II

- Recall: $\Theta_W = \Theta_B + \Theta_{\partial B}$
- \rightarrow We had: $\partial_a(\sqrt{q}J^a_\xi)=I_\xi\Theta_B+\int T_{L\xi},$ no $\Theta_{\partial B}$!
- $\rightarrow \Theta_{\partial B}$ contains h, transformation depends on $\nabla_K \xi$
- > If we had kept $\Theta_{\partial B}$, we would have found instead of J_{ξ} : Komar charge $K_{\xi} \sim L_a \nabla_K \xi^a - K_a \nabla_L \xi^a$, depends on $\nabla_K \xi$
- igoplus Constraints suggest using Θ_B . By dropping $\Theta_{\partial B}$, we have removed the "extension dependence" from J_{ξ}
- → Possible criterion for fixing corner phase space: "extension independence" of transformations of var's

Call Θ_B the intrinsic symplectic potential. (Almost) covariant under diffeos of B

Pirsa: 18100058 Page 19/26

Pirsa: 18100058 Page 20/26

Pirsa: 18100058 Page 21/26

Hamiltonians

- > But what are symmetries generated by?
- > Symplectic form $\Omega_B = \delta \wedge \Theta_B$. $h_{\xi} = \Omega(\delta g, \mathcal{L}_{\xi}g)$. ξ is pure gauge iff $h_{\xi} = 0$ on-shell, Hamiltonian symmetry iff $h_{\xi} = \delta(H_{\xi})$
- > Choose $\xi = v + fL$, $v \parallel S$. Metric dependent – "tracks null lines"
- > Result: Hamiltonian lives on the corner, u-component of boundary current is the integrable bit of the Hamiltonian:

$$h_{\xi} = \delta \left(\int_{\partial B} \sqrt{q} J_{\xi}^{u} \right) - \int_{\partial B} dS \sqrt{q} \left(\frac{1}{2} f \sigma^{AB} \delta \gamma_{AB} + \delta \left(\mu + L(f) \right) \right)$$
$$J_{\xi}^{u} = f(\mu - \theta) + L^{b} \partial_{b} f + v^{b} \omega_{b}$$

> Hamiltonian depends on corner phase space!

Hamiltonians: which symmetries are hamiltonian?

$$h_{\xi} = \delta \left(\int_{\partial B} \sqrt{q} J_{\xi}^{u} \right) - \int_{\partial B} dS \sqrt{q} \left(\frac{1}{2} f \sigma^{AB} \delta \gamma_{AB} + \delta \left(\mu + L(f) \right) \right)$$

$$J_{\xi}^{u} = f(\mu - \theta) + L^{b} \partial_{b} f + v^{b} \omega_{b}$$
No δL^{a}

→ take symmetries that don't move the corner.

$$\rightarrow$$
 choose $f \stackrel{\partial B}{=} 0 \rightarrow H_{\xi} = \int_{\partial B} \sqrt{q} (v^b \omega_b - L^b \partial_b f)$.

 \rightarrow fix geometry of corner (\sqrt{q}, γ_{AB})

$$\rightarrow H_{\xi} = \int_{\partial B} dS \sqrt{q} (-f\theta + v^b \omega_b)$$

→ fix momenta

$$\rightarrow H_{\xi} = \int_{\partial B} dS \sqrt{q} (f(\mu - \theta) + L(f) + v^b \omega_b)$$

→ Something in between

Note: ~ 2 copies of "supertranslations" → 1807.11499

Hamiltonians: which symmetries are hamiltonian?

$$h_{\xi} = \delta \left(\int_{\partial B} \sqrt{q} J_{\xi}^{u} \right) - \int_{\partial B} dS \sqrt{q} \left(\frac{1}{2} f \sigma^{AB} \delta \gamma_{AB} + \delta \left(\mu + L(f) \right) \right)$$

$$J_{\xi}^{u} = f(\mu - \theta) + L^{b} \partial_{b} f + v^{b} \omega_{b}$$
No δL^{a}

→ take symmetries that don't move the corner.

$$\rightarrow$$
 choose $f \stackrel{\partial B}{=} 0 \rightarrow H_{\xi} = \int_{\partial B} \sqrt{q} (v^b \omega_b - L^b \partial_b f)$.

 \rightarrow fix geometry of corner (\sqrt{q}, γ_{AB})

$$\rightarrow H_{\xi} = \int_{\partial B} dS \sqrt{q} (-f\theta + v^b \omega_b)$$

→ fix momenta

$$\rightarrow H_{\xi} = \int_{\partial B} dS \sqrt{q} (f(\mu - \theta) + L(f) + v^b \omega_b)$$

→ Something in between

Note: ~ 2 copies of "supertranslations" → 1807.11499

Recap

- > Expressed DoF (including gauge DoF) of GR on a null surface in terms of null intrinsic & extrinsic geometry
- > Interpreted smeared tangential constraints as conservation law of a (induced) boundary current, with fluxes $P\mathfrak{L}_{\xi}Q$
- By a choice of corner phase space, removed dependence of boundary current and Hamiltonians on extension of symmetry parameter
- Analyzed Hamiltonians & conditions for "Hamiltonicity" for tangential symmetries

Pirsa: 18100058 Page 25/26

Thanks!

Pirsa: 18100058 Page 26/26