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By the spacetime, we will mean RP*! with the
Cartesian coordinates (t,z%), i = 1,... D, and with the flat
metric g;; = d;5, N =1, N; = 0, and with the preferred
foliation by the flat spatial slices of constant t.

By the symmetry, we will mean the isometries of
the spacetime:

These are derived, as all foliation-preserving diffeomorphisms that
preserve the metric.

The isometries respect an emergent rest frame.
Such spacetimes are solutions of HL gravities with zero A.
Often called the “Lifshitz spacetime” in modern literature . . .
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History: in the mid-1960's, Andrzej Trautman, Roger Penrose

talked about the “Aristotelian spacetime”: in Penrose's 1968
Structure of Space-Time ( ), he begins with

e Before Einstein (curved relative space-time) and Minkowski (rigid relative
space-time), there was

e Galilean spacetime (relative space and absolute time), and before that,
® (absolute space, absolute time)!
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inherited from nonrelativistic quantum gravity,
new short-distance completions of relativistic QF Ts,

curiosity about new tools for technical naturalness in
Standard Model & beyond, in cosmology,

spin-off applications to condensed matter,

interesting from math-ph perspective,

curiosity about how far can
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(a.k.a. gravity with anisotropic scaling, or Hofava-Lifshitz gravity)

Gravity on spacetimes with a preferred time foliation (cf. FRW!)

Opens up the possibility of new RG fixed points, with improved
UV behavior due to anisotropic scaling.

anisotropic scaling

g

z: dynamical critical exponent — characteristic of RG fixed point.

, with
Zi= 2 R or
continous families ...

... and now gravity as well,
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QFT on the spacetime: RP*! with the Cartesian
coordinates (t,z%), i = 1,... D, and with the flat metric

gij = 0;5, N =1, N; =0, and with the preferred foliation by
the flat spatial slices of constant .

The symmetry is realized on such QFTs at all
scales,

The isometries respect an emergent rest frame.

If a QFT with symmetries is at an RG fixed point, it
develops an extra symmetry, anisotropic conformal symmetry:

e t = A%t
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Global internal symmetry breaking leads to Nambu-Goldstone
modes. Phenomenon is remarkably universal, across many fields
dealing with many-body systems.

e Relativistic case: All questions answered by Goldstone's
theorem: One NG per broken generator, gapless=massless,

z = 1 dispersion w = k. Constant shift symmetry.

e Nonrelativistic case: Classify by classifying their low-energy
effective QFTs :
This appears to lead to Type A (linear dispersion), Type B
(quadratic dispersion).
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Massive A¢* in 3 4+ 1 dimensions.

17 \ ey
8= | [ d*x (e-),,(ﬁr:)f"(/’ — m?¢? — 12/\(!*‘*)

Recall technical naturalness:
A~e, m?~ple, p~ ‘m/\/x.

Symmetry:

S =

Extended symmetries?

i/ dt dPz [((j))z — (a,; e C),gd))(d, . OEg) £ ]

~
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In Aristotelian QFT: An infinite hierarchy of new symmetries,
which generalize the constant shift symmetry.

I
)

J132---922—-2

'TTI(t,;I:"{) — ﬂ'[(t,;;':i) + a

protects the w ~ k* low-energy dispersion for Type A modes
(and the w ~ k?* low-energy dispersion for Type B modes).

Note: It depends only on spatial coordinates, not on time.
compare the Galileon cosmology: linear spacetime shifts)
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Refined classification of technically natural NG modes with
Aristotelian spacetime symmetries:

Type A tower of multicritical NG modes with 2 = 1,2, ..,
until one hits against the
at z = 1);

Type B tower of multicritical NG modes with 2 = 2.4, ...
(and no analog of the MCW theorem).

These IR fixed points describe the free limit of multicritical NG
modes, and imply low-energy theorems for scattering etc.

Generic interactions break the polynomial shift symmetry to the
constant shift. But: Corrections are controllably small, if
couplings are small.
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So, we found examples where a new symmetry

B(t, 7%) = B(t,2%) + ajyjy. jpaia?? 2P 4

protects the smallness of leading terms in the dispersion
relation, and protects hierarchies.

In the examples shown, the symmetry is broken by interactions.

Now we can turn this around, and ask for the classification of

scalar theories in which the polynomial shift symmetry is exact.

This is a very cute mathematical problem!
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It is natural to organize the invariants by their dimension at the
free RG fixed point.

Task: Classify all terms in the Lagrangian containing n fields
and A = 2m derivatives, invariant under the degree-P shift
symmetry up to a total derivative:

This is essentially a cohomological problem.
It defines a new graph-theory cohomology:
of invariants, labeled by P, n and A.

How to solve it?
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Example: The most relevant quintic-shift 4-pt invariant is
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Polynomial shift symmetries of Aristotelian QFT of gapless
scalars defines naturally an infinite sequence of novel
graph-theory cohomology groups, Hp, A.

For a range of low values of P, n, A, these groups have been
computed explicitly in:

T. Griffin, K. T. Grosvenor, P.H. and Z. Yan, Scalar Field Theories with
Polynomaal Shift Symmetries,
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2 4+ 1 dimensions:

5= f dt Px {2 ~ (0,0,0)? -

3 + 1 dimensions:

- {qb? — (8:0;0k9)* — (5(8:0;0)* —
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Let's start with a simple scalar field theory first.

Recall one of our earlier examples of a cascading hierarchy:

3 [t dx{# - QD07 - o007 -

) )

2
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Different observers: Different ways how to relate space to time.

e Aristotelian observers. Choose t and y* once and for all,
regardless of the dynamics of fields in spacetime.
Renormalization generates (3(p), but A(1t) = Abare.

e Wilsonian observers. Anticipating z =~ 3 in UV, redefine
t =t, i by setting (3 = 1; equivalent to p-dependent
rescaling of space: Now ¢ develops an
anomalous dimension, A(y) depends on RG scale.
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... and finally,

e Lorentzian observers. The low-energy observer anticipates
Lorentz invariance,

This is equivalent to redefining the coordinates to
zt == (29, 2%), with

Dimensions: Measuring in the units of energy,

tl=-1, []=-1/3, []=2/3, |[z}]=-1.

Technical Naturalness: Imposed in the UV, “microscopic”
theory. protected by
the pattern of
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Compare the perspective of the UV Aristotelian observer:

Suyv = %/dtdBy{ — (0;0;0k0)* — (3(0:0;0)* —
~ &‘Q/LE_,

and the IR Lorentzian observer:

Sy = % / d'z {V, eV
— ViV, Ve ®)? = (3(ViV;9)? — AV;®.. . ¢

where & = ¢3/2¢ and V,, = 9/0z".
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£
3/2’
€1

52 02 1
n M r %
a8 £ e

9
m2 ~ egM?, Ap ~

We want m = Mpw ~ 1TeV, M = Mp ~ 10'3GeV. We also
want A\, ~ 0.1 or 1. Take the “10-20-30" model:

The nonrelativistic corrections are small,
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Microscopic theory vs. low-energy relativistic picture:

> Y f dy dt gy = " yy / d'x dP iy,
f f

where [Y}] =1, qj)f = (33/2\1110 and yp = Yf/(_.j:ﬁ/‘z'

Yy~ eopt®? Actually, there is more
wiggling room:
Eglt = Y; < Voo e
The low-energy observer sees this window of naturalness as

s e A
EQfey = Uf 0 /51 :

In the 10-20-30 model, this gives the Yukawa range
accommodating all the fermions of the SM!
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The grain of salt?

So far, we found the technically natural light scalar with
non-derivative self-coupling, but only in the “gaugeless” limit of
the SM.

Gauging, in the microscopic theory:
0; = 0; +ieAd;, O, — 0, +iedp, goto Ay =0 gauge.
Action: [ d®y dt A; A; + .. .; implies [A;] = 0, [¢] = 1/3.

Low-energy relativistic perspective:

T iy
A = C‘;/.‘A?:? gyM = t?/(:'l/".

! 5 : | [ :
If 2 ~ o, then g2, ~ co/c)’? is still way too small.

Berthier,
Grosvenor, Yan:
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e Technical naturalness exhibits surfnsing features in the
nonrelativistic settings of Aristotelian spacetime.

We presented a new mechanism for a naturally light scalar
with non-derivative self-couping:

9 9 &
m* ~eM?*, Ap~cfe]

in contrast with the relativistic naturalness:
m? ~ eM?, A ~ E.
The crucial new small parameter £; controls the size of the

speed of light in the microscopic theory with z > 1.

Higgs phenomenolog Iooks qmte promising, a large

hierarchy with m = XI M = Mp is possible at least
in the “gaugeless” ||m|t of SM All fermion masses also
natural! Need to learn more about the gauge sector.
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Supercharges can square to the Hamiltonian:

{Q,Q}=H.

e Fermions don't even have to be spacetime spinors;

e Theories easy to construct (e.g., by borrowing the scalar SUSY of
stochastic quantization):

But for particle physics, we want something more interesting . ..

something that flows to a relativistic SUSY theory in IR!

Let's study an example:
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(the perspective of a high-energy Aristotelian observer)

Supermultiplet: ¢(t,x) real, ¢, (t,x) Majorana; auxiliary real

scalar B. We also define * = (¢14°)®, with 4° = (_01 (1])

is invariant under N = 1 supersymmetry:

d¢p v,
S —¢~’e + Be,
D E_'yof(,[;

with the superalgebra

{@,Q} = (\")H.
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(the perspective of a high-energy Aristotelian observer)

N =1 supersymmetry:

69 = &y,
6 = —¢7% + Be,

5B &4
and the superalgebra

{Q,Q} = ("")H.
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(the perspective of a high-energy Aristotelian observer)

C2 & 9
— S0:40:9 — 97Oy } .

N =1 supersymmetry

d0p = &,

o) —gfry_oe + Be

B = &%
{Q,Q}=(")H

Emergent relativistic SUSY at low energies!
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(the perspective of a low-energy Poincaré relativistic observer)

In RP+1 spacetime dimensions, consider supercharges (.., in
your favorite spinor rep of the Lorentz group. Write:

Is this relativistic or not? Not necessarily!

Depends on how many of the Lorentz generators we add to this
supertranslation algebra.

e Adding J,, gives standard Poincaré supersymmetry;

e Adding just .J;; gives

To see more, it will be convenient to switch to N =1
superspace description.
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(the perspective of a low-energy Poincaré relativistic observer)

Superspace coordinates: (t,z",0,).

L8 Ba B
Supercharges: Q = 5z — v 05;

ratives: f1= 0 L 000
Derivatives: D = 2= + v"04;

Real superfield: ®(t,x,6) = ¢(t,x) + 0(t,x) + 500 B(t,x).

Action:

o / dtdgxdzf){ — 0;90;P + i.Ilt(_!rzu':tiomi} :

Aristotelian UV completions of relativistic SUSY
theories!
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Easily generalized (still in 2 4+ 1 dimensions) to N =1
non-linear o-models.

Target M with coordinates ¢,

S = / dtd*xd*0 { go,() D*®* D, P

The target space M is a real manifold with two metrics: g,
and h, ;.

This theory is a UV completion of the effecive relativistic N = 1
o-model in 2+ 1 dimensions.

A bi-metric theory of gravity!
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Try to generalize to N = 2 non-linear a-models.

N =1 extends to N = 2
when M is complex, with a Kahler metric.

Try the same Ansatz in Aristotelian case in 2 + 1 dimensions:
Doesn't work!

The complex structure on M with a Kahler metric is not
sufficient to construct N = 2. Naive SUSY transformations
don't close to translations:

Y00t + 'O, o )

R
{icre. oS = ( 52 OOt + v,

only the free theory, g; ; must be flat.

We can see the way out in the N = 2 superspace.
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The N = 2 superspace: (t,x,0,0).

Target M with complex coordinates ®/, chiral superfields.

S= f dtd*xd*0d%0 K (', &)

The target space M is a complex manifold with two metrics:

a Kahler g; 7 = 9;0;K(®,®) and a

This structure is much more rigid than in 1 + 1 relativistic
=

It allows an uplift to N =1 in 3+ 1 dimensions, with 2z =
(and 4, ...).

However: Gauging? Extension to SUSY Yang-Mills??

Recall:
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First, try to construct N = 1 super Yang-Mills with 2 = 2 in
2 + 1 dimensions.

Go back to the basic ingredients of super-geometry.
Superconnection on superspace (t,z",0,):

Dt - 8,3 = ‘i@rt, Di - (92 o ’Z.-Ert'_, Da - Da = ZE’PQ
Field strengths:
H:"cv-i o Dariaira = @[Fa, F?L]a

and similarly for W, Wi, Wiy, Wag.
“Conventional” constraint: W,z = 0.

Solving the conventional constraint leads to an irreducible real
spinor superfield strength W,,.

Pirsa: 18100019 Page 40/44




Long story short:
In the Aristotelian case, the independent ingredients are W,
and W;;:

This yields a = = 2 super Yang-Mills action in 2 4+ 1 dimensions, with a
somewhat unexpected bosonic part, leading to a modified Gauss' law.

A canonical transformation exists, which takes the bosonic part of the action
and Gauss's law to the more conventional z = 2 form, at the cost of
obscuring the simplicity of the supersymmetry transformations.
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Holy Grails:

N = 1 supersymmetric Yang-Mills in 4 4+ 1 dimensions (knot theory)

N = (1,0), (1, 1), (2, 0) supersymmetric Yang-Mills in 5 + 1
dimensions

supersymmetric Yang-Mills in 9 + 1 dimensions, superstring theory?
supergravity, 10 + 1 dimensions, M-theory?

Early encouraging results available, intriguing results

, structure is surprisingly strongly constrained
... Stay tuned!
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P V enNCcCoUuraging resi S advaliapie __ e e S (e.g..
further reductiton of spacetime Aristotelian symmetries needed

-

S\ S ple)ee ala )= ), structure Is surprisingly strong
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