Title: Undecidability of the spectral gap in one dimension

Date: Oct 24, 2018 04:00 PM

URL: http://pirsa.org/18100004

Abstract: The spectral gap problem consist in deciding, given a local interaction, whether the corresponding translationally invariant Hamiltonian on a lattice has a spectral gap independent of the system size or not. In the simplest case of nearest-neighbour frustration-free qubit interactions, there is a complete classification. On the other extreme, for two (or higher) dimensional models with nearest-neighbour interactions this problem can be reduced to the Halting Problem, and it is therefore undecidable.

There are a lot of indications that one dimensional spin chain are relatively simpler than their counterparts in higher dimensions. Nonetheless, I will present a construction of a family of nearest-neighbour, translationally invariant Hamiltonians on a spin chain, for which the spectral gap problem is undecidable.

Pirsa: 18100004 Page 1/57

Undecidability of the spectral gap in 1D

arXiv:1810.01858

Angelo Lucia (Caltech) joint work with Johannes Bausch, Toby S. Cubitt, David Perez-Garcia Perimeter Institute, October 24th 2018

Pirsa: 18100004 Page 2/57

SMBC Comics from today!

http://smbc-comics.com/comic/problem

Pirsa: 18100004 Page 3/57

Pirsa: 18100004 Page 4/57

A decision problem

We consider a one-dimensional spin chain of N qudits with open boundary conditions $(\mathbb{C}^d)^{\otimes N}$, coupled by translation invariant interactions:

- 1. $\mathbf{h}^{(1)}$ a single-site term ($d \times d$ Hermitian matrix);
- 2. $\mathbf{h}^{(2)}$ a nearest-neighbor term ($d^2 \times d^2$ Hermitian matrix).

The Hamiltonian \mathbf{H}_N is given by

$$\mathbf{H}_N = \sum_{i=1}^{N-1} \mathbf{h}_{i,i+1}^{(2)} + \sum_{i=1}^{N} \mathbf{h}_i^{(1)}$$

Spectral gap problem

Given $\mathbf{h}^{(1)}$ and $\mathbf{h}^{(2)}$, determine if $\{\mathbf{H}_N\}_N$ is gapped or gapless.

1/25

Pirsa: 18100004 Page 5/57

A decision problem

$$\mathbf{H}_N = \sum_{i=1}^{N-1} \mathbf{h}_{i,i+1}^{(2)} + \sum_{i=1}^{N} \mathbf{h}_{i}^{(1)}$$

Spectral gap problem

Given $\mathbf{h}^{(1)}$ and $\mathbf{h}^{(2)}$, determine if $\{\mathbf{H}_N\}_N$ is gapped or gapless, under the promise that one of two cases holds.

gapped \mathbf{H}_N has a unique ground state and $\Delta(\mathbf{H}_N) \ge \gamma > 0$; **gapless** $[E_0(N), E_0(N) + c] \cap \sigma(\mathbf{H}_N)$ becomes dense for some c > 0.

Decidable problem

Is there an algorithm which given input $\mathbf{h}^{(1)}$ and $\mathbf{h}^{(2)}$ outputs gapped/gapless in finite time?

1/25

Pirsa: 18100004 Page 6/57

Hardness of the spectral gap problem

• for frustration-free d=2 (qubits) models, the problem is easy (reduces to computing eigenvalues of a 2×2 matrix) [Bravyi, Gosset, 2015]

2/25

Pirsa: 18100004 Page 7/57

Hardness of the spectral gap problem

- for frustration-free d=2 (qubits) models, the problem is easy (reduces to computing eigenvalues of a 2×2 matrix) [Bravyi, Gosset, 2015]
- the more general problem for 2D square lattice is undecidable (reduces to the Halting Problem). No algorithm can give the answer!
 [Cubitt, Perez-Garcia, Wolff, 2015]

2/25

Pirsa: 18100004 Page 8/57

Hardness of the spectral gap problem

- for frustration-free d=2 (qubits) models, the problem is easy (reduces to computing eigenvalues of a 2×2 matrix) [Bravyi, Gosset, 2015]
- the more general problem for 2D square lattice is undecidable (reduces to the Halting Problem). No algorithm can give the answer! [Cubitt, Perez-Garcia, Wolff, 2015]

Question:

The construction of C-PG-W does not work in 1D (more details later). Is the spectral gap undecidable for 1D models?

2/25

Pirsa: 18100004 Page 9/57

1D spin chains are usually more tractable than higher dimensional models:

1. Many exactly solvable models are in 1D;

3/25

Pirsa: 18100004 Page 10/57

1D spin chains are usually more tractable than higher dimensional models:

- 1. Many exactly solvable models are in 1D;
- 2. Non solvable models can be studied using DMRG;

3/25

Pirsa: 18100004 Page 11/57

1D spin chains are usually more tractable than higher dimensional models:

- 1. Many exactly solvable models are in 1D;
- 2. Non solvable models can be studied using DMRG;
- 3. For groundstates of gapped models:
 - 3.1 Provably polynomial algorithms;

3/25

Pirsa: 18100004 Page 12/57

1D spin chains are usually more tractable than higher dimensional models:

- 1. Many exactly solvable models are in 1D;
- 2. Non solvable models can be studied using DMRG;
- 3. For groundstates of gapped models:
 - 3.1 Provably polynomial algorithms;
 - 3.2 Area-law and matrix product state descriptions;

3/25

Pirsa: 18100004 Page 13/57

1D spin chains are usually more tractable than higher dimensional models:

- 1. Many exactly solvable models are in 1D;
- 2. Non solvable models can be studied using DMRG;
- 3. For groundstates of gapped models:
 - 3.1 Provably polynomial algorithms;
 - 3.2 Area-law and matrix product state descriptions;
- 4. No thermal phase transitions;

3/25

Pirsa: 18100004 Page 14/57

1D spin chains are usually more tractable than higher dimensional models:

- 1. Many exactly solvable models are in 1D;
- 2. Non solvable models can be studied using DMRG;
- 3. For groundstates of gapped models:
 - 3.1 Provably polynomial algorithms;
 - 3.2 Area-law and matrix product state descriptions;
- 4. No thermal phase transitions;
- 5. No topological order.

3/25

Pirsa: 18100004 Page 15/57

1D spin chains are usually more tractable than higher dimensional models:

- 1. Many exactly solvable models are in 1D;
- 2. Non solvable models can be studied using DMRG;
- 3. For groundstates of gapped models:
 - 3.1 Provably polynomial algorithms;
 - 3.2 Area-law and matrix product state descriptions;
- 4. No thermal phase transitions;
- 5. No topological order.

Some questions are nonetheless hard: local Hamiltonian problem (approximate ground state energy to inverse polynomial precision) is QMA-hard.

3/25

Pirsa: 18100004 Page 16/57

Main result

Fix a classical Universal Turing Machine (UTM).

Theorem

There exist (explicitly constructible) $d \times d$ matrices $\mathbf{a}, \mathbf{a}', \mathbf{a}''$ and $d^2 \times d^2$ matrices $\mathbf{b}, \mathbf{b}', \mathbf{b}'', \mathbf{b}''''$ for some d such that:

- 1. **a** and **b** are diagonal with entries in \mathbb{Z} ;
- 2. \mathbf{a}' , \mathbf{b}' , \mathbf{b}'' are Hermitian with enties in $\mathbb{Q}[\sqrt{2}]$;
- 3. b''' and b'''' have entries in \mathbb{Q} ;
- 4. For any $n \in \mathbb{N}$ and any rational $0 < \beta \le 1$ define the interactions

$$\mathbf{h}^{(1)}(n) = \mathbf{a} + \beta(2^{-|\phi|}\mathbf{a}' + \mathbf{a}'')$$

$$\mathbf{h}^{(2)}(n) = \mathbf{b} + \beta[2^{-|\phi|}\mathbf{b}' + \mathbf{b}'' + (e^{i\pi\phi}\mathbf{b}''' + e^{i\pi 2^{-|\phi|}}\mathbf{b}'''' + h.c.)]$$

where
$$\phi(n) = 0.n_1 1 n_2 1 \dots n_{|n|-1} 1 n_{|n|}$$
.

4/25

Pirsa: 18100004 Page 17/57

Main result

Fix a classical Universal Turing Machine (UTM).

Theorem

$$\mathbf{h}^{(1)}(n) = \mathbf{a} + \beta(2^{-|\phi|}\mathbf{a}' + \mathbf{a}'')$$

$$\mathbf{h}^{(2)}(n) = \mathbf{b} + \beta[2^{-|\phi|}\mathbf{b}' + \mathbf{b}'' + (e^{i\pi\phi}\mathbf{b}''' + e^{i\pi 2^{-|\phi|}}\mathbf{b}'''' + h.c.)]$$

Then

- a) if the UTM halts or loops on input n, then $\{\mathbf{H}_N(n)\}_N$ is gapless;
- b) if the UTM does not halt on input n, then $\{\mathbf{H}_N(n)\}_N$ is gapped, and $\Delta(\mathbf{H}_N) \geq 1$.

4/25

Pirsa: 18100004 Page 18/57

Main result

Fix a classical Universal Turing Machine (UTM).

Theorem

- a) if the UTM halts or loops on input n, then $\{\mathbf{H}_N(n)\}_N$ is gapless;
- b) if the UTM does not halt on input n, then $\{\mathbf{H}_N(n)\}_N$ is gapped, and $\Delta(\mathbf{H}_N) \geq 1$.

Corollary

Since deciding whether the UTM will halt/loop on input n is undecidable, so is the spectral gap problem.

 β can be arbitrarily small: the problem is undecidable even for small perturbations of classical Hamiltonians.

4/25

Pirsa: 18100004 Page 19/57

Pirsa: 18100004 Page 20/57

The ingredients

Similarly to the 2D construction, there are a few ingredients:

- 1. Feynmann-Kitaev's history state construction, and Gottesman-Irani's variant for Quantum Turing Machines (QTM);
- 2. A QTM perfoming Quantum Phase Estimation (QPE);
- 3. A classical Hamiltonian selecting "tape segments";
- 4. A gapped trivial Hamiltonian $\mathbf{H}_{trivial}$ and a gapless dense spectrum Hamiltonian \mathbf{H}_{dense} .

Overall idea

Read the input parameter n from $\phi(n)$ using the QPE, start the UTM on the selected tape with input n, and couple the halting/non-halting configuration to an energy switch between $\mathbf{H}_{\text{trivial}}$ and $\mathbf{H}_{\text{dense}}$ – all of this in a history state.

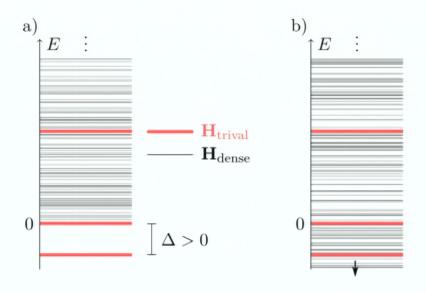
5/25

Pirsa: 18100004 Page 21/57

The ingredients

Overall idea

Read the input parameter n from $\phi(n)$ using the QPE, start the UTM on the selected tape with input n, and couple the halting/non-halting configuration to an energy switch between $\mathbf{H}_{\text{trivial}}$ and $\mathbf{H}_{\text{dense}}$ – all of this in a history state.



Pirsa: 18100004

5/25

History states

History state

$$rac{1}{\sqrt{T+1}} \sum_{t=0}^{T} \ket{t}_{\mathsf{clock}} \otimes \ket{\phi_t}$$

where $|\phi_t\rangle = \mathbf{U}_t\mathbf{U}_{t-1}\dots\mathbf{U}_1 |\phi_0\rangle$.

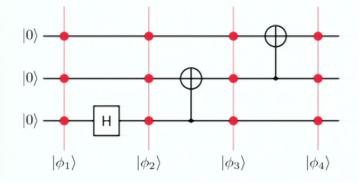
It is the ground state of the propagation Hamiltonian

$$egin{aligned} \mathbf{H}_{\mathsf{prop}} &= \sum_{t=1}^{T} (|t-1
angle_{\mathsf{clock}} \otimes \mathbf{1} - |t
angle \otimes \mathbf{U}_t) (\mathsf{h.c.}) \ &= \sum_{t=1}^{T} (|t-1
angle \! \langle t-1|_{\mathsf{clock}} + |t
angle \! \langle t|_{\mathsf{clock}} - |t
angle \! \langle t-1|_{\mathsf{clock}} \otimes \mathbf{U}_t + \mathsf{h.c.}) \end{aligned}$$

6/25

Pirsa: 18100004 Page 23/57

An example



$$\begin{split} \textbf{H}_{prop} &= -\left(|0\rangle\!\langle 1| + |1\rangle\!\langle 0|\right) \otimes \textit{H}_1 \\ &- \left(|1\rangle\!\langle 2| + |2\rangle\!\langle 1|\right) \otimes \mathsf{CNOT}_{2,1} \\ &- \left(|2\rangle\!\langle 3| + |3\rangle\!\langle 2|\right) \otimes \mathsf{CNOT}_{3,2} \\ &+ 4\textbf{1} - |0\rangle\!\langle 0| - |3\rangle\!\langle 3| \end{split}$$

7/25

Pirsa: 18100004 Page 24/57

Quantum Turing Machines

Turing Machine

A (deterministic) Turing Machine is a triplet (Σ, Q, δ) :

- Σ is a finite alphabet with a special *blank* symbol #;
- Q is a finite set of state with a special *initial* q_0 and *final* $q_f \neq q_0$;
- $\delta: Q \times \Sigma \to Q \times \Sigma \times \{L, R\}$ is the transition function.

It has an infinite two-side tape initialized with #.

8/25

Pirsa: 18100004 Page 25/57

Quantum Turing Machines

Quantum Turing Machine

A Quantum Turing Machine is a triplet (Σ, Q, δ) :

- Σ is a finite alphabet with a special blank symbol #;
- Q is a finite set of state with a special *initial* q_0 and *final* $q_f \neq q_0$;
- $\delta: Q \times \Sigma \to \mathbb{C}^{Q \times \Sigma \times \{L,R\}}$ is the quantum transition function.

It has an infinite two-side tape initialized with $|\#\rangle$.

A history state Hamiltonian can be defined for the history of a QTM.

 $|\phi_t\rangle$ encodes the state of the tape and the head position after t steps.

The propagation Hamiltonian will be translation invariant since δ does not depend on t.

8/25

Pirsa: 18100004 Page 26/57

Propagation Hamiltonian for QTM

Theorem ([C-PG-W 2015] using ideas from [G-I 2009])

The history state of a QTM is the groundstate of a 2-local Hamiltonian on a 1D spin chain such that

- 1. it is frustration-free (g.s. energy 0)
- 2. local dimension depends only on Σ and Q
- 3. if the QTM halts and tape is not finished, the remaining time steps leave the tape unchanged
- 4. if the QTM runs out of tape the history state is truncated at that point

Proof takes 42 pages.

9/25

Pirsa: 18100004 Page 27/57

Quantum Phase Estimation

Quantum Phase Estimation

Given a Universal Turing Machine M, we can construct a local Hamiltonian $\mathbf{H}_{\text{prop}}(\phi, M)$, there $\phi = 0.n_1 1 n_2 1 \dots n_{|n-1|} 1 n_{|n|}$ whose ground state is a history state for a QTM that

1. Decodes n from ϕ using Quantum Phase Estimation [Nielsen, Chuang]

2. Execute the UTM on input n

10/25

Pirsa: 18100004 Page 28/57

Quantum Phase Estimation

Quantum Phase Estimation

Given a Universal Turing Machine M, we can construct a local Hamiltonian $\mathbf{H}_{prop}(\phi, M)$, there $\phi = 0.n_1 1 n_2 1 \dots n_{|n-1|} 1 n_{|n|}$ whose ground state is a history state for a QTM that

- 1. Decodes n from ϕ using Quantum Phase Estimation [Nielsen, Chuang]
 - if the tape length sufficient to contain n, the QPE will be exact;
 - using the interleaved 1s, detect incomplete expansion before the QFT step and penalize it
- 2. Execute the UTM on input *n*

The interaction terms will be of the form

$$\mathbf{b}'' + (e^{i\pi\phi}\mathbf{b}''' + e^{i\pi 2^{-|\phi|}}\mathbf{b}'''' + \text{h.c.})$$

10/25

Pirsa: 18100004 Page 29/57

Penalizing computation output

Checking if the head of the UTM sits next to a tape boundary, we can give different energy to the groundstate of $\mathbf{H}_{\text{prop}}(\phi, M)$ depending on whether the UTM runs out of tape.

11/25

Pirsa: 18100004 Page 30/57

Penalizing computation output

Checking if the head of the UTM sits next to a tape boundary, we can give different energy to the groundstate of $\mathbf{H}_{\text{prop}}(\phi, M)$ depending on whether the UTM runs out of tape.

Gap of H_{prop}

The gap of the propagation Hamiltonian is $\Omega(T^{-3})$.

Recent works have improved this to roughly T^{-2}

[Bausch, Crosson 2018] [Caha, Landau, Nagaj 2018],

but it cannot be smaller than $O(T^{-1})$

[González-Guillén, Cubitt arXiv:1810.06528]

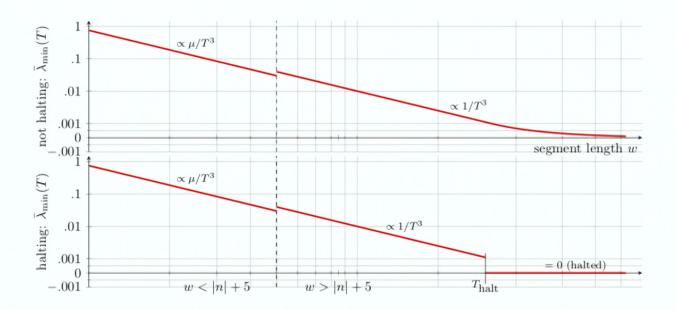
Energy penalty for running out of tape tends to 0 in the length of the tape.

We cannot apriori estimate T (it is undecidable!).

11/25

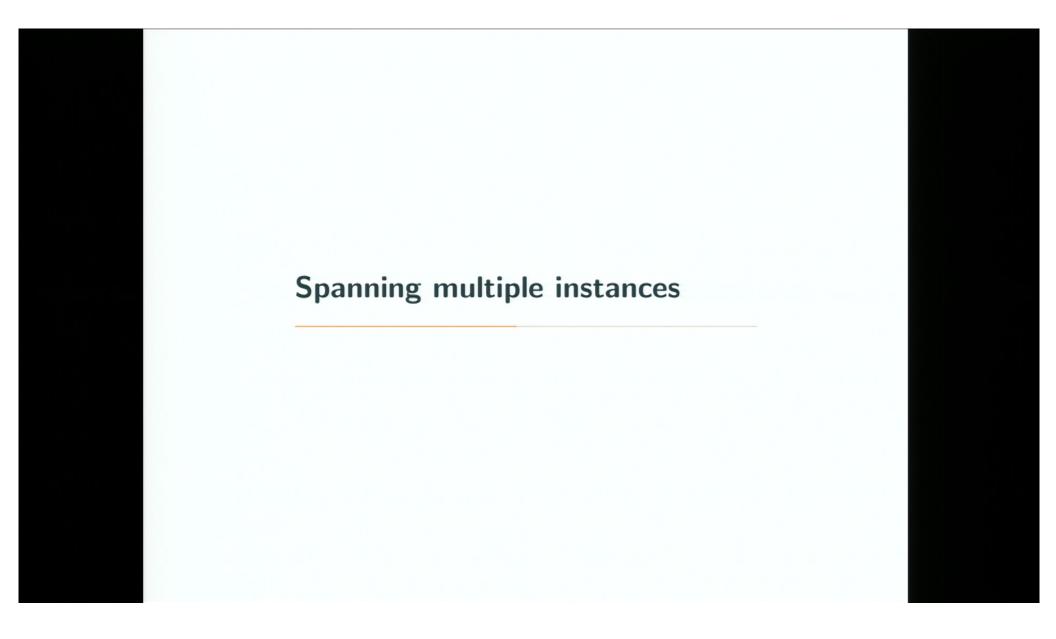
Pirsa: 18100004 Page 31/57

Computation penalty



12/25

Pirsa: 18100004 Page 32/57



Pirsa: 18100004

The 2D solution

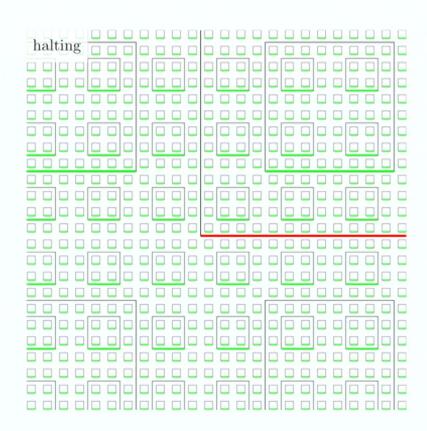
- Construct a quasi-periodic tiling known as Robinson Tiling;
- It has finite density of squares of any given size;
- Run one instance of the QTM on each lower edge;
- If the QTM runs forever: no penalty

13/25

Pirsa: 18100004 Page 34/57

The 2D solution

- Construct a quasi-periodic tiling known as Robinson Tiling;
- It has finite density of squares of any given size;
- Run one instance of the QTM on each lower edge;
- If the QTM halts within tape: penalty to $|q_f\rangle$

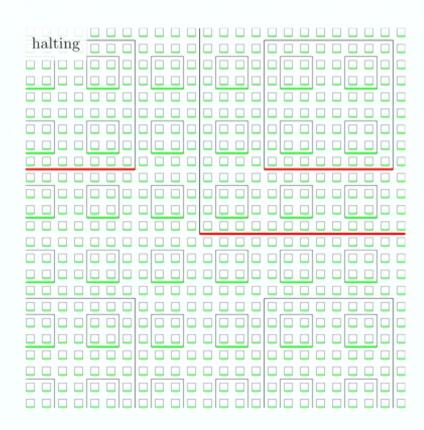


13/25

Pirsa: 18100004 Page 35/57

The 2D solution

- Construct a quasi-periodic tiling known as Robinson Tiling;
- It has finite density of squares of any given size;
- Run one instance of the QTM on each lower edge;
- ullet If the QTM halts within tape: penalty to $|q_f
 angle$

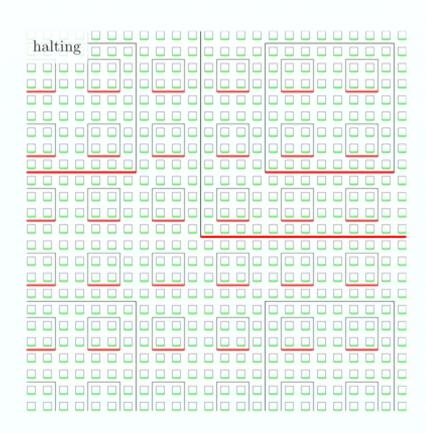


13/25

Pirsa: 18100004 Page 36/57

The 2D solution

- Construct a quasi-periodic tiling known as Robinson Tiling;
- It has finite density of squares of any given size;
- Run one instance of the QTM on each lower edge;
- ullet If the QTM halts within tape: penalty to $|q_f
 angle$



13/25

Pirsa: 18100004 Page 37/57

Quasi-periodic tiling

- 1. If the QTM does not halt \rightarrow no penalty
- 2. If it halts, every instance above a certain tape length will get a (small but fixed) penalty.

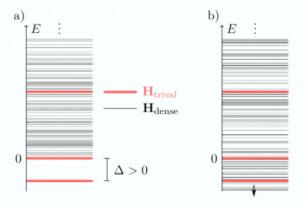
14/25

Pirsa: 18100004 Page 38/57

Quasi-periodic tiling

- 1. If the QTM does not halt \rightarrow no penalty
- 2. If it halts, every instance above a certain tape length will get a (small but fixed) penalty. They will accumulate and push the dense spectrum up, which will reveal the gap of the trivial Hamiltonian.

Halting \rightarrow gapped (a) Non halting \rightarrow gapless (b);



Only works in 2D

There are no quasi-periodic tilings in 1D!

14/25

Pirsa: 18100004 Page 39/57

The 1D marker Hamiltonian

a) enough tape: no penalty
b) insufficient tape: penalty
c) multiple segments

We divide the spin chain into tape segments delimited by a special marker.

On each tape segment we will start one instance of the QTM. We will penalize the QTM for running out of tape (unlike in 2D!).

We will give a bonus to each tape segment which decreases with the length of the segment, and which is always smaller than the QTM penalty.

15/25

Pirsa: 18100004 Page 40/57

Competing bonus and penalty

If the UTM with input *n*:

does not halt/loop:

- ullet each tape segment will be exhausted, getting a penalty $\sim 1/{\it T}^3$
- each tape segment of length ℓ gets a bonus of $-\exp(\operatorname{poly}(\ell))$

The most energetically favourable configuration is to have a single tape segment.

halts/loops:

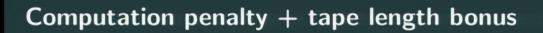
- tape segments sufficiently large get no penalty
- each tape segment of length ℓ gets a bonus of $-\exp(\mathsf{poly}(\ell))$

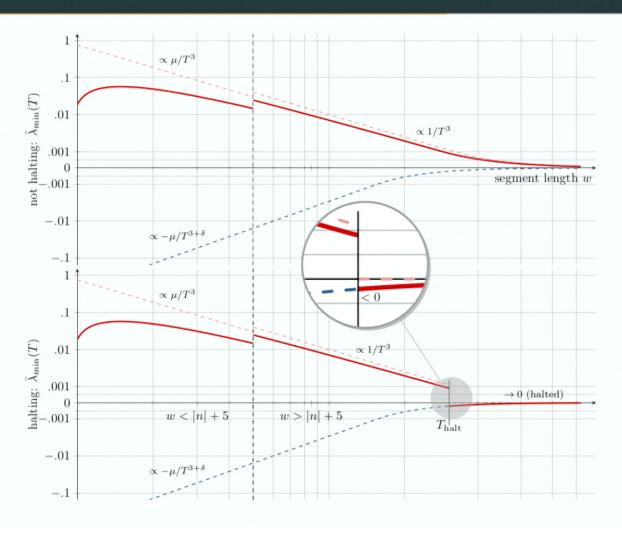
The most energetically favourable configuration is to have cut the spin chain into tape segment exactly of the minimal length required for halting.

16/25

Page 41/57

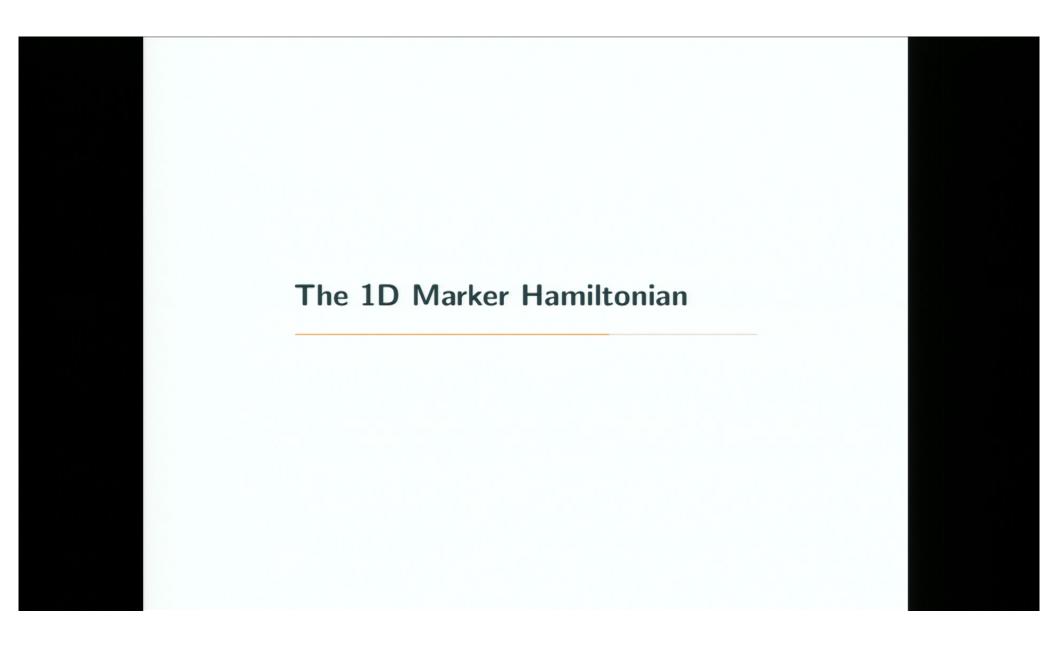
Pirsa: 18100004





17/25

Pirsa: 18100004 Page 42/57



Pirsa: 18100004 Page 43/57

Building the Marker Hamiltonian

Tape segments are delimited by a special state $|\blacksquare\rangle$.

The decaying attractive interaction can be easily implemented with long range terms $f(|j-i|)|\blacksquare\rangle\langle\blacksquare|_i\otimes|\blacksquare\rangle\langle\blacksquare|_j$. Can we make it 2-local?

18/25

Pirsa: 18100004 Page 44/57

Building the Marker Hamiltonian

Tape segments are delimited by a special state $|\blacksquare\rangle$.

The decaying attractive interaction can be easily implemented with long range terms $f(|j-i|) | \blacksquare \rangle \langle \blacksquare |_i \otimes | \blacksquare \rangle \langle \blacksquare |_i$. Can we make it 2-local?

Idea: use a counter! With special symbols $|\blacksquare\rangle$, $|\triangleright\rangle$, $|\triangleright\rangle$, we want to select subspaces with a definite signature

 $\operatorname{sig}(|\phi_1\rangle \dots |\phi_N\rangle) = (\langle \blacksquare |\phi_1\rangle , \dots , \langle \blacksquare |\phi_N\rangle)$ which between segments marked by $|\blacksquare\rangle$ are of the form

18/25

Pirsa: 18100004 Page 45/57

Marker interactions

These subspaces are groundstates of

$$\begin{aligned} \mathbf{h}_1 &= | \blacktriangleright \rangle \langle \blacktriangleright | \otimes (| \triangleright \triangleright \rangle - | \blacktriangleright \triangleright \rangle) (\langle \triangleright \triangleright | - \langle \blacktriangleright \triangleright |) \\ \mathbf{h}_2 &= (| \blacktriangleright \triangleright \rangle - | \blacktriangleright \blacktriangleright \rangle) (\langle \blacktriangleright \triangleright | - \langle \blacktriangleright \blacktriangleright |) \otimes | \blacksquare \rangle \langle \blacksquare | \end{aligned}$$

plus the penalty terms

$$2 \left| \blacksquare \blacksquare \right\rangle \left\langle \blacksquare \blacksquare \right| + 2 \left| \triangleright \triangleright \right\rangle \left\langle \triangleright \triangleright \right| + 2 \left| \blacksquare \triangleright \right\rangle \left\langle \blacksquare \triangleright \right|$$

This gives a 3-local Hamiltonian, positive, and block-diagonal w.r.t. states with identical signature.

19/25

Pirsa: 18100004 Page 46/57

Tape segments

We can get rid of segments which are not terminated by $|\blacksquare\rangle$ using a boundary trick [Gottesman-Irani]:

$$-4\sum_{i=1}^{N}|\blacksquare\rangle\langle\blacksquare|_{i}+2\sum_{i=1}^{N-1}|\blacksquare\rangle\langle\blacksquare|_{i}\otimes|*\rangle\langle*|_{i+1}+|*\rangle\langle*|_{i}\otimes|\blacksquare\rangle\langle\blacksquare|_{i+1}$$

where * is any of the possible symbols.

This forces g.s. to start and end with $|\blacksquare\rangle$, and lowers their energy to -4.

20/25

Pirsa: 18100004 Page 47/57

Tape segments

We can get rid of segments which are not terminated by $|\blacksquare\rangle$ using a boundary trick [Gottesman-Irani]:

$$-4\sum_{i=1}^{N}|\blacksquare\rangle\langle\blacksquare|_{i}+2\sum_{i=1}^{N-1}|\blacksquare\rangle\langle\blacksquare|_{i}\otimes|*\rangle\langle*|_{i+1}+|*\rangle\langle*|_{i}\otimes|\blacksquare\rangle\langle\blacksquare|_{i+1}$$

where * is any of the possible symbols.

This forces g.s. to start and end with $|\blacksquare\rangle$, and lowers their energy to -4.

The Hamiltonian is block diagonal in the "good" signature subspaces $\mathbf{H} = \bigoplus_s \mathbf{H}_s$ where each \mathbf{H}_s is a sum of path graph Laplacians Δ_w (one for each of of the tape segments).

20/25

Pirsa: 18100004 Page 48/57

Energy bonus

We are finally ready to add the energy bonus which decays as the length of the segment.

We push up the energy of the boundaries (again) with $\frac{1}{2} \sum_{i=1}^{N} |\blacksquare\rangle\langle\blacksquare|_i$

We give a bonus to
$$|w\rangle = \underbrace{|\triangleright \dots \triangleright\rangle}_{w}$$
 with $-\sum_{i=1}^{N-1} |\triangleright\rangle\langle \triangleright|_{i} \otimes |\blacksquare\rangle\langle \blacksquare|_{i+1}$.

21/25

Pirsa: 18100004

Energy bonus

We are finally ready to add the energy bonus which decays as the length of the segment.

We push up the energy of the boundaries (again) with $\frac{1}{2} \sum_{i=1}^{N} |\blacksquare\rangle\langle\blacksquare|_{i}$

We give a bonus to
$$|w\rangle = \underbrace{|\blacktriangleright \dots \blacktriangleright\rangle}_{w}$$
 with $-\sum_{i=1}^{N-1} |\blacktriangleright\rangle\langle \blacktriangleright|_{i} \otimes |\blacksquare\rangle\langle \blacksquare|_{i+1}$.

This has the effect of transforming Δ_w into $\Delta_w - |w\rangle\langle w|$.

$$\Delta_5 = egin{pmatrix} 1 & -1 & 0 & 0 & 0 \ -1 & 2 & -1 & 0 & 0 \ 0 & -1 & 2 & -1 & 0 \ 0 & 0 & -1 & 2 & -1 \ 0 & 0 & 0 & -1 & 1 \end{pmatrix}$$

21/25

Pirsa: 18100004 Page 50/57

Energy bonus decay

Lemma: $\sigma(\Delta'_w) \subset \left(-\frac{1}{2} - \frac{1}{2^w}, -\frac{1}{2} - \frac{1}{4^w}\right) \cup [0, \infty)$ and it has gap $\geq \frac{1}{2}$.

Theorem

The minimal eigenvalue λ of \mathbf{H}'_s satisfies

$$-\sum_{i}2^{-w_{i}}\leq\lambda\leq-\sum_{i}2^{-w_{i}}$$

where $(w_i)_i$ are the lengths of the segments in s. Moreover \mathbf{H}'_s has gap $\geq \frac{1}{2}$.

22/25

Pirsa: 18100004

Energy bonus decay

Lemma: $\sigma(\Delta'_w) \subset \left(-\frac{1}{2} - \frac{1}{2^w}, -\frac{1}{2} - \frac{1}{4^w}\right) \cup [0, \infty)$ and it has gap $\geq \frac{1}{2}$.

Theorem

The minimal eigenvalue λ of \mathbf{H}'_s satisfies

$$-\sum_{i} 2^{-w_i} \le \lambda \le -\sum_{i} 2^{-w_i}$$

where $(w_i)_i$ are the lengths of the segments in s. Moreover \mathbf{H}'_s has gap $\geq \frac{1}{2}$.

2-local Hamiltonian

We can replace the unitary counter with a 2-local counter (i.e. using a Quantum Thue System [Bausch, Cubitt, Ozols 2017]).

Using local dimension d > 5, we can achieve decay

$$-\sum_{i} 2^{-(d-5)^{w_i}} \le \lambda \le -\sum_{i} 2^{-(d-5)^{w_i}}$$

22/25

Pirsa: 18100004 Page 52/57

Marker + Propagation Hamiltonian

The groundstate energy of $\mathbf{H}_{QTM} = \mathbf{H}_{prop}(\phi(n), M) + \mathbf{H}_{comp} + \mathbf{H}_{marker}$ is

- tending to 0 if M does not halt on input n
- diverging to $-\infty$ if it does halt

Using $\mathbf{H}_{\text{trivial}}$ with trivial spectrum and g.s. energy -1 and $\mathbf{H}_{\text{dense}}$ with dense spectrum $[0,\infty)$ we construct:

$$\mathbf{H} = (\mathbf{H}_{\mathsf{QTM}} + \mathbf{H}_{\mathsf{dense}}) \oplus 0 + 0 \oplus \mathbf{H}_{\mathsf{trivial}} + \mathbf{H}_{\mathsf{switch}}$$

where \mathbf{H}_{switch} ensures that the groundstate is either an eigenstate of $\mathbf{H}_{trivial}$ or of $\mathbf{H}_{QTM} + \mathbf{H}_{dense}$.

23/25

Pirsa: 18100004 Page 53/57

Marker + Propagation Hamiltonian

The groundstate energy of $\mathbf{H}_{QTM} = \mathbf{H}_{prop}(\phi(n), M) + \mathbf{H}_{comp} + \mathbf{H}_{marker}$ is

- tending to 0 if M does not halt on input n
- diverging to $-\infty$ if it does halt

Using $\mathbf{H}_{\text{trivial}}$ with trivial spectrum and g.s. energy -1 and $\mathbf{H}_{\text{dense}}$ with dense spectrum $[0,\infty)$ we construct:

$$\mathbf{H} = (\mathbf{H}_{\mathsf{QTM}} + \mathbf{H}_{\mathsf{dense}}) \oplus 0 + 0 \oplus \mathbf{H}_{\mathsf{trivial}} + \mathbf{H}_{\mathsf{switch}}$$

where \mathbf{H}_{switch} ensures that the groundstate is either an eigenstate of $\mathbf{H}_{trivial}$ or of $\mathbf{H}_{QTM} + \mathbf{H}_{dense}$.

Low-energy spectrum

 $\mathsf{Halting} \to \mathsf{dense}. \ \mathsf{Not} \ \mathsf{halting} \to \mathsf{trivial}.$

23/25

Pirsa: 18100004 Page 54/57

Summary

- Combining a QTM history Hamiltonian and a 1D marker Hamiltonian, we obtain a Hamiltonian whose g.s. energy depends on the halting/non-halting of a UTM with input n
- This can be used to switch between H_{dense} and H_{trivial}
- The transition is the opposite of the 2D construction
 - Before halting (because of insufficient tape or because UTM will never halt): trivial gapped groundstate
 - After halting (at an uncomputable system size): gapless groundstate
- Finite size analysis will not be conclusive

24/25

Pirsa: 18100004 Page 55/57

Open questions

- no attempt to optimize local dimension, which is huge (and unphysical) but independent of input n
- qubits are decidable: is there a threshold?
- periodic boundary conditions?
 Our construction can be extended to periodic chains of length coprime with a fixed prime P.

25/25

Pirsa: 18100004 Page 56/57

Open questions

- no attempt to optimize local dimension, which is huge (and unphysical) but independent of input n
- qubits are decidable: is there a threshold?
- periodic boundary conditions?
 Our construction can be extended to periodic chains of length coprime with a fixed prime P.

Thank you for your attention!

25/25

Pirsa: 18100004 Page 57/57