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Abstract: <p>The spectral gap problem consist in deciding, given a local interaction, whether the corresponding trandlationaly invariant
Hamiltonian on a lattice has a spectral gap independent of the system size or not. In the ssimplest case of nearest-neighbour frustration-free qubit
interactions, there is a complete classification. On the other extreme, for two (or higher) dimensional models with nearest-neighbour interactions this
problem can be reduced to the Halting Problem, and it is therefore undecidable.</p>

<p>There are alot of indications that one dimensional spin chain are relatively simpler than their counterparts in higher dimensions. Nonetheless, |

will present a construction of a family of nearest-neighbour, tranglationally invariant Hamiltonians on a spin chain, for which the spectral gap
problem is undecidable.</p>
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GREAT NEWS, EVERYONE/
IT TORNS OUT THE PROBLEM
WE SPENT QUR CAREERS
WORKING ON CAN'T
BE SOLVED/

Mathematicians are weird.

SMBC Comics from today!

http://smbc-comics.com/comic/problem
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Spectral gap problem
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A decision problem

We consider a one-dimensional spin chain of N qudits with open boundary

conditions (C?)®N coupled by translation invariant interactions:

1. h(}) a single-site term (d x d Hermitian matrix);

2. h® 3 nearest-neighbor term (d? x d? Hermitian matrix).

The Hamiltonian Hy is given by

N
HN:L L l+2‘h
=1

Given hY) and h(®)| determine if {Hy}y is gapped or gapless.
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A decision problem

Given h(1) and h(?), determine if {Hy}y is gapped or gapless, under the
promise that one of two cases holds.

Hy has a unique ground state and A(Hy) > v > 0;
[Eo(N), Eo(N) + c] No(Hy) becomes dense for some ¢ > 0.

Decidable problem

Is there an algorithm which given input h(*) and h(? outputs
gapped/gapless in ?
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Hardness of the spectral gap problem

e for frustration-free d = 2 (qubits) models, the problem is easy
(reduces to computing eigenvalues of a 2 x 2 matrix)
[Bravyi, Gosset, 2015]
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Hardness of the spectral gap problem

e for frustration-free d = 2 (qubits) models, the problem is easy
(reduces to computing eigenvalues of a 2 x 2 matrix)
[Bravyi, Gosset, 2015]

e the more general problem for 2D square lattice is
(reduces to the Halting Problem). No algorithm can give the answer!
[Cubitt, Perez-Garcia, Wolff, 2015]
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Hardness of the spectral gap problem

e for frustration-free d = 2 (qubits) models, the problem is easy
(reduces to computing eigenvalues of a 2 x 2 matrix)
[Bravyi, Gosset, 2015]

e the more general problem for 2D square lattice is
(reduces to the Halting Problem). No algorithm can give the answer!
[Cubitt, Perez-Garcia, Wolff, 2015]

Question:

The construction of C-PG-W does work in 1D (more details later).

Is the spectral gap undecidable for 1D models?
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Indications in favor of decidability

1D spin chains are usually more tractable than higher dimensional models:

1. Many exactly solvable models are in 1D;
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Indications in favor of decidability

1D spin chains are usually more tractable than higher dimensional models:

1. Many exactly solvable models are in 1D;

2. Non solvable models can be studied using DMRG;
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Indications in favor of decidability

1D spin chains are usually more tractable than higher dimensional models:

1. Many exactly solvable models are in 1D;

2. Non solvable models can be studied using DMRG;
3. For groundstates of gapped models:

3.1 Provably polynomial algorithms;
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Indications in favor of decidability

1D spin chains are usually more tractable than higher dimensional models:

1. Many exactly solvable models are in 1D;

2. Non solvable models can be studied using DMRG,;
3. For groundstates of gapped models:

3.1 Provably polynomial algorithms;

3.2 Area-law and matrix product state descriptions;
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Indications in favor of decidability

1D spin chains are usually more tractable than higher dimensional models:

. Many exactly solvable models are in 1D;

. Non solvable models can be studied using DMRG;
. For groundstates of gapped models:

3.1 Provably polynomial algorithms;

3.2 Area-law and matrix product state descriptions;

. No thermal phase transitions;
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Indications in favor of decidability

1D spin chains are usually more tractable than higher dimensional models:

. Many exactly solvable models are in 1D;

. Non solvable models can be studied using DMRG;
. For groundstates of gapped models:

3.1 Provably polynomial algorithms;

3.2 Area-law and matrix product state descriptions;
. No thermal phase transitions;

. No topological order.
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Indications in favor of decidability

1D spin chains are usually more tractable than higher dimensional models:

. Many exactly solvable models are in 1D;

. Non solvable models can be studied using DMRG;
. For groundstates of gapped models:

3.1 Provably polynomial algorithms;

3.2 Area-law and matrix product state descriptions;
4. No thermal phase transitions;

5. No topological order.

Some questions are nonetheless hard: local Hamiltonian problem
(approximate ground state energy to inverse polynomial precision) is
QMA-hard.
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Fix a classical Universal Turing Machine (UTM).

Theorem

There exist (explicitly constructible) d x d matrices a,a’,a” and d? x d?

matrices b, b’, b”, b”" for some d such that:

. a and b are diagonal with entries in Z.;

. a’, a”, b/, b” are Hermitian with enties in Q[v/2];

1
2
3. b and b"""" have entries in Q;
4

. For any n € IN and any rational 0 < 3 < 1 define the interactions

h(l)(n) a .3(2_|""|a" ~a’)

h(Q)(n) = -}[2 \.-_u|bf g b” 4 (ei-;i "’ £ 61'7:2 b e hC)]

where ¢p(n) = 0.m1ml... 0y, _11n),.

Pirsa: 18100004 Page 17/57



Fix a classical Universal Turing Machine (UTM).

Theorem

h(n) = a+ g(271¢1a’ + a")

h(Z)(n) — b + J’[2—\t.>|bf + bH + (eim_'abnf + eiﬁQ * bHH + hC)]

Then

a) if the UTM halts or loops on input n, then {Hy(n)}n is

b) if the UTM does not halt on input n, then {Hy(n)}n is
and A(Hy) > 1.
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Fix a classical Universal Turing Machine (UTM).

Theorem

a) if the UTM halts or loops on input n, then {Hn(n)}n is

b) if the UTM does not halt on input n, then {Hy(n)}n is
and A(Hy) > 1.

Corollary

Since deciding whether the UTM will halt/loop on input n is undecidable,
so is the spectral gap problem.

3 can be arbitrarily small: the problem is undecidable even for small

perturbations of classical Hamiltonians.
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How to cook up an Hamiltonian
in 54 simple steps
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The ingredients

Similarly to the 2D construction, there are a few ingredients:

1. Feynmann-Kitaev's history state construction, and Gottesman-lrani's
variant for Quantum Turing Machines (QTM);

2. A QTM perfoming Quantum Phase Estimation (QPE);
3. A classical Hamiltonian selecting “tape segments’;

4. A gapped trivial Hamiltonian Hy,ia and a gapless dense spectrum

Hamiltonian Hyense.

Overall idea

Read the input parameter n from ¢(n) using the QPE, start the UTM on
the selected tape with input n, and couple the halting/non-halting
configuration to an energy switch between Hyiviai and Hyense — all of this
iIn a history state.
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The ingredients

Overall idea

Read the input parameter n from ¢(n) using the QPE, start the UTM on
the selected tape with input n, and couple the halting/non-halting
configuration to an energy switch between Hyivial and Hyense — all of this

In a history state.

a)

P IIdvnsv
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History states

History state

[}
z : clock |“r

t=0

Where |('_')r> — UrUr il e - U‘] |('_')0>,

It is the ground state of the propagation Hamiltonian

I
Hoop = ) (It = 1)goq ® 1= |£) ® U¢)(h.c.)

t

()= 1)t - Hoioer + 1EXEL e — 1EXKE — 1] 00 @ e § e
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An example

2 H,
X CNOTQ1

Horop = — (10)X1] + [1X0
(11X2] + [2X1
(12X3[ + I3
4

)
)

|
|
<2I) TCNOT3‘2
1 — [0X0] — [3)3|

)
)

f
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Quantum Turing Machines

Turing Machine

A (deterministic) Turing Machine is a triplet (X, Q,d):

e 2 is a finite alphabet with a special blank symbol #;
e (Qis a finite set of state with a special initial qo and final q¢ # qo;

e ): QXL > QxXx{L,R} is the transition function.

It has an infinite two-side tape initialized with #.
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Quantum Turing Machines

Turing Machine

A Turing Machine is a triplet (¥, Q,0):

e 2 is a finite alphabet with a special blank symbol #;
e @ is a finite set of state with a special initial qo and final qr # qo;

o §:Q x ¥ — CUXExX{LR} is the transition function.

It has an infinite two-side tape initialized with |#).

A history state Hamiltonian can be defined for the history of a QTM.
|¢¢) encodes the state of the tape and the head position after t steps.

The propagation Hamiltonian will be translation invariant since o does not
depend on t.
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Propagation Hamiltonian for QTM

Theorem ([C-PG-W 2015] using ideas from [G-1 2009])

The history state of a QTM is the groundstate of a 2-local Hamiltonian
on a 1D spin chain such that

1. it is frustration-free (g.s. energy 0)
. local dimension depends only on ¥ and Q

. If the QTM halts and tape is not finished, the remaining time steps
leave the tape unchanged

. if the QTM runs out of tape the history state is truncated at that
point

Proof takes 42 pages.
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Quantum Phase Estimation

Quantum Phase Estimation

Given a Universal Turing Machine M, we can construct a local
Hamiltonian Hyop(¢, M), there ¢ = 0.ny1ny1. .. n,_q)1n, whose
ground state is a history state for a QTM that

1. Decodes n from ¢ using Quantum Phase Estimation [Nielsen, Chuang]

2. Execute the UTM on input n
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Quantum Phase Estimation

Quantum Phase Estimation

Given a Universal Turing Machine M, we can construct a local
Hamiltonian Hyop(¢, M), there ¢ = 0.n1n1. .. nj,_q/1ny, whose
ground state is a history state for a QTM that

1. Decodes n from ¢ using Quantum Phase Estimation [Nielsen, Chuang]

e if the tape length sufficient to contain n, the QPE will be exact;
e using the interleaved 1s, detect incomplete expansion before the QFT

step and penalize it

2. Execute the UTM on input n

The interaction terms will be of the form

b” i (erm_ubm i em? ' bHH | h.C,)
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Penalizing computation output

Checking if the head of the UTM sits next to a tape boundary, we can give
different energy to the groundstate of H,.o,(¢, M) depending on whether
the UTM runs out of tape.
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Penalizing computation output

Checking if the head of the UTM sits next to a tape boundary, we can give
different energy to the groundstate of H,.o,(¢, M) depending on whether
the UTM runs out of tape.

Gap of H,,,p
The gap of the propagation Hamiltonian is Q(T ~3).

Recent works have improved this to roughly T 2
[Bausch, Crosson 2018] [Caha, Landau, Nagaj 2018|,
but it cannot be smaller than O(T 1)
[Gonzélez-Guillén, Cubitt arXiv:1810.06528]

Energy penalty for running out of tape tends to 0 in the length of the tape.

We cannot apriori estimate T (it is undecidable!).
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Computation penalty

/\u;iu ( [I

. >

segment length w

not halting:

AZH\:[[-]‘)

iy
B

halting:

0 (halted)
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Spanning multiple instances
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The 2D solution

Construct a i
not halting

quasi-periodic tiling

known as Robinson
Tiling;
It has finite density of

squares of any given size;

Run one instance of the
QTM on each lower
edge;

If the QTM runs forever:
no penalty
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The 2D solution

Construct a _
_ . ) halting
quasi-periodic tiling
known as Robinson
Tiling;
It has finite density of
squares of any given size;

Run one instance of the

QTM on each lower

edge;
If the QTM halts within

tape: penalty to |gr)
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The 2D solution

Construct a _
: e 2] halting
quasi-periodic tiling
known as Robinson
Tiling;

It has finite density of

squares of any given size;

Run one instance of the

QTM on each lower
edge;

If the QTM halts within

tape: penalty to |grf)
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The 2D solution

Construct a _
halting

quasi-periodic tiling

known as Robinson
Tiling;

It has finite density of

squares of any given size;

Run one instance of the

QTM on each lower

edge;
If the QTM halts within

tape: penalty to |gr)
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Quasi-periodic tiling

1. If the QTM does not halt — no penalty

2. If it halts, every instance above a certain tape length will get a (small

but fixed) penalty.
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Quasi-periodic tiling

. If the QTM does not halt — no penalty

. If it halts, every instance above a certain tape length will get a (small
but fixed) penalty. They will accumulate and push the dense
spectrum up, which will reveal the gap of the trivial Hamiltonian.

b)

Halting — gapped (a)
Non halting — gapless (b);

There are quasi-periodic tilings in 1D!
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The 1D marker Hamiltonian

a) enough tape: no penalty

b) insufficient tape: penalty
4 7

¢) multiple segments

- 7

We divide the spin chain into delimited by a special marker.

On each tape segment we will start one instance of the QTM. We will
penalize the QTM for running out of tape (unlike in 2D!).

We will give a bonus to each tape segment which with the

length of the segment, and which is always than the QTM penalty.
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Competing bonus and penalty

If the UTM with input n:

does not halt/loop:

halts/loops:

each tape segment will be exhausted, getting a
penalty ~ 1/T3
each tape segment of length ¢ gets a bonus of
— exp(poly(¢))

The most energetically favourable configuration is

to have a single tape segment.

e tape segments sufficiently large get no penalty
e each tape segment of length ¢ gets a bonus of
— exp(poly(¢))
The most energetically favourable configuration is
to have cut the spin chain into tape segment
exactly of the minimal length required for halting.
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Computation penalty 4 tape length bonus

¥
=}

segment length w

(T)

» 0 (halted)

— ol

halting: Amin

Tty
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The 1D Marker Hamiltonian
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Building the Marker Hamiltonian

Tape segments are delimited by a special state |H)

The decaying attractive interaction can be easily implemented with long
range terms f(|j — /|) (M) M|, @ [W)(M|.. Can we make it 2-local?
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Building the Marker Hamiltonian

Tape segments are delimited by a special state |H)

The decaying attractive interaction can be easily implemented with long
range terms f(|j — /|) [H)(M|, @ [W)(M|.. Can we make it 2-local?

Idea: use a counter! With special symbols (W), [>>), [»), we want to
select subspaces with a definite signature

sig(|p1) - - - |on)) = ((B]) (M|¢pn)) which between segments
marked by |l) are of the form

oo ..o B+ (W .0 W)+ (Bep> ... > W)

Sl B 2 SN DIEEE B3 3 S S JIERE| N3 3 S 3 )
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Marker interactions

These subspaces are groundstates of

hy = [p)p| @ (I55) — [p5)((B5] — (b>])
hy = (|p) = ) ((p>] — (pp]) @ |H)(H|

plus the penalty terms

2| HE)(EE| 2 (>p) (e + 2|0 >)(H >

This gives a Hamiltonian, positive, and block-diagonal w.r.t. states

with identical signature.
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Tape segments

We can get rid of segments which are not terminated by |l) using a

boundary trick [Gottesman-Irani]:

N

—4> " (mym|; +2 Z: W)W, @ [*)*[; g + )], © [WYH],,

=1
where x is any of the possible symbols.

This forces g.s. to start and end with (W), and lowers their energy to -4.
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Tape segments

We can get rid of segments which are not terminated by |l) using a

boundary trick [Gottesman-Irani]:

i @ [6)klipy + [0 © [EXE

where x is any of the possible symbols.
This forces g.s. to start and end with (), and lowers their energy to -4.

The Hamiltonian is block diagonal in the “good” signature subspaces
H bsHs where each Hy is a sum of path graph Laplacians A,, (one for
each of of the tape segments).
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Energy bonus

We are finally ready to add the energy bonus which decays as the length of

the segment.

We push up the energy of the boundaries (again) with 1 }_:fv L

I
2

/'_4,":1

We give a bonus to |(w) = [» ... ») with — v )|, @ ()W, .
—

w
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Energy bonus

We are finally ready to add the energy bonus which decays as the length of

the segment.
: . : N
We push up the energy of the boundaries (again) with % >, |I(E|.

\aN 1

L si=1

> Xp|; &

We give a bonus to |w) = [» ... ») with — L@ (W .
— —

w

This has the effect of transforming A, into A,, — |w)w|.

E . |

0

=1
1 1)
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Energy bonus decay

Lemma: o(A]) C (=3 — 5=, i s %) U [0,00) and it has gap > %

Theorem

The minimal eigenvalue \ of H. satisfies

where (w;); are the lengths of the segments in s. Moreover H. has gap
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Energy bonus decay

Lemma: ¢(A),) C (—5 — % —% — 4l.,i )U [0,0) and it has gap > %

Theorem

The minimal eigenvalue \ of H’ satisfies
72;‘2 w; ﬂ; /\ g 72;‘2 w;

where (w;); are the lengths of the segments in s. Moreover H, has gap

We can replace the unitary counter with a 2-local counter (i.e. using a
Quantum Thue System [Bausch, Cubitt, Ozols 2017]).

Using local dimension d > 5, we can achieve decay

_Z2 (d—5)" 3/\£—Z2 (d—5)*
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Marker 4+ Propagation Hamiltonian

The groundstate energy of Hqrm = Hprop((n), M) + Heomp + Hmarker i

e tending to O if M does not halt on input n

e diverging to —oo if it does halt

Using Hyivial with trivial spectrum and g.s. energy —1 and Hgense With

dense spectrum [0, 00) we construct:
H (HQTM [ Hdcnse)" 040 H'rrivial } stirch

where Hg,itch ensures that the groundstate is either an eigenstate of

Htrivial or of HQ ™ -1 Hdense-
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Marker 4+ Propagation Hamiltonian

The groundstate energy of Hqrm = Hprop(@(n), M) + Heomp + Hmarker 1S

e tending to O if M does not halt on input n
e diverging to —oo if it does halt
Using Hyivial with trivial spectrum and g.s. energy —1 and Hgense With
dense spectrum [0, c0) we construct:
H (HQTM } Hdcnsc) 0404 Hrrivial * stirch
where Hg,itch ensures that the groundstate is either an eigenstate of
Htrivial or of HQIM } Hdense-

Low-energy spectrum
Halting — dense. Not halting — trivial.
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Combining a QTM history Hamiltonian and a 1D marker Hamiltonian,

we obtain a Hamiltonian whose g.s. energy depends on the
halting/non-halting of a UTM with input n

This can be used to switch between Hyense and Hipivial

The transition is the of the 2D construction

e Before halting (because of insufficient tape or because UTM will never
halt): trivial gapped groundstate

e After halting (at an uncomputable system size): gapless groundstate

Finite size analysis will not be conclusive
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Open questions

e no attempt to optimize local dimension, which is huge (and

unphysical) but independent of input n
e qubits are decidable: is there a threshold?

e periodic boundary conditions?
Our construction can be extended to periodic chains of length

coprime with a fixed prime P.
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Open questions

e no attempt to optimize local dimension, which is huge (and

unphysical) but independent of input n
e qubits are decidable: is there a threshold?

e periodic boundary conditions?
Our construction can be extended to periodic chains of length

coprime with a fixed prime P.

Thank you for your attention!
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