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Abstract: <p>| give an overview of work with Aasen and Mong on topologically invariant defects in two-dimensional classical lattice models,
guantum spin chains and tensor networks. We show how to find defects that satisfy commutation relations guaranteeing the partition function
depends only on their topological properties. These relations and their solutions can be extended to allow defect lines to branch and fuse, again with
properties depending only on topology. These lattice topological defects have a variety of useful applications. In the Ising model, the fusion of
duality defects allows Kramers-Wannier duality to be enacted on the torus and higher genus surfaces easily, implementing modular invariance
directly on the lattice. These results can be extended to a very wide class of models, giving generalised dualities previously unknown in the
statistical-mechanical literature. A consequence is an explicit definition of twisted boundary conditions that yield the precise shift in momentum
guantization and thus the spin of the associated conformal field. Other universal quantities we compute exactly on the lattice are the ratios of
g-factors for conformal boundary conditions.& nbsp;</p>
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The Uses of Lattice Topological Defects

Paul Fendley
Oxford

Work with David Aasen (KITP/Q) and
Roger Mong (Pitt)

part | is arXiv:1601.07185, part Il well under way, part lll eventually
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Some things old, something new

* The discovery of the Jones polynomial of knot invariants led to a raft of
insights for physics.
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Some things old, something new

The discovery of the Jones polynomial of knot invariants led to a raft of
insights for physics.

Witten’s relation to Chern-Simons field theory led to the extensive
development of topological field theory.

Moore and Seiberg showed how chiral operators in rational conformal
field theory fuse and braid with the same rules as Wilson lines.

Anyonic particles obey the same rules.

Last (in this list), least (as judged by number of citations), but first (as in
time) are the deep connections to lattice models of statistical
mechanics.
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The mathematical structure is a tensor category.

Braiding and fusing must obey consistency conditions, such as
the Reidemeister moves of knot theory, the statistical
properties of fused anyons, the bootstrap equations of
rational conformal field theory...
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The mathematical structure is a tensor category.

Braiding and fusing must obey consistency conditions, such as
the Reidemeister moves of knot theory, the statistical
properties of fused anyons, the bootstrap equations of
rational conformal field theory...

Which type of categories depends precisely on which structure
you want, get beasts such as fusion categories (no braiding
required), modular tensor category (works on the torus)...
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What we use here is a set of rules to turn a
diagram into a number, a topological invariant
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What we use here is a set of rules to turn a
diagram into a number, a topological invariant

N\ O
The category allows e.g. matrix 0 kI_)"'“";u
elements to defined precisely M* [Zb ] — a ”/{_
via pictures: TYyLoacl d
' Y —
. )u
\_/ iI\_/
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What we use here is a set of rules to turn a
diagram into a number, a topological invariant

N\ O
The category allows e.g. matrix 9 kI_)"'“";u
elements to defined precisel * b1 - @ / _
i3 D : g J A[a Y [Z(w] — g
via pictures: f ~—
. )u
\_“/ ¥ u

To compute the numbers, the rules allow various manipulations of the
graphs to relate the topological invariants, e.g.

VRN /o "f\
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Specifying the category means you specify the allowed labels on

the edges of the diagram, and which vertices are allowed:
C

a b
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Specifying the category means you specify the allowed labels on

the edges of the diagram, and which vertices are allowed:
C

Non-negative integers

a b ‘

A convenient way of doing this is via a fusion algebra: q ® b = E N(‘;b C

. ; C
When N, > 0, the abc vertex is allowed.

ab -
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Specifying the category means you specify the allowed labels on

the edges of the diagram, and which vertices are allowed:
C

Non-negative integers

a b ‘

A convenient way of doing this is via a fusion algebra: q ® b = E NE€ ¢

ab %

. ; C
When N, > 0, the abc vertex is allowed.

ab

For the Ising fusion category, there are three objects, with labels 1 , 0, I,/J
/

cRQo=1+1

Only vertex not involving identity is /k and its rotations.
g g

identity

1)
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Some key rules: For Ising:

dl =1
(i,,/, =]
dy = V2

= d,

a quantum dimension

_ eiﬂ'(/’l”—/’lh~/’l(. )

he is “spin”

a
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Some key rules:

For Ising:
dl =1
= d, 2, =1
a quantum dimension

dy = V2

h-l = ()
_ imCh,—=h,=h.)
=e hy =1/2
ha is “spin” hy = 1/16

a
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Some key rules:

= d,
a quantum dimension

b
AN c
_ eiir(l’l”—h,,—/’z(.)
h, is “spin”
a b’
o a’b’
c - E :(EJ..I) _)(-‘(-"
c,c’

F-symbols

For Ising:

dl =1
(i,,/, =]
dy = V2

h-1 = ()
fl.,f_, = ]/2
he = 1/16

oo
bm’r T
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The category lets us find lattice
topological defects and their properties
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* Ageneral and systematic way of finding them.
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The category lets us find lattice
topological defects and their properties

* Ageneral and systematic way of finding them.
* Topologically invariant junctions of defect lines

* Many generalisations of Kramers-Wannier duality, given
explicitly and exactly

* Exact lattice derivation of g-factors for conformal boundary
conditions

* By doing modular transformations on the lattice, get
momentum quantization conditions that yield exact
dimensions of operators in the continuum limit
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Defining the models

Degrees of freedom are Integer-valued ""heights” living on the sites of a square lattice:
]1.71 h-l ]l;;

hl
Boltzmann weight depends on interactions — § | |
g : p AN 1 Z _ }?0 }2‘2
among the four heights “round a face ;
heights faces X
1
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Defining the models

Degrees of freedom are Integer-valued ""heights” living on the sites of a square lattice:
]1.71 h-l ]l;;

hl
Bolt ight d d int ti — §
oltzmann weight depends on in erac“|ons 7 — H ho h.g
among the four heights “round a face
heights faces X
1
For Ising, include degrees of freedom on only half the sites:
b
a O b — el\’z (S(Lb 0 — BK'y (S(Lb
a,b=+1 a
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We study models where the allowed configurations and the
Boltzmann weights are defined using a fusion category.
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We study models where the allowed configurations and the
Boltzmann weights are defined using a fusion category.

In the traditional stat-mech language: write transfer matrices in
terms of an algebra (Temperley-Lieb, Birman-Murakami-Wenzl,...)

h_ hy hs
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We study models where the allowed configurations and the
Boltzmann weights are defined using a fusion category.

In the traditional stat-mech language: write transfer matrices in
terms of an algebra (Temperley-Lieb, Birman-Murakami-Wenzl,...)

In the language du jour: write configurations and their Boltzmann
weights in terms of a tensor network!
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We study models where the allowed configurations and the
Boltzmann weights are defined using a fusion category.

In the traditional stat-mech language: write transfer matrices in
terms of an algebra (Temperley-Lieb, Birman-Murakami-Wenzl,...)

In the language du jour: write configurations and their Boltzmann
weights in terms of a tensor network!

, ’ Q ‘0
909 § ? S
o‘: P : ‘ :" w’c?t

Both the heights and the labels on the tensors take values in the category. "Physical”’ degrees
of freedom in the tensor network are ““channels” in the Boltzmann weights.
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We study models where the allowed configurations and the
Boltzmann weights are defined using a fusion category.

In the traditional stat-mech language: write transfer matrices in
terms of an algebra (Temperley-Lieb, Birman-Murakami-Wenzl,...)

In the language du jour: write configurations and their Boltzmann
weights in terms of a tensor network!

Both the heights and the labels on the tensors take values in the category. "Physical”’ degrees
of freedom in the tensor network are ““channels” in the Boltzmann weights.

Many important models can be written in this way, including critical
lattice models yielding (probably) all rational CFT in the continuum limit
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e.g. lattice height models corresponding to the
minimal CFTs can rewritten as loop models:

Temperley-Lieb; Fortuin-Kasteleyn; Baxter; Andrews-Baxter-Forrester; Pasquier

In math literature, called shadow world (Turaev)

7 = d7100Ps 7 ¢ wy "
Loop configs

— E (topological weight) x (local weights)
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In general, the category allows local weights to be defined so that:

4 = Z (topological weight) x (local weights)

configs

The reason we convert a nice local weight to a non-local topological weight
is that we can use the fusion category to manipulate the pictures without
changing the topological weight.

Pirsa: 18090032 Page 32/74
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configs
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is that we can use the fusion category to manipulate the pictures without
changing the topological weight.
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b for a # 1
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In general, the category allows local weights to be defined so that:

4 = Z (topological weight) x (local weights)

configs

The reason we convert a nice local weight to a non-local topological weight
is that we can use the fusion category to manipulate the pictures without
changing the topological weight.

e.g. pmr da i —_ O
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In general, the category allows local weights to be defined so that:

Z = Z (topological weight) x (local weights)

configs

The reason we convert a nice local weight to a non-local topological weight
is that we can use the fusion category to manipulate the pictures without
changing the topological weight.

e.g. pmr da i —_ O

b for a # 1

This setup allows topological defects to be defined, and
interesting and exact properties to be derived for them.
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Inserting a defect

RS gé@/?%%g SELI

IR — KEERRK

KKK 20‘0’3?’»20
;‘ !

14
ho

hll h-g

The defects have a weight depending on the adjacent heights:
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Inserting a defect

N
h’l h;

The defects have a weight depending on the adjacent heights:

hjl h-g

In the tensor network picture: AA/\+\/V\

In the presence of the defect, the partition function is modified to

SN IRO RN

heights faces along defect
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Topological defects

For Z to be invariant under deformations of the defect’s path:
b
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- ——— defecte

For Z to be invariant under deformations of the defect’s path:

In tensor networks, these have been dubbed "“pulling-through” conditions:

X TR

Verstraete et al
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Two types of topological defects in Ising

Recall that for Ising, include degrees of freedom on only half the sites:
b

p <> p — eKadab <> — oKydap
a
spin-flip defect: bD — :b — 1 — (Snl)
a a -
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Two types of topological defects in Ising

Recall that for Ising, include degrees of freedom on only half the sites:
b

p <> p — eKadab <> — oKydap
a
spin-flip defect: bD — :b — 1 — (Snl)
a a -

duality defect: T - 1 1y 2 (a=1)(b-1)
[ = T,= 51!
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Two types of topological defects in Ising

Recall that for Ising, include degrees of freedom on only half the sites:
b

p <> p — eKadab <> — o Kydab
a
spin-flip defect: bD — :b — 1 — (501)
a a -

: b b 1
duality defect: 1 l(a—l)(b—l)
p— - —( — 4\ , ,
L = T.= 54
AN W7 e S S S S
aVa M7\ Couplings on one side of defect are k ok ok ok
¥ ¥ 3 dual values of those on the other! \’\’\’\
* *
Vi S S
* *
% X
VL * ok ok ok
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Useful application 1: generalised dl_JaIity

For each object in the category, there are defect weights satisfying the commutation
relations. To find them, use braiding if it exists, or better the Drinfeld centre.

f) b | b’ ] "
d /\//*\f\/\ p— _ (LF(';“ )
a a’ ) /da db’ CH ) prp

1

In Ising, spin-flip defect is labeled by “¢’, while the duality defect by .
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Useful application 1: generalised duality

For each object in the category, there are defect weights satisfying the commutation
relations. To find them, use braiding if it exists, or better the Drinfeld centre.

f) b | b’ ] "
q /\/J*\f\/\ — ' (LF(',”‘ )
a | a’ \ /da db’ CH) g

T

In Ising, spin-flip defect is labeled by “¢’, while the duality defect by .

Do not need to impose integrability.

However, many critical integrable models are special cases of models built on categories.
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Useful application 1: generalised duality

For each object in the category, there are defect weights satisfying the commutation
relations. To find them, use braiding if it exists, or better the Drinfeld centre.

f) b J\#\l)’ ] 5
b~ = F)
d | a \/(iadbf (

1

In Ising, spin-flip defect is labeled by "¢’, while the duality defect by .

Do not need to impose integrability.

However, many critical integrable models are special cases of models built on categories.
— Proof is essentially: —

N\ S

/ b b \
CR) 2 — :. .y — </
\/ \.//,\S 7‘]&?/
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Topological defects

For Z to be invariant under deformations of the defect’s path:
b
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The transfer matrix is (the original?) matrix product operator.

Vector space on which T acts W
l LR h 1 J’i| [1"5
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The transfer matrix is (the original?) matrix product operator.

Vector space on which T acts W
l LR h 1 J’i| [1"5
h(] h'_l T -_—

ST
Then defect also is an MPO: D¢ — I I I"?if’ﬁi i
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The transfer matrix is (the original?) matrix product operator.

Vector space on which T acts W
l LR h 1 J’i| [1"5

ST
Then defect also is an MPO: D¢ — I I I"?if’ﬁi i

For any topological defect, the defect commutation relations ensure that

TDy = DyT
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Deforming turns microscopic into macroscopic

Recall — d(-_)
O, =

Can nucleate a defect loop around a single face, find

>« ,, =dg « O

a,b

Corresponding partition functions on a disc are related as

Z=dyZ
(g3 =dg
\ /
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Duality is not a symmetry

Fusing defects together obeys the same rules as the objects in category.

In Ising category (and CFT):

a @ g = ] + "(r/_) Jr./ \\‘ !/ \\ I/ \\
I E i : ‘S- - T I
’ s P ]
DO' D(_y —_ 1 + D([y ‘\ /’ ‘\\ /I ‘\\ /,
Identity defect spin-flip defect
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Duality is not a symmetry

Fusing defects together obeys the same rules as the objects in category.

In Ising category (and CFT):
a @ g = ] + fll;, I," \\‘ Jr/ . I/ .
I - T I

’ s P ]
D(_}' D(_y 1 _|_ D(’Z) ‘\ / ‘\ / ‘\ /

Identity defect spin-flip defect

Lattice models yielding tricritical Ising or 3-state Potts CFTs come from Fibonacci category:

,/ ““\ ,’ ~ /" \\
D.D.=1+1D ' ) ’ \ ’ \
— ‘ ——
T + s l | ' B S l
\ \ \
/ \ / \ /
\\ 4 ~ // ~ /
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Duality is not a symmetry

Fusing defects together obeys the same rules as the objects in category.

In Ising category (and CFT):

- ~ ~ = ~
oco®Ro =1+ f(r/_) Ks 3 y \ / .
I - T I
’ s P ]
D,D,=1+Dy 77 N
Identity defect spin-flip defect

Lattice models yielding tricritical Ising or 3-state Potts CFTs come from Fibonacci category:

,/ ““\ ,’ ~ /" \\
D.D.=1+7D ' ) ’ \ ’ \
— ‘ ——
T + s l | ' B S l
\ \ \
/ \ / \ /
\\ 4 ~ // ~ /

If dgy # 1, then D is not unitary.

In Ising, duality is not even invertible!  (D,)* =1 = (D,)" = 2(D,)?
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Useful application 2:
g-factors for conformal boundary conditions

/’-\\ /’_\\ !
4 \ 1 / \ 1
( l — ‘ ﬁ;zl — "
/ /
\\-h // (Z(b \\\_’/ (i(b \\ ,/

1B) |1B) |B)

Consider vector space of all configurations of spins/heights near edge. Each vector |B>
corresponds to a boundary condition, e.g. |fixed up) = |+ + + + +...)
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et appllcatlon o
g-factors for conformal boundary conditions

4 TN 17 N
( ! = — | 3 4 f— o J— ( .
\\ /f (ij \\ /I a{(z) \ }
- -~ - - .
B) B) oB

Consider vector space of all configurations of spins/heights near edge. Each vector |B>
corresponds to a boundary condition, e.g. |fixed up) = |+ + + + +...)

Acting with 'ng absorbs the defect into the edge, changing the boundary condition
B) —+ Dy|B)

In Ising the absorbing the duality defect gives e.g.

D, |fixed up) = |free) D, |free) = |fixed up) + [fixed down)
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D .
T T,
B) =" ® ~S="p,B)

Thus for Z|B> the partition function on the disc with boundary
condition | B), we have proved directly on the lattice

Z'D<zs|B>
Z|B)

= d,

In Ising, Z['ree(ﬁ?) == \/§ Zﬁxe(i(j{')

where dual coupling is defined by sinh(2K ) sinh(2K) = 1
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For conformal boundary conditions, this ratio of partition functions is by definition

_ g, = IPuIB)

2\ B) 9| B)

where —1"In g|B) is the subleading term in the free energy, which depends on
boundary condition. This Affleck-Ludwig g-factor is universal, and computable in
CFT once the Cardy boundary states have been identified.

Calculation is much more direct here!

Moreover, gives precise lattice expressions for boundary states.
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For conformal boundary conditions, this ratio of partition functions is by definition

_ 9Dy|B)
2\ B) 9| B)

where —1"In g|B) is the subleading term in the free energy, which depends on
boundary condition. This Affleck-Ludwig g-factor is universal, and computable in
CFT once the Cardy boundary states have been identified.

Calculation is much more direct here!

Moreover, gives precise lattice expressions for boundary states.

For Ising: Yiree _ d, = \/§
Jfixed

For lattice model in the tricritical Ising model universality class: d.. = (] + \/5)/2
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For conformal boundary conditions, this ratio of partition functions is by definition

_ 9Dy|B)
2\ B) 9| B)

where —1"In g|B) is the subleading term in the free energy, which depends on
boundary condition. This Affleck-Ludwig g-factor is universal, and computable in
CFT once the Cardy boundary states have been identified.

Calculation is much more direct here!

Moreover, gives precise lattice expressions for boundary states.

For Ising: Yiree _ d, = \/§
Jfixed

For lattice model in the tricritical Ising model universality class: d.. = (] + \/5)/2
For another model in the same universality class, a different defect: (., = \/z

Both agree with ratios found from CFT by Chim, Affleck
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Branching and fusing

Straightforward to define junctions of these topological defects

{ N -JI R
and show that they obey 53 L= Z jf _;U;

.': ’ ., ) -..
_“V b ‘._ 1‘- »

- ."l i o4 b \, .‘. 7N
e w - WA
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Branching and fusing

Straightforward to define junctions of these topological defects

Pirsa: 18090032 Page 62/74



Useful application 3:
duality and modular transformations on the torus

Use these F-moves to give an easy graphical proof of the Ising relation:
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Useful application 3:
duality and modular transformations on the torus

Use these F-moves to give an easy graphical proof of the Ising relation:

ac

A general basis for the toroidal partition functions is Zb = /sf
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Useful application 3:
duality and modular transformations on the torus

Use these F-moves to give an easy graphical proof of the Ising relation:

_|_

A general basis for the toroidal partition functions is

b

b

i

b

_|_

Z}

ac

1
—

1l

/

/]

+
5:;
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Lattice to CFT

RCFT toroidal partition functions are of the form
AV E X ( ]\[?JX (7)

X (7') are characters of Vlrasoro or some extended algebra.

The category used to build the lattice model is a subcategory of that describing
the chiral operators in the RCFT.

By matching lattice and continuum modular transformations, we conjecture

N\ O )
{ € 2mih a l “y
M*[Z2° ] = —— / ¢
vihecl =, . P
£
\_/ b\
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Useful application 4:
scaling dimensions from Dehn twists

In the presence of twisted boundary conditions (/), the eigenvalues t¢
of the Dehn twist are the related to the shift in momentum quantization:

27‘1’?',73(1)
¢ L = tq‘)
T,
Dehn twist with twisted Y /
Ising boundary conditions /

Pirsa: 18090032 Page 67/74



Duality-twisted boundary conditions

I P
Find
(To)' = VAT, —1,, (T’ =-1,, (T,)'"°=
Thus in CFT expect twist field of chiral dimension i% + é
) y4

This is a completely rigorous and exact lattice calculation.
Only the pictures are schematic.

The CFT identification of course uses the standard assumption that lattice
model scales to continuum field theory. Since Ising at criticality has been

rigorously proven to be Ising CFT, maybe the proof can be extended to
cover these defects and twist operators?
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| mentioned different categories and hence different lattice models give same CFT.

Same category can give different CFTs, by choosing different Boltzmann weights;
some may be integrable, some not. People have studied various phase diagrams, e.g.

odd k even k > 4

su(2) g x5u(2)4
m.c('Zh

. . . anp’
k-parafermions ) ‘Haldane

&,

Au(2) g, oxsu(2)2

su(2)

Vernier, Jacobsen and Saleur

The same topological defects occur throughout the phase diagram. Thus the
same ratios of g-factors and same Dehn twist eigenvalues throughout.

Latter predicts that at any critical point or phase, see SU(2), critical exponents.
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Another useful application : explains peculiar ground-state and kink
degeneracies in perturbed CFTs (integrable in continuum but not on lattice).
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Another useful application : explains peculiar ground-state and kink
degeneracies in perturbed CFTs (integrable in continuum but not on lattice).

Lots of generalisations: orbifold defects, defects between different theories
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Another useful application : explains peculiar ground-state and kink
degeneracies in perturbed CFTs (integrable in continuum but not on lattice).

Lots of generalisations: orbifold defects, defects between different theories

Higher dimensions (a la p-form symmetries) ?

Can terminate defects to make chiral vertex operators, gives nice way of
yielding conserved currents (linear way of finding solution to Yang-Baxter).
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" - -

5+

Smirnov et al
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In all the examples studied, the solution of this linear equation
gives weights solving the YBE!

" - -

5+

-—

Smirnov et al Cardy et al
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