Title: Emergent Hyperbolic Network Geometry and Dynamics

Date: Sep 04, 2018 02:00 PM

URL: http://pirsa.org/18090031

Abstract: Simplicial complexes naturally describe discrete topological spaces. When their links are assigned a length they describe discrete geometries. As such simplicial complexes have been widely used in quantum gravity approaches that involve a discretization of spacetime. Recently they are becoming increasingly popular to describe complex interacting systems such a brain networks or social networks. In this talk we present non-equilibrium statistical mechanics approaches to model large simplicial complexes. We propose the simplicial complex model of Network Geometry with Flavor (NGF), we explore the hyperbolic nature of its emergent geometry and their relation with Tree Tensor Networks. Finally we reveal the rich interplay between Network Geometry with Flavor and dynamics. We investigate the percolation properties of NGF using the renormalization group finding KTP and discontinuous phase transitions depending on the dimensionality simplex. We also comment on the synchronization properties of NGF and the emergence of frustrated synchronization.

Pirsa: 18090031 Page 1/77

Perimeter Institute 4 September 2018

Emergent hyperbolic geometry and dynamics

Ginestra Bianconi

School of Mathematical Sciences, Queen Mary University of London, London, UK

Pirsa: 18090031 Page 2/77

Network theory Tensor Networks A case for convergent evolution?

Pirsa: 18090031 Page 3/77

Network Geometry with Flavor (NGF)

Emergent network geometry (simplicial complexes)

Rich interplay between network geometry and dynamics

Their deterministic version allow for the renormalization group

Pirsa: 18090031 Page 4/77

Outlook of the talk

- Motivation and introduction to Network Theory
- Emergent hyperbolic geometry and dynamics
 - -Network Geometry with Flavor (NGF)
 - -Topological percolation and renormalization group
 - -Localization of modes in NGF and frustrated synchronization

Pirsa: 18090031 Page 5/77

Complex networks

the interactions between the elements of large complex

Biological, Social and Technological systems.

Pirsa: 18090031 Page 6/77

Randomness and order Percolation

p=0.4

Pirsa: 18090031

Randomness and order Random graph

Pirsa: 18090031 Page 8/77

Randomness and order Complex networks

LATTICES COMPLEX NETWORKS RANDOM GRAPHS Scale free networks Small world Totally random With communities Regular networks Binomial degree **ENCODING INFORMATION IN** Symmetric distribution THEIR STRUCTURE

Pirsa: 18090031 Page 9/77

Universalities

• Small-world: $D \propto \log N$

[Watts & Strogatz 1998]

• Scale-free: [Barabasi & Albert 1999]

$$P(k) \propto k^{-\gamma}$$

 $\gamma \in (2,3]$

• Modularity: Local communities of nodes [Fortunato 2010]

Models

Maximum entropy ensembles:

maximum random graphs satisfying a set of constraints -Configuration model, Exponential Random Graphs

Deterministic models:

Hierarchical models

-Apollonian network, Pseudo-fractal network

Non-equilibrium growing network models:

Explanatory of emergent properties of complex networks -BA model, BB model

Pirsa: 18090031 Page 11/77

Networks with given degree sequence

Microcanonical ensemble

Ensemble of network with exact degree sequence

Configuration model

Canonical ensemble

$$P(G) = \frac{1}{\aleph} \prod_{i} \delta(k_i - \sum_{j} a_{ij}) \qquad P(G) = \frac{1}{Z} e^{-\sum_{i} \lambda_i \sum_{j=1..N} a_{ij}} = \prod_{i < j} p_{ij}^{a_{ij}} (1 - p_{ij})^{1 - a_{ij}}$$

Ensemble of networks given expected degree sequence

Exponential Random Graph

Networks with given degree sequence

Microcanonical ensemble

$$P(G) = \frac{1}{\aleph} \prod_{i} \delta(k_i - \sum_{j} a_{ij})$$

Ensemble of network with exact degree sequence

Configuration model

Canonical ensemble

$$P(G) = \frac{1}{\aleph} \prod_{i} \delta(k_i - \sum_{j} a_{ij}) \qquad P(G) = \frac{1}{Z} e^{-\sum_{i} \lambda_i \sum_{j=l,N} a_{ij}} = \prod_{i < j} p_{ij}^{a_{ij}} (1 - p_{ij})^{1 - a_{ij}}$$

Ensemble of networks given expected degree sequence

Exponential Random Graph

Critical phenomena on scale-free networks

Scale free networks:
$$\langle k \rangle$$
 finite $\langle k^2 \rangle \rightarrow \infty$

Percolation:

Percolation threshold

$$p_c = \frac{\langle k \rangle}{\langle k^2 \rangle} \to 0$$

Scale free networks are always percolating

Ising model:

Critical temperature

$$T_c \approx J \frac{\left\langle k^2 \right\rangle}{\left\langle k \right\rangle} \to \infty$$

The Ising model on scale-free networks is always in the ferromagnetic phase

Apollonian networks

Apollonian networks are formed by linking the centers of an Apollonian sphere packing
They are scale-free and are described by the Apollonian group

[Andrade et al. PRL 2005] [Soderberg PRA 1992]

Pirsa: 18090031 Page 15/77

Growth by uniform attachment of links **GROWTH**:

At every timestep we add a new node with *m* edges (connected to the nodes already present in the system).

UNIFORM ATTACHMENT :

The probability Π_i that a new node will be connected to node i is uniform

$$\Pi_i = \frac{1}{N}$$

Exponential

[Barabási & Albert, Physica A (1999)]

(a)

Barabasi-Albert model

GROWTH :

At every timestep we add a new node with *m* edges (connected to the nodes already present in the system).

PREFERENTIAL ATTACHMENT :

The probability $\Pi(\mathbf{k}_i)$ that a new node will be connected to node i depends on the connectivity k_i of that node

$$\Pi(k_i) = \frac{k_i}{\Sigma_j k_j}$$

[Barabási et al. Science (1999)]

Network Topology and Network Geometry

are expected to have impact in a variety of applications,

ranging from

brain research to routing protocols in the Internet

Pirsa: 18090031 Page 18/77

Hyperbolicity & Complex Networks

 Open debate over best measures of curvature for discrete networks

[see for instance recent works of Ollivier, Jost, Yau, Loll]

 Hyperbolic networks have been claimed to allow better navigability of the Internet

[Kleinberg 2007, Boguna et al. 2009]

 Hidden hyperbolic metric is considered often as latent space for network evolution

[Krioukov et al. 2010,Osat,Radicchi 2018]

Pirsa: 18090031 Page 19/77

Simplicial Complexes

Simplicial complexes are characterizing the interaction between two ore more nodes and are formed by nodes, links, triangles, tetrahedra etc.

d=2 simplicial complex

d=3 simplicial complex

Pirsa: 18090031 Page 20/77

Generalized degrees

The generalized degree $k_{d,\delta}(\mu)$ of a δ -face μ in a d-dimensional simplicial complex is given by the number of d-dimensional simplices incident to the δ -face μ .

[Bianconi & Rahmede (2016)]

 $k_{2,0}(\mu)$ Num

Number of triangles incident to the node μ

 $k_{2,l}(\mu)$ incid

Number of triangles incident to the link μ

Pirsa: 18090031 Page 21/77

Generalized degree

The generalized degree $k_{\text{d},\delta}(\mu)$ of a δ -face μ in a d-dimensional simplicial complex is given by the number of d-dimensional simplices incident to the δ -face μ .

i	k _{2,0} (
1	3
2	1
2 3 4	4
4	1
5	2
6	1

(i , j)	$\mathbf{k}_{2,1}(i,j)$
(1,2)	1
(1,3)	3
(1,4)	1
(1,5)	1
(2,3)	1
(3,4)	1
(3,5)	2
(3,6)	1
(5,6)	1

Pirsa: 18090031 Page 22/77

Manifolds

If n_{μ} takes only values n_{μ} =0,1 each (d-1)-face is incident at most to two d-dimensional simplices.

In this case the simplicial complex is a discrete manifold.

Pirsa: 18090031 Page 23/77

Network Geometry with Flavor

Starting from a single d-dimensional simplex

GROWTH:

At every timestep we add a new d simplex (formed by one new node and an existing (d-1)-face).

ATTACHMENT:

The probability that a new node will be connected to a face μ depends on the flavor s=-1,0,1 and is given by

CODE AVAILABLE AT GITHUB PAGE

$$\Pi_{\mu}^{[s]} = \frac{1 + sn_{\mu}}{\sum_{\mu'} (1 + sn_{\mu'})}$$

[Bianconi & Rahmede (2016)]

ginestrab

Attachment probability

$$\Pi_{\mu}^{[s]} = \frac{(1+s n_{\mu})}{\sum_{\mu' \in Q_{d,d-l}} (1+s n_{\mu'})} = \begin{cases} \frac{(1-n_{\mu})}{Z^{[-l]}}, & s = -1\\ \frac{1}{Z^{[0]}}, & s = 0\\ \frac{k_{\mu}}{Z^{[l]}}, & s = 1 \end{cases}$$

s=-1 Manifold

s=0 Uniform attachment

s=1 Preferential attachment

 n_{μ} =0,1 n_{μ} =0,1,2,3,4... n_{μ} =0,1,2,3,4...

Dimension d=1

Pirsa: 18090031 Page 26/77

Pirsa: 18090031 Page 27/77

Pirsa: 18090031 Page 28/77

Effective preferential attachment in d=3

t=3

Node i has generalized degree 3

Node i is incident to 5 unsaturated faces

Node i has generalized degree 4

Node i is incident to 6 unsaturated faces

Pirsa: 18090031 Page 29/77

Degree distribution

For d+s=1

$$P_d(k) = \left(\frac{d}{d+1}\right)^{k-d} \frac{1}{d+1}$$

For d+s>1

$$P_d(k) = \frac{d+s}{2d+s} \frac{\Gamma(1 + (2s+s)(d+s-1))}{\Gamma(d/(d+s-1))} \frac{\Gamma(k-d+d/(d+s-1))}{\Gamma(k-d+(2d+s)(d+s-1))}$$

NGF are always scale-free for d>1-s

- For s=1 NGF are always scale free
- For s=0 and d>1 the NGF are scale-free
- For s=-1 and d>2 the NGF are scale-free

Pirsa: 18090031 Page 30/77

Degree distribution of NGF

Pirsa: 18090031 Page 31/77

Generalized degree distributions

flavor	s = -1	s = 0	s = 1
$\delta = d - 1$	Bimodal	Exponential	Power-law
$\delta = d - 2$	Exponential	Power-law	Power-law
$\delta \le d - 3$	Power-law	Power-law	Power-law

The power-law generalized degree distribution are scale-free for

$$d \ge d_c^{[\delta,s]} = 2(\delta+1) + s$$

Pirsa: 18090031 Page 32/77

Emergent Hyperbolic geometry

The emergent hidden geometry is the hyperbolic H^d space Here all the links have equal length

d=2

Pirsa: 18090031 Page 33/77

Pirsa: 18090031 Page 34/77

Pirsa: 18090031 Page 35/77

Connection with the Apollonian network

Pirsa: 18090031 Page 36/77

The Dual of the NGF with s=-1 is a tree of branching ratio d

- To every d-simplex we associate a node of the dual
- To every (d-1)-face shared by two d-simplicies we associate a link

Pirsa: 18090031 Page 37/77

Pirsa: 18090031 Page 38/77

Non-equilibrium Topological phase transitions can occur if (d-1)-faces are not choosen randomly

G. Bianconi Rahmede Scientific Reports (2017)

Pirsa: 18090031 Page 39/77

Energies of the nodes

Not all the nodes are the same!

Let assign to each node i

an energy & from a

 $g(\epsilon)$ distribution

Pirsa: 18090031 Page 40/77

Network Geometry with Flavor

Starting from a single d-dimensional simplex

GROWTH:

At every timestep we add a new node d simplex

(formed by one new node and an existing (d-1)-face).

The new node has energy ε drawn from the distribution $g(\varepsilon)$

ATTACHMENT:

The probability that a new node will be connected to a face μ depends on the flavor s=-1,0,1 and is given by

$$\Pi_{\mu}^{[s]} = \frac{e^{-\beta \varepsilon_{\mu}} (1 + s n_{\mu})}{\sum_{\mu'} e^{-\beta \varepsilon_{\mu'}} (1 + s n_{\mu'})}$$

Bianconi & Rahmede (2016)

Pirsa: 18090031 Page 41/77

d=2 $\beta=0.01$

Pirsa: 18090031 Page 42/77

Pirsa: 18090031 Page 43/77

Emergent geometry at low temperature

d=3 $\beta=5$

Pirsa: 18090031 Page 44/77

Transition: Diameter

Pirsa: 18090031 Page 45/77

Pirsa: 18090031 Page 46/77

Topological damage

On networks

damage can occur only

on nodes or on links.

On simplicial complexes

topological damage can be directed also

to higher dimensional simplicies,

such as

triangles, tetrahedra etc.

Pirsa: 18090031 Page 47/77

Topological percolation

On d=2 simplicial complexes we distinguish 4 types of topological percolation problems:

Link percolation: Links are removed with probability q=1-p.

Nodes are connected to nodes through intact links

Triangle percolation: Triangles are removed with probability q=1-p.

Links are connected to links through intact triangles.

Node percolation: Nodess are removed with probability q=1-p.

Links are connected to links through intact nodes

Upper link percolation: Links are removed with probability q=1-p.

Triangles are connected to triangles though intact links

On d=3 simplicial complexes we distinguish 6 types of topological percolation problems:

Link percolation, Triangle percolation, tetrahedron percolation Node percolation, upper link percolation, Upper triangle percolation

[Bianconi and Ziff 2018]

Pirsa: 18090031 Page 48/77

Hyperbolic Simplicial complexes

d=2 HYPERBOLIC SIMPLICIAL COMPLEX

We start from a link.
At each iteration we glue a triangle to any link added at the previous iteration

d=3 HYPERBOLIC SIMPLICIAL COMPLEX

We start from a triangle.

At each iteration we glue a tetrahedron to any triangle added at the previous iteration

Pirsa: 18090031 Page 49/77

The d=3 Hyperbolic Simplical Complex

At the level of the network skeleton the d=3 Hyperbolic Simplicial Complex reduces to the Apollonian network

Pirsa: 18090031 Page 50/77

The line graph of the Apollonian network is the Sierpinski gasket

Pirsa: 18090031 Page 51/77

The line graph of the d=3 Hyperbolic Simplicial Complex is the multiplex Sierpinski gasket

Pirsa: 18090031 Page 52/77

Percolation in hyperbolic networks

Percolation in hyperbolic networks is known to have two percolation thresholds p^I and p^U.

- For p<p^I no infinite cluster exist
- For p^I<p<p^u the maximum cluster is infinite but sub-extensive
- For p>p^u the maximum cluster is extensive

Pirsa: 18090031 Page 53/77

Topological percolation for d=2 hyperbolic simplicial complex

d=2	p ^l	p ^u	
Link percolation	0	1/2	Discontinuous: non trivial
Triangle percolation	1/2	1	Discontinuous: trivial
Node percolation	0	1	Discontinuous: trivial
Upper link percolation	1/2	1	Discontinuous: trivial

All transitions are discontinuous. Only link percolation is non-trivial

[Bianconi and Ziff 2018]

Pirsa: 18090031 Page 54/77

Topological percolation for d=3 hyperbolic simplicial complex

d=3	pl	p ^u	
Link percolation	N/A	0	Continuous: Typical Scale-free network scaling
Triangle percolation	0	0.307981	Continuous: BKT transition
Tetrahedron percolation	1/3	1	Discontinuous: Trivial
Node percolation	0	1	Discontinuous: Trivial
Upper link percolation	0	1	Discontinuous: Trivial
Upper triangle percolation	1/3	1	Discontinuous: Trivial

[Bianconi and Ziff 2018]

Pirsa: 18090031 Page 55/77

Comments

Nodes and link percolation cannot be used to predict the other topological percolation problems

- In d=2 Hyperbolic simplicial complex all transitions are discontinuous while in d=3 link and triangle percolation are continuous
- Link percolation in d=2 displays a non trivial discontinuous transition while no such transition is observed in d=3
- Triangle percolation in d=3 is a BKT transition while no such transition is observed in d=2

Pirsa: 18090031 Page 56/77

Link percolation in d=2 hyperbolic simplicial complex

The probability T_{n+1} that the two initial nodes are connected at iteration n+1 is given by the RG equation

[Boettcher, Singh, Ziff 2012]

$$T_{n+1} = p + (1-p)T_n^2$$

+

A RG study of the generating functions show that the upper percolation transition Is discontinuous at p=0.5 and non-trivial.

Pirsa: 18090031 Page 57/77

Triangle percolation for the d=3 hyperbolic simplicial complex

The order parameter is the fraction of links connected to the initial three links through intact triangles

Pirsa: 18090031 Page 58/77

The RG equations

The probability T_{n+1} , S_{n+1} , W_{n+1} that three, two or none of the initial links are connected at iteration n+1 is given by the RG equation

$$T_{n+1} = p + (1-p)(T_n^3 + 6T_n^2 S_n + 3T_n S_n^2)$$

$$S_{n+1} = (1-p)[T_n^2 (S_n + W_n) + T_n S_n (7S_n + 2W_n) + S_n^2 (4S_n + W_n)]$$

$$W_{n+1} = 1 - T_{n+1} - 3S_{n+1}$$

The RG equations can be written down diagramatically using the multiplex Sierpinski gasket

[Bianconi and Ziff 2018]

Pirsa: 18090031 Page 59/77

Berezinskii-Kosterlitz-Thouless transition

Triangle percolation on the d=3 hyperbolic simplicial complex undergoes a BKT transition with the order parameter scaling like

$$M_{\infty} \propto \exp(-A/|\Delta p|^{\sigma}) \quad \sigma = 1/2$$

[Bianconi and Ziff 2018]

Pirsa: 18090031 Page 60/77

Complex Network Manifolds (NGF with s=-1) and Frustrated Synchronization

Pirsa: 18090031 Page 61/77

Holography of Complex Network Manifolds

d-dimensional Complex Network Manifolds can be interpreted as D-dimensional manifolds with D=d-1

Pirsa: 18090031 Page 62/77

Spectral dimensions of Complex Network Manifolds

$$L_{ij} = \delta_{ij} - \frac{a_{ij}}{k_i}$$
$$\rho_c(\lambda) \approx \lambda^{-d_s/2}$$

Complex Network Manifolds have finite spectral dimension with

$$d_{s} \approx d \text{ for } d = 2,3,4$$

Localization of the eigenvectors

The participation ratio evaluates the effective number of nodes on which an eigenmode is localized

$$Y_{\lambda} = \left[\sum_{i=1}^{N} \left(u_{i}^{\lambda} v_{i}^{\lambda}\right)^{2}\right]^{-1}$$

A large number of eigenmodes are localized

Pirsa: 18090031 Page 64/77

The Kuramoto model

We consider the Kuramoto model

$$\frac{d\vartheta_{i}}{dt} = \omega_{i} + \sigma \sum_{j=1}^{N} \frac{a_{ij}}{k_{i}} \sin(\vartheta_{j} - \vartheta_{i})$$

where ω_i is the internal frequency of node i drawn randomly from a Gaussian distribution The global order parameter is

$$R = \frac{1}{N} \sum_{j=1}^{N} e^{i\vartheta_{j}}$$

Pirsa: 18090031 Page 65/77

Kuramoto Model

In an infinite fully connected network we have

Pirsa: 18090031 Page 66/77

Frustrated synchronization

Pirsa: 18090031 Page 67/77

Finite size effects

N=100,200,400,800,1600,3200

The finite size effects are less pronounced in larger dimensions

Pirsa: 18090031 Page 68/77

Fully synchronized phase and the spectral dimension

The fully synchronized phase is not thermodynamically achieved for networks with spectral dimension

$$d_s \leq 4$$

In Complex Network Manifolds with D=3 the fully synchronized state is marginally stable

Pirsa: 18090031 Page 69/77

Communities and Frustrated Synchronization

Pirsa: 18090031 Page 70/77

Frustrated synchronization and community structure

For every community with n_c nodes we can define the local order parameter

$$Z_{\text{mod}} = R_{\text{mod}} e^{i\psi_{\text{mod}}} = \frac{1}{n_C} \sum_{j \in C}^{N} e^{i\vartheta_j}$$

Pirsa: 18090031 Page 71/77

Frustrated synchronization and community structure

For every community with n_c nodes we can define the local order parameter

$$Z_{\text{mod}} = R_{\text{mod}} e^{i\psi_{\text{mod}}} = \frac{1}{n_C} \sum_{j \in C}^{N} e^{i\vartheta_j}$$

Pirsa: 18090031 Page 72/77

Communities and Frustrated Synchronization

Pirsa: 18090031 Page 73/77

Correlations among communities and network coarse graining

N=1000, d=3, σ =5

Pirsa: 18090031 Page 74/77

Conclusions

Network Geometry with Flavor
provides a fundamental mechanism
for emergent hyperbolic network geometry
and and ideal framework to investigate the relation
between
Network Geometry and Dynamics

We have found significant effects of the dimensionality and the hyperbolicity of of the simplicial complexes

- degree distribution of the NGF
- critical properties of topological percolation
- stability of the synchronized state

Pirsa: 18090031 Page 75/77

Collaborators and References

Emergent network geometry

- G. Bianconi C. Rahmede Network geometry with flavor PRE 93, 032315 (2016)
- G.Bianconi and C. Rahmede Emergent hyperbolic network geometry Scientific Reports 7, 41974 (2017)
- Z. Wu, G. Menichetti, C. Rahmede and G. Bianconi Scientific Reports 5, 10073 (2015).
- G. Bianconi and C. Rahmede Scientific Reports 5, 13979 (2015)
- O. T. Courtney and G. Bianconi PRE 95, 062301 (2017)
- D. Mulder and G. Bianconi Jour. Stat. Phys. (2018)

Frustrated synchronization in Complex Network Manifolds

A.P. Millan, J. Torres and G. Bianconi Scientific Reports 8, 9910 (2018)

Topological percolation of hyperbolic simplicial complexes

G. Bianconi and R. M. Ziff arxiv:1808.05836 (2018)

CODES AVAILABLE AT GITHUB PAGE

ginestrab

Pirsa: 18090031 Page 76/77

Pirsa: 18090031