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Abstract: <p>Simplicial complexes naturally describe discrete topological spaces. When their links are assigned a length they describe discrete
geometries. As such simplicial complexes have been widely used in quantum gravity approaches that involve a discretization of spacetime. Recently
they are becoming increasingly popular to describe complex interacting systems such a brain networks or social networks. In this talk we present
non-equilibrium statistical mechanics approaches to model large simplicial complexes. We propose the simplicial complex model of Network
Geometry with Flavor (NGF), we explore the hyperbolic nature of its emergent geometry and their relation with Tree Tensor Networks. Finally we
reveal the rich interplay between Network Geometry with Flavor and dynamics. We investigate the percolation properties of NGF using the
renormalization group finding KTP and discontinuous phase transitions depending on the dimensionality simplex. We also comment on the
synchronization properties of NGF and the emergence of frustrated synchronization.</p>
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Network theory
Tensor Networks
A case for convergent evolution?
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Network Geometry with Flavor (NGF)

Emergent network geometry (simplicial complexes)

Rich interplay between network geometry and dynamics

Their deterministic version allow for the renormalization group
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Outlook of the talk

 Motivation and introduction to Network Theory

* Emergent hyperbolic geometry and dynamics
-Network Geometry with Flavor (NGF)
-Topological percolation and renormalization group

-Localization of modes in NGF and frustrated synchronization
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Complex networks
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describe

the interactions between the elements of large complex

Biological, Social and Technological systems.
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Randomness and order
Percolation
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Randomness and order
Random graph
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Randomness and order
Complex networks

LATTICES COMPLEX NETWORKS RANDOM GRAPHS
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Scale free networks

_ Small worlq _ Totally random
Regular networks With communities Binomial degree
Symmetric ENCODING INFORMATION IN

distribution
THEIR STRUCTURE
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Universalities

 Small-world:

[Watts & Strogatz 1998]

* Scale-free:
[Barabasi & Albert 1999]

P(k) o« k™
y €(2,5]

* Modula rlty Local communities of nodes
[Fortunato 2010]

D x log N
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Models

* Maximum entropy ensembles:

maximum random graphs satisfying a set of constraints
-Configuration model, Exponential Random Graphs

 Deterministic models:
Hierarchical models

-Apollonian network, Pseudo-fractal network
* Non-equilibrium growing network models:

Explanatory of emergent properties of complex networks
-BA model, BB model
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Networks with given degree
sequence

Microcanonical ensemble Canonical ensemble
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Networks with given degree
sequence

Microcanonical ensemble Canonical ensemble
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Critical phenomena on scale-free

networks
Scale free networks: (k) finite  (k’) =
* Percolation: 0
Percolation threshold P.= <k2> —0

Scale free networks are always percolating

» Ising model: i)
Critical temperature I = JW —> 00

The Ising model on scale-free networks
is always in the ferromagnetic phase
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Apollonian networks

Apollonian networks are formed by linking the
centers of an Apollonian sphere packing
They are scale-free and are described by the Apollonian group

P,

[Andrade et al. PRL 2005]
[Soderberg PRA 1992]
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Growth by uniform attachment of links
GROWTH

At every timestep we add a new node with m edges
(connected to the nodes already present in the system).

UNIFORM ATTACHMENT

The probability I1, that a new node will be connected to
Exponential

1
I, =—
N

node i is uniform

P(k)

[Barabasi & Albert, Physica A (1999)]
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Barabasi-Albert model
GROWTH

At every timestep we add a new node with m edges
(connected to the nodes already present in the system).

PREFERENTIAL ATTACHMENT (k) = k,
The probability I1(k;) that a new node will be connected L) = Sk
to node / depends on the connectivity k; of that node 7

" P(K) ~k3

[ Y I 3
10 10 10 10
k

[Barabasi et al. Science (1999)]
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Network Topology and Network Geometry

are expected to have impact in a variety of applications,
ranging from

brain research to routing protocols in the Internet
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Hyperbolicity & Complex Networks

* Open debate over best measures of curvature
for discrete networks

[see for instance recent works of Ollivier,Jost,Yau,Loll]

* Hyperbolic networks have been claimed to
allow better navigability of the Internet

[Kleinberg 2007, Boguna et al. 2009]

* Hidden hyperbolic metric is considered often

as latent space for network evolution
[Krioukov et al. 2010,0sat,Radicchi 2018]
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Simplicial Complexes

Simplicial complexes are characterizing the
interaction between two ore more nodes and

are formed by nodes, links, triangles,
tetrahedra etc.

d=2 simplicial complex d=3 simplicial complex
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Generalized degrees

The generalized degree k, (u) of a o-face u
in a d-dimensional simplicial complex is given by the number of
d-dimensional simplices incident to the o-face .

k, ) ( ‘Ll,) !\Iurnber of triangles
-’ incident to the node u

| Number of triangles
kz.l ( ‘u) incident to the link u

[Bianconi & Rahmede (2016)]
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Generalized degree

The generalized degree k; ;(u) of a 0-face u
in a d-dimensional simplicial complex is given by the number of
d-dimensional simplices incident to the o-face u.

, i | k0 W) | Ky, (i)
1 1|3 (1,2) | 1
2 |1 1,3 | 3
5 4 3| 4 (14 | 1
4 1 (1,5) 1
5 | 2 2,3 | 1
3 6 1 (3,4) 1
35 | 2
6 36 | 1
5.6 | 1
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Manifolds

If n, takes only values n,=0,1 each (d-1)-face is incident
at most to two d-dimensional simplices.

In this case the simplicial complex is a discrete
manifold.

6 6
NOT A MANIFOLD MANIFOLD
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Network Geometry with Flavor

Starting from a single d-dimensional simplex

GROWTH

At every timestep we add a new d simplex

(formed by one new node and an existing (d-1)-face).

ATTACHMENT:

The probability that a new node will be connected to a face u depends

on the flavor s=-1,0,1 and is given by
2
1

3

[Bianconi & Rahmede (2016)]

6 CODE AVAILABLE AT GITHUB PAGE O ginestrab
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Attachment probability

(1- ”;u)
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s=-1 Manifold
s=0 Uniform attachment
s=1 Preferential attachment
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Dimension d=1

Manifold Uniform attachment Preferential attachment
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Dimension d=2

Manifold Uniform attachment Preferential attachment
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Dimension d=3

Manifold Uniform attachment Preferential attachment

Scale-free Scale-free Scale-free
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Effective preferential attachment in
d=3

t=3 t=4
' ®
(]
®
i & :
Node i has generalized degree 3 Node i has generalized degree 4
Node i is incident to 5 unsaturated faces Node i is incident to 6 unsaturated faces
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Degree distribution

For d+s=1
/

P(k)—( ¢ )H
G Ndv 1] d+ ]

For d+s>1

d+s I'(I+2s+s)d+s-1) I(k-d+d/I(d+s-1))
2d + s I'(d/I(d+s-1)) I'(k=-d+Q2d+s)(d+s-1))

Pd(k) =

NGF are always scale-free for d>1-s

* For s=1 NGF are always scale free
* For s=0 and d>1 the NGF are scale-free
* For s=-1 and d>2 the NGF are scale-free
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Degree distribution of NGF
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Generalized degree distributions

flavor § = — s =10 s =1

0 =d— 1 Bimodal Exponential Power-law

0 = d — 2 Exponential Power-law  Power-law

0 < d— 3 Power-law Power-law  Power-law

The power-law
generalized degree distribution
are scale-free for

d=d°" =200+ +s
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Connection with the Apollonian network
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The Dual of the NGF with s=-1
is a tree of branching ratio d
* To every d-simplex

we associate a node
of the dual

* To every (d-1)-face
shared by two

d-simplicies we
associate a link
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The relation to
Trees

Line graph of the Apollonian network  Line graph of the NGF
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Non-equilibrium
Topological phase transitions

can occur if (d-1)-faces are not
choosen randomly

G. Bianconi Rahmede Scientific Reports (2017)
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Energies
of the nodes

Not all the nodes are the
samel

O
Let assign to each node i '.
O
(&2

an energy € from a "

g(e) distribution
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Network Geometry with Flavor

Starting from a single d-dimensional simplex

GROWTH

At every timestep we add a new node d simplex
(formed by one new node and an existing (d-1)-face).

The new node has energy ¢ drawn from the distribution g(e)

ATTACHMENT :

The probability that a new node will be connected to a face u depends
on the flavor s=-1,0,1 and is given by

e (1+sn,)

2
1
— HLA] _ u
5 \7/4' 1 Ee_ﬁg “(1+sn,)
"
3

Bianconi & Rahmede (2016)

6
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D

Transition: Diameter
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[Bianconi, Rahmede, Wu (2015)]
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Topological percolation
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Topological damage

On networks
damage can occur only
on nodes or on links.

On simplicial complexes
topological damage can be directed also
to higher dimensional simplicies,
such as
triangles, tetrahedra etc.
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Topological percolation

On d=2 simplicial complexes we distinguish
4 types of topological percolation problems:

Link percolation: Links are removed with probability g=1-p.
Nodes are connected to nodes through intact links
Triangle percolation: Triangles are removed with probability g=1-p.
Links are connected to links through intact triangles.
Node percolation: Nodess are removed with probability g=1-p.
Links are connected to links through intact nodes
Upper link percolation: Links are removed with probability g=1-p.
Triangles are connected to triangles though intact links

On d=3 simplicial complexes we distinguish

6 types of topological percolation problems:
Link percolation, Triangle percolation, tetrahedron percolation
Node percolation, upper link percolation, Upper triangle percolation

[Bianconi and Ziff 2018]
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Hyperbolic Simplicial complexes

d=2 HYPERBOLIC SIMPLICIAL COMPLEX

We start from a link.
At each iteration we glue a triangle
to any link added at the previous iteration

d=3 HYPERBOLIC SIMPLICIAL COMPLEX

We start from a triangle.

At each iteration we glue a tetrahedron
to any triangle added at the previous
iteration
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The d=3 Hyperbolic Simplical Complex

At the level of the network skeleton
the d=3 Hyperbolic Simplicial Complex
reduces to the Apollonian network

\ 4
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The line graph of the Apollonian
network
is the Sierpinski gasket

4

[Bianconi and Ziff 2018]
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The line graph of the d=3 Hyperbolic
Simplicial Complex
is the multiplex Sierpinski gasket

(b)

444
Db
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Percolation in hyperbolic networks

Percolation in hyperbolic networks is known to
have two percolation thresholds p' and pV.

— For p<p' no infinite cluster exist

— For p'<p<p the maximum cluster is infinite but
sub-extensive

— For p>p" the maximum cluster is extensive

Page 53/77



Topological percolation for d=2
hyperbolic simplicial complex

Link percolation 0 1/2 Discontinuous: non
trivial

Triangle percolation 1/2 I Discontinuous:
trivial

Node percolation 0 1 Discontinuous:
trivial

Upper link 1/2 1 Discontinuous:

percolation trivial

All transitions are discontinuous. Only link percolation is non-trivial

[Bianconi and Ziff 20181
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Topological percolation for d=3
hyperbolic simplicial complex

Link percolation N/A

Triangle percolation 0

Tetrahedron 1/3
percolation

Node percolation 0
Upper link 0
percolation

Upper triangle 1/3
percolation

0.307981...

Continuous: Typical
Scale-free network
scaling

Continuous: BKT
transition

Discontinuous:
Trivial

Discontinuous:
Trivial

Discontinuous:
Trivial

Discontinuous:
Trivial

[Bianconi and Ziff 2018]
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Comments

Nodes and link percolation
cannot be used to predict

the other topological percolation problems

In d=2 Hyperbolic simplicial complex all transitions are
discontinuous while in d=3 link and triangle percolation are
continuous

Link percolation in d=2 displays a non trivial discontinuous
transition while no such transition is observed in d=3

Triangle percolation in d=3 is a BKT transition while no such
transition is observed in d=2
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Link percolation in d=2 hyperbolic
simplicial complex

The probability T ,,that the two initial nodes
are connected at iteration n+1 is given by the RG
equation

T;H/ = p+(]_p)7:12

[Boettcher,Singh, Ziff 2012]

A RG study of the generating functions show
that the upper percolation transition ey
Is discontinuous at p=0.5 and non-trivial. 02
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Triangle percolation for the d=3
hyperbolic simplicial complex

The order parameter is the fraction of links
connected to the initial three links through intact triangles

N /\ ]
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The RG equations

The probability T ,,, S,.,1, W, that
three, two or none of the initial links
are connected at iteration n+1 is given by the RG
equation

=p+U-pUT’ +6T’S +3TS7)

n n

T

n+1

S ., =0- ;;;)[7:,"(3“ +W )+T S (7S, +2W,) + S,‘:(4SH +W, )]

H/HH’ = ]-7—:”! _-3S‘n+.f
The RG equations can be written -
down oA A A
diagramatically = * R S
using the multiplex Sierpinski
gasket

(a) (b) (<) (d) (e)

[Bianconi and Ziff 2018]
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Berezinskii-Kosterlitz-Thouless
transition

Triangle percolation on the d=3 hyperbolic simplicial complex
undergoes a BKT transition
with the order parameter scaling like

M, <exp(-A/14pl") o=1/2

Ap [Bianconi and Ziff 2018]
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Complex Network Manifolds
(NGF with s=-1)
and
Frustrated Synchronization
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Holography of Complex Network
Manifolds

d-dimensional Complex Network Manifolds can

be interpreted as D-dimensional manifolds with
D=d-1
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Spectral dimensions of
Complex Network Manifolds

1
10!
< = 0. — “j
E 102 9/ 17 k‘;
2 —d /2
10° 3 P.(A) = A
4
a

0' . 1 . 1
10“% 102 102 10! 1 10
A

Complex Network Manifolds have finite spectral dimension with

d,=d ford=2,3,4
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Localization of the eigenvectors

The participation ratio
evaluates the effective

number of nodes on which an
eigenmode is localized

vo= |3 Gy ]

I

==/

A large number of eigenmodes are localized
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The Kuramoto model

We consider the Kuramoto model

ﬂ-a) +02% i (1) —1))

where . is the internal frequency of node i
drawn randomly from a Gaussian distribution

The global order parameter is

R = i% 1Y
= N €

J=1
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Kuramoto Model

In an infinite fully connected network we have

R
1
Synchronized
phase
0

Gc O
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Frustrated synchronization
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Finite size effects
d=3

m /’——

(8 4

o

0 50-10 15

N=100,200,400,800,1600,3200

The finite size effects are less pronounced in larger dimensions
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Fully synchronized phase
and the spectral dimension

The fully synchronized phase is not
thermodynamically achieved

for networks with spectral dimension

d <4

\

In Complex Network Manifolds with D=3
the fully synchronized state is marginally stable

irsa: 18090031 Page 69/77



Pirsa: 18090031

Communities and
Frustrated Synchronization
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Frustrated synchronization and
community structure

d=2

T —

For every community with n. nodes we can define
the local order parameter

! N
j— h}'nmd . — “‘}f
Zmod - Rmude - 7 Z :(3

C jecC
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Frustrated synchronization and
community structure

d=2

S ———

For every community with n. nodes we can define
the local order parameter

! N
— {q'nmd - e—— “‘}f
Zmod - Rmude - n Z :e

C jecC
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Communities and

Frustrated Synchronization
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Correlations among communities
and
network coarse graining

C
80 — —— — -
R e W
70 S — 8
) .
50 : el ﬂ i I 0.6

communities
= w
[=] o
EE——g
FE————
o
=9

N=1000, d=3, 0=5
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Conclusions

Network Geometry with Flavor
provides a fundamental mechanism
for emergent hyperbolic network geometry
and and ideal framework to investigate the relation
between

Network Geometry and Dynamics

We have found
significant effects of the

dimensionality and the hyperbolicity of of the simplicial complexes

— degree distribution of the NGF
— critical properties of topological percolation

— stability of the synchronized state
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