Title: An Adventure in Topological Phase Transitions in 3 + 1-D: Non-abelian Deconfined Quantum Criticalities and a Possible Duality

Date: Aug 28, 2018 03:30 PM

URL: http://pirsa.org/18080085

Abstract: I will present recent results (with Zhen Bi) on novel quantum criticality and a possible field theory duality in 3+1 spacetime dimensions. We describe several examples of Deconfined Quantum Critical Points (DQCP) between Symmetry Protected Topological phases in 3 + 1-D. We present situations in which the same phase transition allows for multiple universality classes controlled by distinct fixed points. We exhibit the possibility - which we dub "unnecessary quantum critical points― - of stable generic continuous phase transitions within the same phase. We present examples of interaction driven band-theory- forbidden continuous phase transitions between two distinct band insulators. The understanding we develop leads us to suggest an interesting possible 3 + 1-D field theory duality between SU(2) gauge theory coupled to one massless adjoint Dirac fermion and the theory of a single massless Dirac fermion augmented by a decoupled topological field theory.

Pirsa: 18080085

Quantum criticality in condensed matter/field theory

Our intuition for what kinds of continuous quantum phase transitions are possible and their description is very poor.

Quantum Landau-Ginzburg-Wilson (LGW) theory of fluctuating order parameter

Pirsa: 18080085

Quantum criticality beyond the Landau paradigm

Eg: 1. One or both phases have non-Landau order

2. Landau-forbidden continuous transitions between Landau allowed phases

TS, Vishwanath, Balents, Fisher, Sachdev, 2004

Eg: Neel - valence bond solid state in square lattice antiferromagnets.

Deconfined quantum criticality

TS, Vishwanath, Balents, Fisher, Sachdev, 2004

Emergence of field theory in terms of 'deconfined' degrees of freedom between two phases with conventional 'confined' excitations.

Eg: Neel - valence bond solid state in square lattice antiferromagnets.

Many other proposed examples by now in 2+1-D.

Very similar (sometimes equivalent) theories emerge for critical points between trivial and Symmetry Protected Topological (SPT) phases in 2+1 dimensions.

- related by web of dualities discussed in recent years (Wang, Nahum, Melitski, Xu, TS, 17).

Pirsa: 18080085 Page 4/38

This talk

(Zhen Bi, TS, arXiv, 1808:07465)

A number of surprising quantum critical phenomena (no or few previous prior examples)

- 1. Deconfined quantum criticality in 3+1-dimensions
- 2. Phase transitions described by multiple universality classes

3. Unnecessary continuous phase transitions

4. Band-theory-forbidden quantum criticality between band insulators

Bonus: A striking possible duality of fermions in 3 + 1-D.

Outline

Focus on theories in 3+1-D.

I. Preliminaries: the free Dirac fermion

Pirsa: 18080085

Outline

Focus on theories in 3+1-D.

- I. Preliminaries: the free Dirac fermion
- 2. Massless SU(2) Yang-Mills theory with matter: interpretation as deconfined quantum critical points
 - some generalizations

Pirsa: 18080085 Page 7/38

Outline

Focus on theories in 3+1-D.

- I. Preliminaries: the free Dirac fermion
- 2. Massless SU(2) Yang-Mills theory with matter: interpretation as deconfined quantum critical points
 - some generalizations
- 3. Possible duality in 3+1-D

A gauge theory

A free theory + a gapped TQFT

Similar example in 2+1-D: Gomis, Komargodski, Seiberg, 2017

Pirsa: 18080085 Page 8/38

Free Dirac fermion in 3+1-D

$$\mathcal{L} = ar{\psi} \left(-i \partial \hspace{-0.1cm} / + A \right) \psi +$$
external background U(I) gauge field(*)

4-component fermion

Also allow

- (1) a mass term $m\bar{\psi}\psi$
- (2) placing on arbitrary smooth oriented space-time manifold with metric g.

Symmetries: U(1) x T

Charge conservation Time reversal

With this choice of T, electric charge is T-reversal odd (could also have made the more standard choice).

(*) Strictly speaking, A is a Spinc connection.

The massless Dirac fermion as a quantum critical point

As sign of mass is changed there is a phase transition between a trivial insulator and a topological insulator of these fermions at m = 0.

Understand

- (i) Physical: Study spatial domain wall between the 2 phases
- (ii) Formal: Derive change (between two signs of m) in theta term in response to background gauge fields (A,g).

Pirsa: 18080085 Page 10/38

Sketch of the formal derivation

Similar methods powerful to derive all the results in the more complex examples studied later in the talk.

See, eg, recent review: Witten RMP 2016

Partition function of free Dirac fermion of mass m

$$Z[m; A, g] = det(D + m) = \prod_{i} (i\lambda_i + m)$$

 $(\lambda_i \text{ are eigenvalues of Hermitian Dirac operator } -iD.)$

Ratio of partition functions
$$\frac{Z[m]}{Z[-m]} = \frac{\prod_i (i\lambda_i + m)}{\prod_i (i\lambda_i - m)}$$

All non-zero eigenvalues cancel out and

$$\frac{Z[m]}{Z[-m]} = (-1)^J$$
 J = index of Dirac operator -iD = topological invariant

By Atiyah-Singer index theorem, this gives the right $\theta = \pi$ response for one sign of mass relative to other.

Comments on the massless point

Massless Dirac theory has more symmetries than massive case.

Eg: chiral rotation of the two Weyl fermions

We regard them as emergent - they survive in the IR when weak interactions are added.

These emergent symmetries are anomalous ('t Hooft anomalies).

Pirsa: 18080085 Page 12/38

A simple generalization

N free Dirac fermions = 2N free Majorana fermions

Symmetry $SO(2N) \times T$.

Taking m < 0 theory to be trivial, the m > 0 theory has a calculable theta term for background SO(2N) gauge field and metric g.

Massless point: quantum criticality of trivial-topological phase of fermions with SO(2N) XT symmetry.

Pirsa: 18080085 Page 13/38

SU(2) gauge theory with matter

Consider theories with N_f flavors of fermionic matter fields.

Two distinct cases.

- (i) matter fields in fundamental (S = 1/2) representation
- (ii) matter fields in adjoint (S = I) representation

These are very different theories!

Pirsa: 18080085 Page 14/38

SU(2) gauge theory with fundamental matter

$$\mathcal{L} = \bar{\psi} \left(-i \gamma^\mu (\partial_\mu - i a_\mu) + m \right) \psi + \frac{1}{2g^2} tr \left(f_{\mu\nu}^2 \right)$$
 SU(2) gauge field

Despite appearances, this is a theory of bosons!

All local operators (baryons, mesons,...) are bosonic.

 N_f flavors: can show theory has global symmetry $\frac{Sp(N_f)}{Z_2} \times T$.

View this gauge theory as the IR description of some UV system of interacting gauge-invariant bosons with this global symmetry.

(Also: other discrete symmetries C, P)

Some well known properties

Asymptotically free (in ``UV" limit of continuum field theory)

Upper boundary of conformal window known from perturbative RG. Lower boundary: many numerical studies, controversial.

Though the theories in the conformal window are interesting, to keep things simple I will mostly focus on the IR-free theories in this talk.

Q: What kind of criticality do these theories describe??

Pirsa: 18080085 Page 16/38

RG flow structure for large $N_{\rm f}$

Massless (weakly coupled) fixed point separates two strongly coupled phases

Pirsa: 18080085 Page 17/38

Nature of the two massive phases

m < 0: Trivial symmetric gapped phase.

m > 0: Dynamical SU(2) gauge field has a theta response at $\theta = N_f \pi$.

 N_f odd - (unknown) fate of SU(2) gauge theory at $\theta = \pi$

 N_f even - standard SU(2) gauge theory => trivial symmetric gapped phase but could be in a different SPT phase.

Stick to even Nf.

Massless point is deconfined though both phases are confined (deconfined quantum criticality)

Pirsa: 18080085 Page 18/38

Nature of the two massive phases

m < 0: Trivial symmetric gapped phase.

m > 0: Dynamical SU(2) gauge field has a theta response at $\theta \, = \, N_f \, \pi$.

 N_f odd - (unknown) fate of SU(2) gauge theory at $\theta = \pi$

 N_f even - standard SU(2) gauge theory => trivial symmetric gapped phase but could be in a different SPT phase.

Stick to even N_f.

Massless point is deconfined though both phases are confined (deconfined quantum criticality)

Pirsa: 18080085 Page 19/38

Nature of the two massive phases (cont'd)

Start with theory of $4N_f$ Majorana fermions with $SO(4N_f) \times T$ symmetry, and calculate ratio of partition functions and associated theta terms for background $SO(4N_f)$ gauge fields.

Make dynamical an SU(2) subgroup to construct needed theory.

Can then get theta term for background global symmetry.

Distinct theta terms depending on the value of $N_f/2 \mod 4 => \text{distinct SPT phases}$.

Pirsa: 18080085 Page 20/38

Bosonic topological phase transition in 3+1-D

Deconfined critical SU(2) gauge theory with fundamental fermions describes phase transition between Trivial and SPT phases of bosons with $\frac{Sp(N_f)}{Z_2} \times T$ symmetry.

Pirsa: 18080085 Page 21/38

A generalization and some interesting phenomena

 $Sp(N_c)$ gauge theories with N_f fundamental fermions: also describe UV bosonic systems with same global symmetry.

These provide a large set of *IR-distinct* field theories for the same set of trivial-SPT phase transitions of these bosons.

Multiple universality classes for the same phase transition.

These different theories are ``weakly dual" (have the same local operators, the same global symmetry, and phase diagram) but are not ``strongly dual".

Pirsa: 18080085 Page 22/38

Other interesting phenomena: Unnecessary phase transitions

Quantum critical points usually separate two distinct phases of matter.

However we find examples where there is a quantum critical line living inside a single phase.

 $N_f = N_c = 0 \pmod{4}$ (and N_f big enough)

"Unnecessary continuous phase transition"

(can go around the transition analogous to liquid-gas but here the transition is continuous!)

Other examples can be constructed without emergent gauge fields.

Pirsa: 18080085 Page 23/38

SU(2) gauge theory with N_f flavors of adjoint fermionic matter

$$\mathcal{L} = \bar{\psi} \left(-i\gamma^{\mu} (\partial_{\mu} - ia_{\mu}) + m \right) \psi + \frac{1}{2g^{2}} tr \left(f_{\mu\nu}^{2} \right) \left(+ \mathcal{L}_{M}[z, a] \right)$$
adjoint

This describes a theory with local fermions!

 $c \sim \epsilon_{ijk}(\bar{\psi}_i\psi_j)\psi_k$ is a gauge invariant fermion.

Important to add 'heavy' (bosonic) spectator matter fields z in fundamental representation.

Global symmetry $SO(2 N_f) \times T$ (with c in vector representation)

View this gauge theory as IR description of some UV system of fermions with global $SO(2 N_f) \times T$ symmetry.

Pirsa: 18080085 Page 24/38

Remarks on adjoint SU(2) gauge theory

m = 0: The conformal window with adjoint matter occurs at lower N_f than with fundamental matter.

Asymptotic freedom lost at Nf ≥ 3 .

In absence of spectator fundamental scalars, theory has unbreakable electric strings in fundamental representation

Corresponding "one-form" symmetry (Gaiotto, Kapustin, Seiberg, Willett, 2015).

Pirsa: 18080085 Page 25/38

Large N_f

Story similar to previous examples.

Massless, IR-free theory: deconfined quantum critical point between between trivial and SPT phases of fermions.

Important subtlety: precisely which SPT depends on symmetry of spectator boson.

Interesting examples of band-theory-forbidden criticality between band insulators.

Trivial fermion phase

SPT fermion phase

n.

Deconfined quantum critical point (IR free for large N_f)

Pirsa: 18080085 Page 26/38

$N_f = 1$

Important theory in both condensed matter and high energy physics

Condensed matter: Physical fermions with U(I) xT symmetry

- a familiar much-studied system (``class A III ")

High-energy: Gauge theory is a sector of famous N = 2 Seiberg-Witten theory

Recent papers: Anber and Poppitz; Dumitrescu and Cordova; Bi and TS.

Pirsa: 18080085 Page 27/38

IR physics of SU(2) YM with $N_f = I$ adjoint fermion

.

m = 0: Possibly conformal from existing numerics (eg, Athenodorou, Bennett, Bergner, Lucini, 2015).

m $\neq 0$, large: Expect confined, symmetry preserving, phases (no induced theta term for dynamical gauge field).

Topological distinction between two "trivial" phases at large |m| ??

Pirsa: 18080085 Page 28/38

Completing the phase diagram

Gauge theory description: one possible evolution from trivial to topological insulator.

Free fermion theory: another possible evolution between same two phases.

Pirsa: 18080085 Page 29/38

Topological quantum criticality of fermions

Could gauge theory and free fermion descriptions be the same??

$$\bar{\psi} \left(\gamma^{\mu} (\partial_{\mu} - i a_{\mu}) + m \right) \psi + \frac{1}{2g^2} tr(f_{\mu\nu})^2$$

$$\bar{\chi} \left(\gamma^{\mu} \partial_{\mu} + m \right) \chi$$

The two massless theories have same local operators, and (almost) the same ordinary global symmetries.

"Wild" possibility: Perhaps they are the same theory in the IR?

Could these two 3+1-D theories really be IR dual?

How to tell?

At the very least check that emergent symmetries and their anomalies match at massless point.

Must include both ordinary (0-form) and 1-form global symmetries.

Pirsa: 18080085 Page 31/38

Emergent symmetries: massless free Dirac fermion

Single Dirac fermion = 2 Weyl fermions

Emergent symmetry $\frac{SU(2)\times U(1)}{Z_2}$

SU(2) rotates the two Weyl fermions U(1): axial rotation

Several anomalies (chiral anomaly for U(1), and Witten anomaly for SU(2))

(+ discrete symmetries: T, P, C)

Pirsa: 18080085 Page 32/38

Emergent symmetries: massless $SU(2) YM + N_f = I$ adjoint Dirac fermion

Quantum effects reduce axial symmetry to Z_8 .

Emergent 0-form symmetry: $\frac{SU(2)\times Z_8}{Z_2}$

+ 1-form symmetry

(Unbreakable electric loops in spin-1/2 representation)

Compare with free massless Dirac fermion: Z_8 is replaced by U(1) and no 1-form symmetry.

Can match 0-form symmetries/anomalies if Z_8 is dynamically enhanced to U(1) in IR

Pirsa: 18080085 Page 33/38

Could these two 3+1-D theories really be IR dual?

How to tell?

At the very least check that emergent symmetries and their anomalies match at massless point.

Must include both ordinary (0-form) and 1-form global symmetries.

Good news: If Z_8 of gauge theory is dynamically enhanced to U(1) in IR, then free Dirac fermion can match 0-form symmetries and anomalies.

Pirsa: 18080085 Page 34/38

Could these two 3+1-D theories really be IR dual?

How to tell?

At the very least check that emergent symmetries and their anomalies match at massless point.

Must include both ordinary (0-form) and 1-form global symmetries.

Good news: If Z_8 of gauge theory is dynamically enhanced to U(1) in IR, then free Dirac fermion can match 0-form symmetries and anomalies.

Bad news: Extra anomalies involving the 1-form symmetry (mixed anomaly with Z_8 , and with gravity) - no analog in free Dirac theory.

Dumitrescu, Cordova, 2018

Pirsa: 18080085 Page 35/38

Implications

Massless $SU(2) YM + N_f = I$ adjoint Dirac fermion cannot just flow to free massless Dirac fermion.

A better alternate:

Match the I-form anomalies by augmenting the free Dirac fermion with a gapped topological sector that has the right I-form anomalies.

Massless SU(2) YM theory + A free Dirac theory + a gapped TQFT $N_f = I \text{ adjoint Dirac fermion}$

A simple specific suitable TQFT in our paper: `loop fractionalized' fermionic Z2 gauge theory enriched by Z_8 , I-form symmetries

Other candidate phases: Cordova, Dumitrescu

Pirsa: 18080085 Page 36/38

Adding in spectator boson

Massless SU(2) YM theory +

A free Dirac theory + a gapped TQFT

N_f = I adjoint Dirac fermion

Spectator boson breaks 1-form symmetry.

But in the TQFT, the loops have 'fractionalized' => topological order survives even when I-form symmetry is broken, or if a small mass is added.

Gauge theory phase diagram if duality is right

Summary

Simple examples illustrating many surprising quantum critical phenomena.

1. Deconfined quantum criticality in 3+1-dimensions

- 2. Phase transitions described by multiple universality classes
- 3. Unnecessary continuous phase transitions

4. Band-theory-forbidden critical points between band insulators

Bonus: A striking possible duality of fermions in 3 + 1 - D.

Massless SU(2) YM theory +

A free Dirac theory + a gapped TQFT

N_f = I adjoint Dirac fermion