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Abstract: <p>In quanum physics, the von Neumann entropy usually arisesin i.i.d settings, while single-shot settings are commonly characterized by
smoothed min- or max-entropies. In this talk, | will discuss new results that give single-shot interpretations to the von Neumann entropy under
appropriate conditions. | first present new results that give a single-shot interpretation to the Area Law of entanglement entropy in many-body
physics in terms of compression of quantum information on the boundary of aregion of space. Then | show that the von Neumann entropy governs
single-shot transitions whenever one has access to arbitrary auxiliary systems, which have to remain invariant in a state-transition ("catalysts'), as
well as a decohering environment. Getting rid of the decohering environment yields the "catalytic entropy conjecture”, for which | present some
supporting arguments.</p>

<p>If time permits, | also discuss some applications of these result to thermodynamics and speculate about consequences for quantum information
theory and holography.</p>
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Henrik Wilming, ETH Zurich
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General wisdom in quantum information theory

Asymptotic iid setting:
Operational tasks controlled by
von Neumann entropy

(or relatives like relative entropy,
mutual information etc.)

&

0 n O,@?u.

Single-shot setting:
Tasks controlled by
B =" (smooth) Rényi entropies
(these may be high-dimensional (or their relatives)

and consist of many correlated
subsystems)

Is the iid limit really necessary or can we give single-shot interpretations
to standard entropic quantities?
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Motivation: Area Laws in many-body physics

Area Law conjecture:

Consider a pure groundstate of a gapped, local, lattice
Hamiltonian. There exists a constant k>0 such that the
entanglement entropy of any region A is bounded in
terms of the surface area of A:

S(A) < k|0A|.

What does the Area Law operationally
mean for a single system?
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Motivation: AdS/CFT

Geometric quantities in the bulk can be expressed as standard entropic
quantities on the boundary. Example:

_ Area(xa)

+ ... Ryu, Takayanagi (2006)
4G N

S(A)

Boundary: CFT

Bulk: AdS Single-shot interpretation on the

CFT side?
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Talk today

1. Single-shot interpretation of Area Law in many-body physics

Joint work with Jens Eisert, soon on arXiv.

2. Single-shot interpretation of von Neumann entropy using
“catalysts”: The catalytic entropy conjecture

Joint work with Paul Boes, Jens Eisert, Rodrigo Gallego, Markus Miiller
ArXiv:1807.08773

A few results, a conjecture and more open problems.
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Area Law: Conventions

Consider pure states on any regular lattice of finite dimensional Hilbert-spaces

H=QHor dim(H,) =d, log(d):=1

TEA

Surface area of A: |{);’1|
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Consider pure states on any regular lattice of finite dimensional Hilbert-spaces

H=QHor dim(H,) =d, log(d):=1
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Surface area of A: |{);’1|
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Area Law: Conventions

Consider pure states on any regular lattice of finite dimensional Hilbert-spaces

H=QHor dim(H,) =d, log(d):=1

TEA

Annulus of width ~ k inside of A

For large, smooth regions A:

The annulus of width k contains roughly
k|OA| sites and has Hilbert-space
dimension ~ k194l

Bulk of A

Surface area of A: ‘f}ﬂj
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Area Law

Area Law conjecture:

Consider a pure groundstate of a gapped, local, lattice
Hamiltonian. There exists a constant k>0 such that the
entanglement entropy of any region A on the lattice is
bounded in terms of the surface area of A:

S(A) < k|0A

Important: The statement is non-trivial
only for large, smooth regions (scaling
behaviour).
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Area Law

Area Law conjecture:

Consider a pure groundstate of a gapped, local, lattice
Hamiltonian. There exists a constant k>0 such that the
entanglement entropy of any region A on the lattice is
bounded in terms of the surface area of A:

S(A) < k|0A

One possible iid interpretation:
P P width ~ k

———’

compress data to
annulus
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Area Law: Main result

Theorem (Holographic compression, informal)
Consider a pure state |Wr) ona lattice fulfilling an area
law. Then forany € > 0 and any region A there exists
a unitary supported in A such that

Uvnl|\p> e |X>4-4"'LJ:-uumlus & |d)>hulk(A)a

where the annulus has width ~ k /& and the error is
measured in fidelity.
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Area Law: Main result

Theorem (Holographic compression, informal)
Consider a pure state |Wr) ona lattice fulfilling an area
law. Then forany € > 0 and any region A there exists
a unitary supported in A such that

Uvnl|\p> e |X>4-4"'LJ:-uumlus & |d)>hulk(A)a

where the annulus has width ~ k /& and the error is
measured in fidelity.

Ua

/3;111r1111115 X ’(f)><(/)’
Approximately

compress data to
annulus
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Area Law: A simple fact

Schmidt-decomposition:
M

=
) = Z VPili)a ®7) ae, p12p22p3>---, Pu:= Z 170

i=1 j=l1

Bulk of A

Pirsa: 18080084 Page 14/66



Area Law: A simple fact

Schmidt-decomposition:

?.
W) =) VBiNa®|iac, p1=p2=ps>-c-, Pui= > liyadil

i=1 j=l1

If Schmidt-rank equal to Hilbert-space dimension
of annulus, there exists a unitary on A such that:

.

Ua ’])4 = |.]>;-|,nnulus 02 ’d)>! J= L

Bulk of A =
UsP,U\ = P, ® |6)(¢)|

[]4 A UVZ = ﬁ:mmllns 03 M)> <(/)|

Pirsa: 18080084 Page 15/66



Area Law: A simple fact

Schmidt-decomposition:

- M
V) = VBl a®liac, p12p2=ps>---, Pyi= > liYa(il

j=1 j=1

If Schmidt-rank equal to Hilbert-space dimension
of annulus, there exists a unitary on A such that:

Ua ’])4 = |j>;-|,nnulus 02 ’d)>! J= L

Problem: In general, Schmidt-rank is maximal and state does not “fit” on
annulus. Need to approximate the state by one with small Schmidt-rank.

v Ua PA UVZ = ﬁ:mmllns & M)> <(/)|
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Area Law: The basic problem to solve

Need to approximate the state by one with small Schmidt-rank, but the only
information we have is a bound on the entropy.

Pirsa: 18080084 Page 17/66



Pirsa: 18080084

Area Law: The basic problem to solve

Need to approximate the state by one with small Schmidt-rank, but the only
information we have is a bound on the entropy.

cut
[ 3

renormalize

y .
.......
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Area Law: The basic problem to solve

Need to approximate the state by one with small Schmidt-rank, but the only
information we have is a bound on the entropy.

cut
[ 3

renormalize

y .
.......

If we cut a probability distribution after the M’s largest entry, how big is the
error?
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Area Law: The basic problem to solve

Need to approximate the state by one with small Schmidt-rank, but the only
information we have is a bound on the entropy.

cut
[ 3

renormalize

y .
.......

If we cut a probability distribution after the M’s largest entry, how big is the
error?

Intuition: if distribution has small entropy, most weight is carried by few entries.
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Area Law: A simple Lemma

Lemma (Approximating distributions, simple version)
Let p be any probability distribution, ordered non-
increasingly. Then

M :
s
s log(M)

* Due to monotonicity of Rényi entropies, it also holds for
all Rényi entropies with a < 1.

* Does not hold for Rényi entropies witha > 1
(counter-example).

* For smooth max-entropy it implies €55 < S
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Area Law: A simple Lemma

Lemma (Approximating distributions, simple version)
Let p be any probability distribution, ordered non-
increasingly. Then

M ,
S

Y pi>1-: (p)

=1 log(M)

Corollary (Single-shot compression)
Let |¢) be any bi-partite pure state on A A“. Consider
the normalized state

- Py®1

z/ &Z\/[T\J A ® 5)ac

J=1

[Yar) =

Then:
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Area Law: Proof of theorem

1.Fix € > 0.
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Area Law: Proof of theorem

1.Fix € > 0.

2. Use Area law: Y
Annulus of width ~ k/e has Hilbert-space dimension larger than M := d°(4)/¢
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Area Law: Proof of theorem

1.Fix € > 0.

2. Use Area law:
Annulus of width ~ k/e has Hilbert-space dimension larger than M := d°(4)/¢

3. There exists a unitary (in fact many) such that

UaPyUY = Pu ® |6){(¢]

)

Lfl |fd"ﬂ'f> = ’j-"(>f'1"Ummulus 03y
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Area Law: Pr_oof of theorem

1.Fix € > 0.

2. Use Area law:
Annulus of width ~ k/e has Hilbert-space dimension larger than M

3. There exists a unitary (in fact many) such that

UaPyUY = Py ® |9) (o)

¢)

{f1|¢'ﬂf> = ’1"()f‘1"U&111111111:-; 02

4. From Corollary we learn:

[(oarl UL U AP = [(ar|9)]?
e

S -
- log (M)

n

= (.1,‘_3'(‘4}/(
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Area Law

Theorem (Holographic compression, informal)
Consider a pure state |Jr) ona lattice fulfilling an area
law. Then forany ¢ > 0 and sufficiently smooth region
A there exists a unitary supported in A such that

UA|‘1}> ~e IX)A“LJ:—!.nuulus & ’(p)&

where the annulus has width ~ k /& and the error is
measured in fidelity.

width ~ kr/g

Ua

laannulu.G; & l(f)><(/)’
Approximately

compress data to
annulus
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Area Law: Operator correspondence

All operators supported completely within Fj; are mapped exactly to boundary:

X = Dy X Py = I Xelil = X®

(x] 1 ‘1 ad

O) (P

ﬂ(X ﬁn.mmlns ) ~ <',/’

X
Ua
—_—
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Area Law: Operator correspondence

All operators supported completely within Fj; are mapped exactly to boundary:

X = Dy X Py = I Xelil = X®

O) (P

ﬂ(X ﬁn.mmlns ) ~ <',/’

Open question: Do local operators (approximately ) fulfill this condition for
groundstates of gapped, local Hamiltonians?

84
Ua
—_—

(x] 1 ‘1 ad
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Area Law: Operator correspondence

All operators supported completely within Fj; are mapped exactly to boundary:

X = PP, = i b = e

O) (P

ﬂ(X ﬁn.mmlns ) ~ <l/’

Open question: Do local operators (approximately ) fulfill this condition for
groundstates of gapped, local Hamiltonians?

Open question: How much can the mapping preserve locality and
what’s the complexity of the unitary?

X

Ua
e

® 1 gec
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Interpretation as “rotated” quantum markov chains

Quantum markov chain:
Tripartite state on ABC s.t. there exsists a channel R "
on B such that:

AB/
papc = Rz (pBC)

State is quantum markov chain iff conditional mutual
information vanishes:

I(A:C|B) =0
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Interpretation as “rotated” quantum markov chains

Quantum markov chain:
Tripartite state on ABC s.t. there exsists a channel R "
on B such that:

AB/
papc = Rz (pBC)

State is quantum markov chain iff conditional mutual
information vanishes:

I(A:C|B) =0

“Rotated quantum markov chain”:

Tripartite state on ABC for which there exsists a unitary
on AB such that U,pzpa ,,»(_-_f[.f:_’m is a quantum markov
chain.

Our result: States fulfilling area law are approximate
rotated quantum markov chains.
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Interpretation as “rotated” quantum markov chains

Quantum markov chain:
Tripartite state on ABC s.t. there exsists a channel R "
on B such that:

AB/
papc = Rz (pBC)

State is quantum markov chain iff conditional mutual
information vanishes:

I(A:C|B) =0

“Rotated quantum markov chain”:

Tripartite state on ABC for which there exsists a unitary
on AB such that U,pzpa ,,»(_-_f[.f:_’m is a quantum markov
chain.

Our result: States fulfilling area law are approximate
rotated quantum markov chains.

Open problem: Is there a simple criterion that
determines whether a state is a rotated quantum
markov chain?
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Area Law: Summary

* Area Law in terms of von Neumann entropy implies approximate holographic
compression.
(Not possible to show from Rényi entropies with a > 1)

* Forany £>0, groundstate defines sub-algebra of operators that are mapped to
annulus of width ~1/«.
Open question: Are local operators in this algebra for physical models?

* Open question: How much can [J 4 preserve locality (gauge freedom)?
* Open question: Can we say anything about the complexity of UA?
* Results follow from simple inequality:

Lemma (Approximating distributions, simple version)
Let p be any probability distribution, ordered non-
increasingly. Then

M

S p; 21— Sp)
3= 57 Tog(M)
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2. Catalytic entropy conjecture

Joint work with Paul Boes, Jens Eisert, Rodrigo Gallego, Markus Miiller
ArXiv:1807.08773
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A series of questions

U

Q: Which states can be reached?
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A series of questions

OO —

U

d: larger or equal to dimension of p

Unchanged:
“catalyst”

Q: Which states can be reached by
choosing different unitaries?
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A series of questions

OO0 -

Unchanged:
“catalyst”

U

d: larger or equal to dimension of p

Q: Which states can be reached by
choosing different unitaries?

A: All states that are majorized by p *

* Suffices that d is larger than \,—-"'.tlilll[p) . See P. Boes, HW., R. Gallego, J. Eisert, arXiv:1804.03027
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A series of questions

OO0 -

Unchanged:
“catalyst”

U

d: larger or equal to dimension of p

Q: Which states can be reached by
choosing different unitaries?

A: All states that are majorized by p *

———————» Rényi-entropies can only increase!

* Suffices that d is larger than \,.-"":lim[rp) . See P. Boes, HW., R. Gallego, J. Eisert, arXiv:1804.03027
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Catalytic transitions

Unchanged:
“catalyst”

Q: Which states can be reached if we
can choose catalyst and unitary?
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Catalytic transitions: Classical example

Unchanged:
“catalyst”

qzps  qips | ps
q:p2  qipz | pz
qzp1 Qapa | p1
q:

Step 1: Write bipartite distribution as table.
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Catalytic transitions: Classical example

qzps
(2p2
Qzp1

Q2

U
B Example:
S p=(1/2,1/2,0)
qapz | P2 > qz/2
Cipr | P2 QZ/2
1 q2

C|1/2
C|1/2
qa

Step 1: Write bipartite distribution as table.

Unchanged:

“catalyst”

1/2
1/2
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Catalytic transitions: Classical example

- Unchanged:

“catalyst”

0 0 0
q2/2  qi/2 | 1/2
g2 qi/2| 1/2
Q2 eh

Step 2: Choose a permutation on the joint-
distribution.

Page 43/66
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Catalytic transitions: Classical example

Unchanged:
________________ “catalyst”
U
0 0 0 qi/2f O i
q2/2 | [gi/2|| 1/2 _—— qi1/2 0 i
q2/2 qi/2|| 1/2 q2/2 [q2/2 || *
dz 1 Q2 1

Step 3: Solve equations to ensure “catalyticity”.
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Catalytic transitions: Classical example

Unchanged:
................ “catalyst”
U
0 0 0 1/6 0 116
2/6 | [16]1/2 @ —mM8 —» 1/6 | |0 | 1/6
2/6 |:/6 12 2/6 2/6 2/3
2/3 1/3 293 1/3

Step 3: Solve equations to ensure “catalyticity”.
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Catalytic transitions: Classical example

Unchanged:
................ “catalyst”
U
0 0 0 1/6 0 1/6
2/6 | [16] 12 —m087 » 1/6 | |0 | 1/6
2/6 |:/6 12 2/6 2/6 2/3
2/3 1/3 293 1/3

Largest probability increased from 1/2 to 2/3.
Thus min-entropy decreased.
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Catalytic transitions

Unchanged:
“catalyst”

Q: Which states can be reached if we
can choose catalyst and unitary?
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Catalytic transitions

Unchanged:
“catalyst”

Q: Which states can be reached if we
can choose catalyst and unitary?

A: 2?2? (but we have a conjecture)

Pirsa: 18080084 Page 48/66



A more general setting

Well-controlled lab P

Uncontrolled, decohering environment

=
L

3 _
Ty O 1
LY

decoheres
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A more general setting

Well-controlled lab L ~

Uncontrolled, decohering environment

=
L

3 _
Ty O 1
LY

decoheres

dec, : : .
P 2S% p' <> Canfind corresponding unitary and catalyst
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A more general setting

Well-controlled lab o —— -—-O

Uncontrolled, decohering environment

w
L J

5 )
—+of 5 }-—----

Y

decoheres

Exists unitary and catalyst such that:
0= (U/) 0% CTUT) =i
D |Try (Up® (,TUT)] =g

D : Decoherence in fixed basis

Q: Which states can be reached?
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A characterization of von Neumann entropy without iid limit

Well-controlled lab — —O

Uncontrolled, decohering environment

2 7--._,’- g ) -—-—==-=-

decoheres

Theorem
Let spec(p) # spec(p’). Then:

dec,

p—p & S(p') > S(p) and rank(p’) > rank(p)
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Application: Catalytic cooling

—t ‘0‘ Can use a single catalyst to transform arbitrary
many copies. Each undergoes transition

p—p
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Application: Catalytic cooling

—t ‘0‘ Can use a single catalyst to transform arbitrary
many copies. Each undergoes transition

p—p
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Application: Catalytic cooling

Can use a single catalyst to transform arbitrary
many copies. Each undergoes transition

p—p
Example:

. 1 N
p=x@x, SK) <5 log(2)

!

— ?A
() %Y

0){0]<
™ Full-rank state
arbitrarily close to |0>
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Application: Catalytic cooling

Can use a single catalyst to transform arbitrary
many copies. Each undergoes transition

p——p
Example:

_ 1 N
pP=x®x, S(x) <3 log(2)

0){0]<
V-
" Full-rank state
arbitrarily close to |0>

Y
prsin e

Half the systems get cooled to (almost) zero
temperature, while the other half gets heated up
to infinite temperature.
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Application: Catalytic cooling

Can use a single catalyst to transform arbitrary
many copies. Each undergoes transition

p—p

Example:

_ 1 N
pP=x®x, S(x) <3 log(2)

0){0]<
V-
" Full-rank state
arbitrarily close to |0>

Y
prsin e

Half the systems get cooled to (almost) zero
temperature, while the other half gets heated up

to infinite temperature.
Like algorithmic cooling without iid limit.
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Application: Catalytic cooling

Can use a single catalyst to transform arbitrary
many copies. Each undergoes transition

p—p

Example:

_ 1 N
pP=x®x, S(x) <3 log(2)

0){0]<
V-
" Full-rank state
arbitrarily close to |0>

Y
prsin e

Half the systems get cooled to (almost) zero
temperature, while the other half gets heated up

to infinite temperature.
Like algorithmic cooling without iid limit.

However, correlations are created:

Xn o) ®n
K =7 Qi

.....
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Back to catalytic transitions
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Back to catalytic transitions

Q: Which states can be reached if we
can choose catalyst and unitary?

p— p’ <>  Can find corresponding unitary and catalyst
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Catalytic entropy conjecture

Catalytic entropy conjecture

Let spec(p) # spec(p’). Then:

p—p &  Sp)>S8(p) and rank(p') > rank(p)

Pirsa: 18080084 Page 61/66



Weak solution to catalytic entropy conjecture

Unchanged:
“catalyst”
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Weak solution to catalytic entropy conjecture

Unchanged:
“catalyst”

Lemma (Weak solution to conjecture)
Let spec(p) # spec(p’). Then the following are
equivalent:

) S(p') > S(p) and rank(p’) > rank(p)

i1) There exists some finite dimension d such that

1

1
d

d
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Implication of weak solution

Monotone: Any function f on the set of density matrices such that
p—p = flp) < f(o)

Call fadditive if f(p1 ® p2) = f(p1) + f(p2).
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Implication of weak solution

Monotone: Any function f on the set of density matrices such that
p—p = flp) < f(o)

Call fadditive if f(p1 ® p2) = f(p1) + f(p2).

Proposition (Quasi-unique monotone)
Let f be a monotone on catalytic transitions. Then exactly one of the
following statements is true.

) S(o)>8() < fo)> flo)

ii) The function f is non-additive or discontinuous.

In particular, this rules out all Rényi entropies as monotones.
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Thank you for your attention!

width ~ ,f,:’;’ £
Ua
—
Pa J’-"unm\urq ) I‘\i‘l’}{'f"l
Lemma Catalytic entropy conjecture
i o S(p) Let spec(p) # spec(p’). Then:
= bi = log(M) p—rp & S(p)>S8(p), rank(p’) > rank(p)
J=1
JONOHEI 0L O,
Holographic compression from the Area Law ArXiv:1807.08773
With Jens Eisert, soon on arXiv. With Paul Boes, Jens Eisert, Rodrigo Gallego,

Markus Muller
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