Title: Single-shot interpretations of von Neumann entropy

Date: Aug 29, 2018 04:00 PM

URL: http://pirsa.org/18080084

Abstract: In quanum physics, the von Neumann entropy usually arises in i.i.d settings, while single-shot settings are commonly characterized by smoothed min- or max-entropies. In this talk, I will discuss new results that give single-shot interpretations to the von Neumann entropy under appropriate conditions. I first present new results that give a single-shot interpretation to the Area Law of entanglement entropy in many-body physics in terms of compression of quantum information on the boundary of a region of space. Then I show that the von Neumann entropy governs single-shot transitions whenever one has access to arbitrary auxiliary systems, which have to remain invariant in a state-transition ("catalysts"), as well as a decohering environment. Getting rid of the decohering environment yields the "catalytic entropy conjecture", for which I present some supporting arguments.

If time permits, I also discuss some applications of these result to thermodynamics and speculate about consequences for quantum information theory and holography.

Pirsa: 18080084 Page 1/66

Single-shot interpretations of von Neumann entropy

Henrik Wilming, ETH Zurich Joint work with Paul Boes, Jens Eisert, Rodrigo Gallego, Markus Müller

Perimeter Institute, Waterloo, August 29th 2018

Pirsa: 18080084 Page 2/66

General wisdom in quantum information theory

Asymptotic iid setting:

 $\rho^{\otimes n} \longrightarrow \sigma^{\otimes m}$

Operational tasks controlled by von Neumann entropy (or relatives like relative entropy, mutual information etc.)

Single-shot setting:

$$\rho \longrightarrow \sigma$$

(these may be high-dimensional and consist of many correlated subsystems) Tasks controlled by (smooth) Rényi entropies (or their relatives)

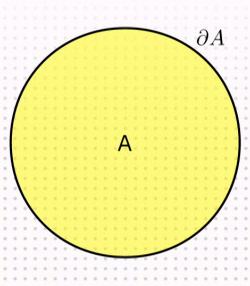
Is the *iid* limit really necessary or can we give single-shot interpretations to standard entropic quantities?

Motivation: Area Laws in many-body physics

Area Law conjecture:

Consider a pure groundstate of a gapped, local, lattice Hamiltonian. There exists a constant k>0 such that the entanglement entropy of any region A is bounded in terms of the surface area of A:

$$S(A) \le k|\partial A|.$$



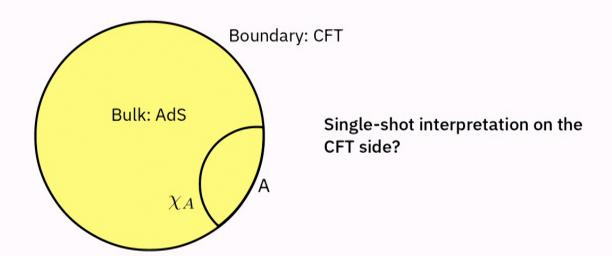
What does the Area Law operationally mean for a single system?

Pirsa: 18080084 Page 4/66

Motivation: AdS/CFT

Geometric quantities in the bulk can be expressed as standard entropic quantities on the boundary. Example:

$$S(A) = rac{{
m Area}(\chi_A)}{4G_N} + \ldots$$
 Ryu, Takayanagi (2006)



Pirsa: 18080084 Page 5/66

Talk today

1. Single-shot interpretation of Area Law in many-body physics

Joint work with Jens Eisert, soon on arXiv.

2. Single-shot interpretation of von Neumann entropy using "catalysts": The catalytic entropy conjecture

Joint work with Paul Boes, Jens Eisert, Rodrigo Gallego, Markus Müller ArXiv:1807.08773

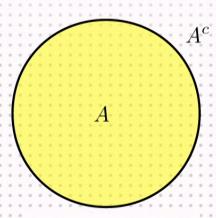
A few results, a conjecture and more open problems.

Pirsa: 18080084 Page 6/66

Area Law: Conventions

Consider pure states on any regular lattice of finite dimensional Hilbert-spaces

$$\mathcal{H} = \bigotimes_{x \in \Lambda} \mathcal{H}_x, \qquad \dim(\mathcal{H}_x) = d, \qquad \log(d) := 1$$

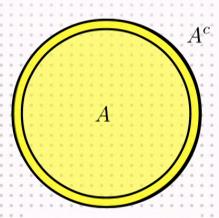


Surface area of A: $|\partial A|$

Area Law: Conventions

Consider **pure states** on any **regular lattice** of finite dimensional Hilbert-spaces

$$\mathcal{H} = \bigotimes_{x \in \Lambda} \mathcal{H}_x, \qquad \dim(\mathcal{H}_x) = d, \qquad \log(d) := 1$$



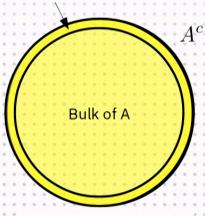
Surface area of A: $|\partial A|$

Area Law: Conventions

Consider pure states on any regular lattice of finite dimensional Hilbert-spaces

$$\mathcal{H} = \bigotimes_{x \in \Lambda} \mathcal{H}_x, \quad \dim(\mathcal{H}_x) = d, \quad \log(d) := 1$$

Annulus of width ~ k inside of A



Surface area of A: $|\partial A|$

For large, smooth regions A:

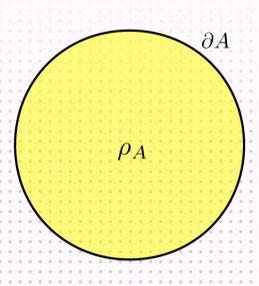
The annulus of width k contains roughly $k|\partial A|$ sites and has Hilbert-space dimension $\sim d^{k|\partial A|}$.

Area Law

Area Law conjecture:

Consider a pure groundstate of a gapped, local, lattice Hamiltonian. There exists a constant k>0 such that the entanglement entropy of any region A on the lattice is bounded in terms of the surface area of A:

$$S(A) \le k|\partial A|.$$



Important: The statement is non-trivial only for large, smooth regions (scaling behaviour).

Pirsa: 18080084 Page 10/66

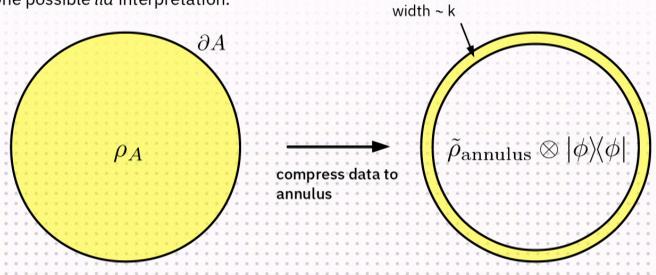
Area Law

Area Law conjecture:

Consider a pure groundstate of a gapped, local, lattice Hamiltonian. There exists a constant k>0 such that the entanglement entropy of any region A on the lattice is bounded in terms of the surface area of A:

$$S(A) \le k|\partial A|.$$

One possible *iid* interpretation:



Pirsa: 18080084 Page 11/66

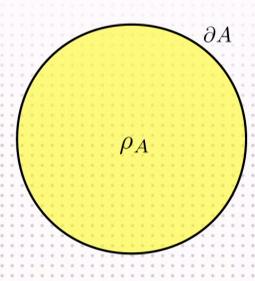
Area Law: Main result

Theorem (Holographic compression, informal)

Consider a pure state $|\Psi\rangle$ on a lattice fulfilling an area law. Then for any $\varepsilon>0$ and any region A there exists a unitary supported in A such that

$$U_A|\Psi\rangle \approx_{\epsilon} |\chi\rangle_{A^c \cup \text{annulus}} \otimes |\phi\rangle_{\text{bulk}(A)},$$

where the annulus has width $\sim k/\varepsilon$ and the error is measured in fidelity.



Pirsa: 18080084 Page 12/66

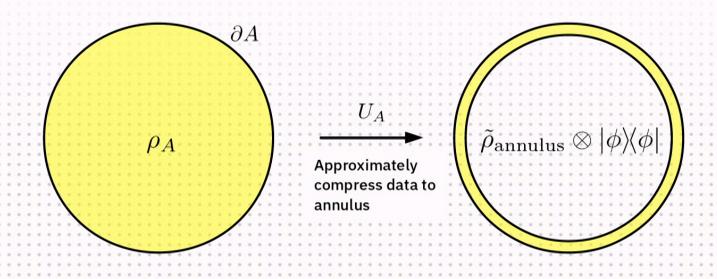
Area Law: Main result

Theorem (Holographic compression, informal)

Consider a pure state $|\Psi\rangle$ on a lattice fulfilling an area law. Then for any $\,\varepsilon>0\,$ and any region A there exists a unitary supported in A such that

$$U_A|\Psi\rangle \approx_{\epsilon} |\chi\rangle_{A^c \cup \text{annulus}} \otimes |\phi\rangle_{\text{bulk}(A)},$$

where the annulus has width $\sim k/\varepsilon$ and the error is measured in fidelity.

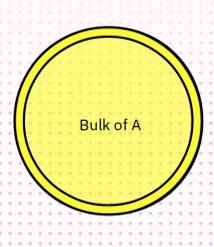


Pirsa: 18080084 Page 13/66

Area Law: A simple fact

Schmidt-decomposition:

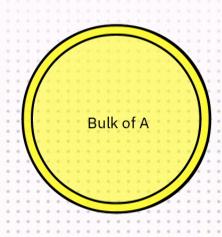
$$|\psi\rangle = \sum_{j=1}^r \sqrt{p_j} |j\rangle_A \otimes |j\rangle_{A^c}, \qquad p_1 \ge p_2 \ge p_3 \ge \cdots, \quad P_M := \sum_{j=1}^M |j\rangle_A \langle j|$$



Area Law: A simple fact

Schmidt-decomposition:

$$|\psi\rangle = \sum_{j=1}^r \sqrt{p_j} |j\rangle_A \otimes |j\rangle_{A^c}, \qquad p_1 \ge p_2 \ge p_3 \ge \cdots, \quad P_M := \sum_{j=1}^M |j\rangle_A \langle j|$$



If Schmidt-rank equal to Hilbert-space dimension of annulus, there exists a unitary on A such that:

$$U_A|j\rangle_A = |\tilde{j}\rangle_{\rm annulus} \otimes |\phi\rangle, \quad j = 1, \dots, r$$

$$U_A P_r U_A^{\dagger} = \tilde{P}_r \otimes |\phi\rangle\langle\phi|$$

$$U_A \rho_A U_A^{\dagger} = \tilde{\rho}_{\text{annulus}} \otimes |\phi\rangle\langle\phi|$$

Area Law: A simple fact

Schmidt-decomposition:

$$|\psi\rangle = \sum_{j=1}^r \sqrt{p_j} |j\rangle_A \otimes |j\rangle_{A^c}, \qquad p_1 \ge p_2 \ge p_3 \ge \cdots, \quad P_M := \sum_{j=1}^M |j\rangle_A \langle j|$$

If Schmidt-rank equal to Hilbert-space dimension of annulus, there exists a unitary on A such that:

$$U_A|j\rangle_A = |\tilde{j}\rangle_{\text{annulus}} \otimes |\phi\rangle, \quad j = 1, \dots, r$$

Problem: In general, Schmidt-rank is maximal and state does not "fit" on annulus. Need to approximate the state by one with small Schmidt-rank.

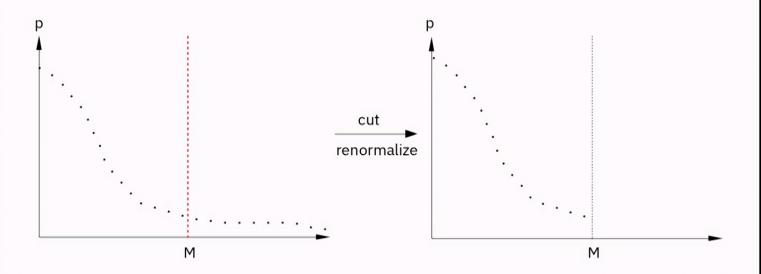
$$U_A \rho_A U_A^{\dagger} = \tilde{\rho}_{\rm annulus} \otimes |\phi\rangle\langle\phi|$$

Pirsa: 18080084 Page 16/66

Need to approximate the state by one with small Schmidt-rank, but the only information we have is a bound on the entropy.

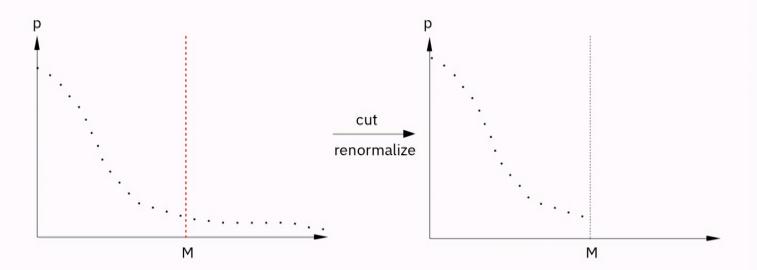
Pirsa: 18080084 Page 17/66

Need to approximate the state by one with small Schmidt-rank, but the only information we have is a bound on the entropy.



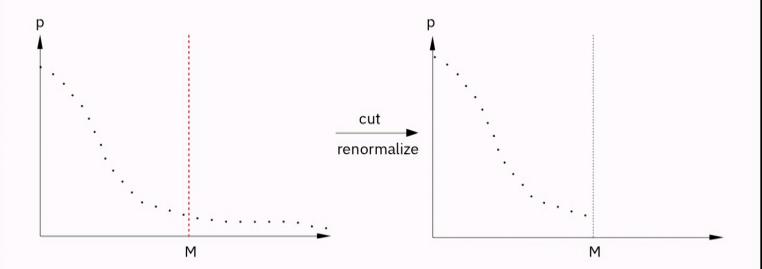
Pirsa: 18080084 Page 18/66

Need to approximate the state by one with small Schmidt-rank, but the only information we have is a bound on the entropy.



If we cut a probability distribution after the M's largest entry, how big is the error?

Need to approximate the state by one with small Schmidt-rank, but the only information we have is a bound on the entropy.



If we cut a probability distribution after the M's largest entry, how big is the error?

Intuition: if distribution has small entropy, most weight is carried by few entries.

Area Law: A simple Lemma

Lemma (Approximating distributions, simple version)

Let $\, {\bf p} \,$ be any probability distribution, ordered non-increasingly. Then

$$\sum_{j=1}^{M} p_j \ge 1 - \frac{S(\mathbf{p})}{\log(M)}$$

- Due to monotonicity of Rényi entropies, it also holds for all Rényi entropies with α < 1.
- Does not hold for Rényi entropies with α > 1 (counter-example).
- For smooth max-entropy it implies $\, arepsilon S_0^arepsilon \leq S \,$

Area Law: A simple Lemma

Lemma (Approximating distributions, simple version)

Let \mathbf{p} be any probability distribution, ordered non-increasingly. Then

$$\sum_{j=1}^{M} p_j \ge 1 - \frac{S(\mathbf{p})}{\log(M)}$$

Corollary (Single-shot compression)

Let $|\psi\rangle$ be any bi-partite pure state on AA^c . Consider the normalized state

$$|\psi_M\rangle := \frac{P_M \otimes \mathbf{1}}{\sqrt{\sum_{j=1}^M p_j}} |\psi\rangle \propto \sum_{j=1}^M \sqrt{p_j} |j\rangle_A \otimes |j\rangle_{A^c}$$

Then:

$$|\langle \psi | \psi_M \rangle|^2 = \sum_{j=1}^M p_j \ge 1 - \frac{S(A)}{\log(M)}$$

Pirsa: 18080084 Page 22/66

1. Fix $\, arepsilon > 0$.

- 1. Fix $\varepsilon>0$.
- 2. Use Area law: Annulus of width $\ \sim k/arepsilon$ has Hilbert-space dimension larger than $M:=d^{S(A)/\epsilon}$

Pirsa: 18080084 Page 24/66

- 1. Fix $\varepsilon > 0$.
- 2. Use Area law: Annulus of width $\ \sim k/arepsilon$ has Hilbert-space dimension larger than $M:=d^{S(A)/\epsilon}$
- 3. There exists a unitary (in fact many) such that

$$U_A P_M U_A^{\dagger} = \tilde{P}_M \otimes |\phi\rangle\langle\phi|$$

$$U_A|\psi_M\rangle = |\chi\rangle_{A^c \cup \text{annulus}} \otimes |\phi\rangle$$

Pirsa: 18080084 Page 25/66

- 1. Fix $\varepsilon > 0$.
- 2. Use Area law: Annulus of width $\ \sim k/arepsilon$ has Hilbert-space dimension larger than $M:=d^{S(A)/\epsilon}$
- 3. There exists a unitary (in fact many) such that

$$U_A P_M U_A^{\dagger} = \tilde{P}_M \otimes |\phi\rangle\langle\phi|$$

$$U_A|\psi_M\rangle = |\chi\rangle_{A^c \cup \text{annulus}} \otimes |\phi\rangle$$

4. From Corollary we learn:

$$|\langle \psi_M | U_A^{\dagger} U_A | \psi \rangle|^2 = |\langle \psi_M | \psi \rangle|^2$$

$$\geq 1 - \frac{S(A)}{\log(M)} = 1 - \varepsilon$$

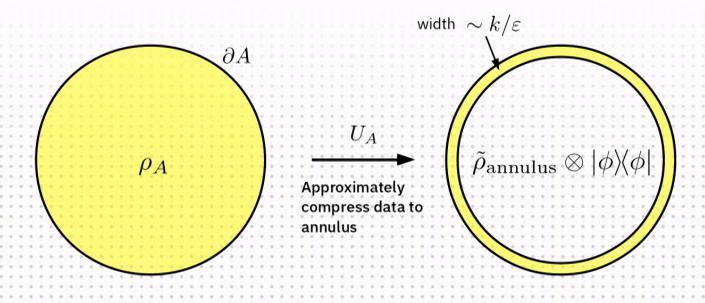
Area Law

Theorem (Holographic compression, informal)

Consider a pure state $|\Psi\rangle$ on a lattice fulfilling an area law. Then for any $\, \varepsilon > 0 \,$ and sufficiently smooth region A there exists a unitary supported in A such that

$$U_A|\Psi\rangle \approx_{\epsilon} |\chi\rangle_{A^c \cup \text{annulus}} \otimes |\phi\rangle,$$

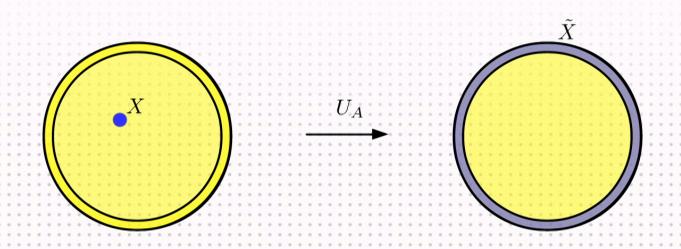
where the annulus has width $\sim k/\varepsilon$ and the error is measured in fidelity.



Area Law: Operator correspondence

All operators supported completely within $\,P_{M}\,$ are mapped exactly to boundary:

$$X = P_M X P_M \qquad \longrightarrow \qquad U_A X \otimes \mathbf{1}_{A^c} U_A = \tilde{X} \otimes |\phi\rangle \langle \phi| \otimes \mathbf{1}_{A^c}$$
$$\operatorname{Tr}(\tilde{X} \tilde{\rho}_{\mathrm{annulus}}) \approx \langle \psi | X \otimes \mathbf{1}_{A^c} | \psi \rangle$$

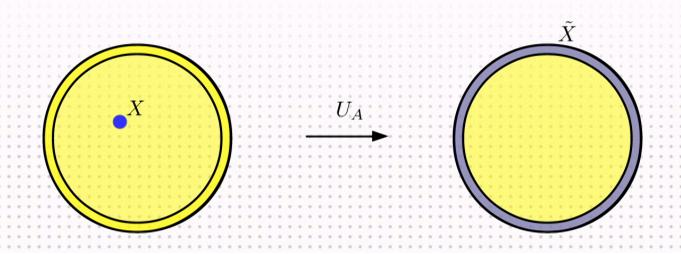


Area Law: Operator correspondence

All operators supported completely within $\,P_{M}\,$ are mapped exactly to boundary:

$$X = P_M X P_M \qquad \longrightarrow \qquad U_A X \otimes \mathbf{1}_{A^c} U_A = \tilde{X} \otimes |\phi\rangle \langle \phi| \otimes \mathbf{1}_{A^c}$$
$$\operatorname{Tr}(\tilde{X} \tilde{\rho}_{\mathrm{annulus}}) \approx \langle \psi | X \otimes \mathbf{1}_{A^c} | \psi \rangle$$

Open question: Do local operators (approximately) fulfill this condition for groundstates of gapped, local Hamiltonians?



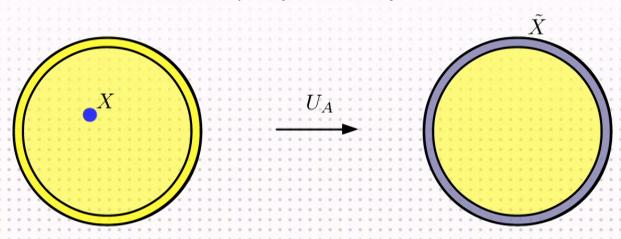
Area Law: Operator correspondence

All operators supported completely within P_M are mapped exactly to boundary:

$$X = P_M X P_M \qquad \longrightarrow \qquad U_A X \otimes \mathbf{1}_{A^c} U_A = \tilde{X} \otimes |\phi\rangle \langle \phi| \otimes \mathbf{1}_{A^c}$$
$$\operatorname{Tr}(\tilde{X} \tilde{\rho}_{\mathrm{annulus}}) \approx \langle \psi | X \otimes \mathbf{1}_{A^c} | \psi \rangle$$

Open question: Do local operators (approximately) fulfill this condition for groundstates of gapped, local Hamiltonians?

Open question: How much can the mapping preserve locality and what's the complexity of the unitary?



Interpretation as "rotated" quantum markov chains

Quantum markov chain:

Tripartite state on ABC s.t. there exsists a channel \mathcal{R}_B^{AB} on B such that:

$$\rho_{ABC} = \mathcal{R}_B^{AB}(\rho_{BC})$$

State is quantum markov chain iff conditional mutual information vanishes:

$$I(A:C|B) = 0$$

Pirsa: 18080084 Page 31/66

Interpretation as "rotated" quantum markov chains

Quantum markov chain:

Tripartite state on ABC s.t. there exsists a channel \mathcal{R}_B^{AB} on B such that:

$$\rho_{ABC} = \mathcal{R}_B^{AB}(\rho_{BC})$$

State is quantum markov chain iff conditional mutual information vanishes:

$$I(A:C|B) = 0$$

"Rotated quantum markov chain":

Tripartite state on *ABC* for which there exsists a unitary on *AB* such that $U_{AB}\rho_{ABC}U_{AB}^{\dagger}$ is a quantum markov chain.

Our result: States fulfilling area law are approximate rotated quantum markov chains.

Pirsa: 18080084 Page 32/66

Interpretation as "rotated" quantum markov chains

Quantum markov chain:

Tripartite state on ABC s.t. there exsists a channel \mathcal{R}_B^{AB} on B such that:

$$\rho_{ABC} = \mathcal{R}_B^{AB}(\rho_{BC})$$

State is quantum markov chain iff conditional mutual information vanishes:

$$I(A:C|B) = 0$$

"Rotated quantum markov chain":

Tripartite state on *ABC* for which there exsists a unitary on *AB* such that $U_{AB}\rho_{ABC}U_{AB}^{\dagger}$ is a quantum markov chain.

Our result: States fulfilling area law are approximate rotated quantum markov chains.

Open problem: Is there a simple criterion that determines whether a state is a rotated quantum markov chain?

Pirsa: 18080084 Page 33/66

Area Law: Summary

• Area Law in terms of von Neumann entropy implies approximate holographic compression.

(Not possible to show from Rényi entropies with $\alpha > 1$)

• For any $\varepsilon>0$, groundstate defines sub-algebra of operators that are mapped to annulus of width $\sim 1/\varepsilon$.

Open question: Are local operators in this algebra for physical models?

- Open question: How much can $\,U_A\,$ preserve locality (gauge freedom)?
- Open question: Can we say anything about the complexity of U_A ?
- Results follow from simple inequality:

Lemma (Approximating distributions, simple version)
Let p be any probability distribution, ordered nonincreasingly. Then

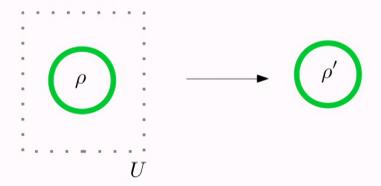
$$\sum_{j=1}^{M} p_j \ge 1 - \frac{S(\mathbf{p})}{\log(M)}$$

2. Catalytic entropy conjecture

Joint work with Paul Boes, Jens Eisert, Rodrigo Gallego, Markus Müller ArXiv:1807.08773

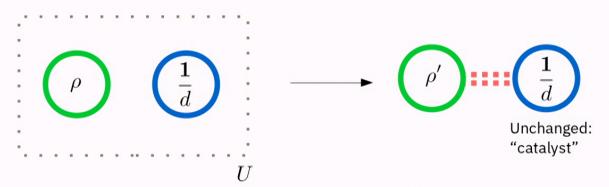
Pirsa: 18080084 Page 35/66

A series of questions



Q: Which states can be reached?

A series of questions

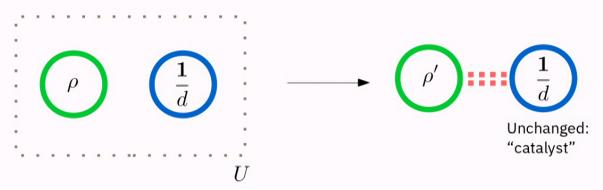


d: larger or equal to dimension of ho

Q: Which states can be reached by choosing different unitaries?

Pirsa: 18080084 Page 37/66

A series of questions



d: larger or equal to dimension of ho

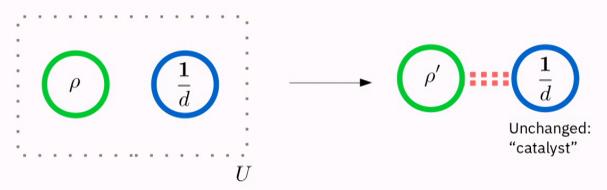
Q: Which states can be reached by choosing different unitaries?

A: All states that are **majorized** by ρ *.

* Suffices that d is larger than $\sqrt{\dim(
ho)}$. See P. Boes, H.W., R. Gallego, J. Eisert, arXiv:1804.03027

Pirsa: 18080084 Page 38/66

A series of questions



d: larger or equal to dimension of ho

Q: Which states can be reached by choosing different unitaries?

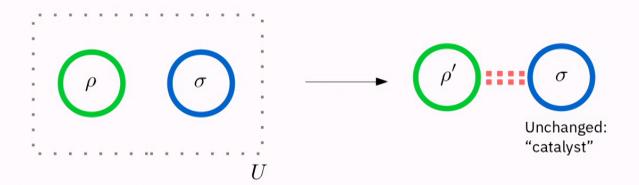
A: All states that are **majorized** by ρ *.

➤ Rényi-entropies can only increase!

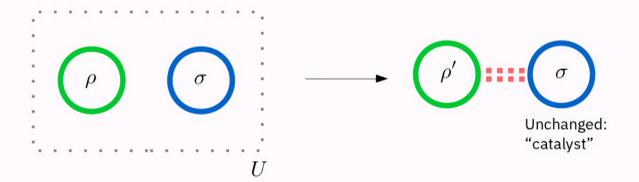
* Suffices that d is larger than $\sqrt{\dim(
ho)}$. See P. Boes, H.W., R. Gallego, J. Eisert, arXiv:1804.03027

Pirsa: 18080084 Page 39/66

Catalytic transitions

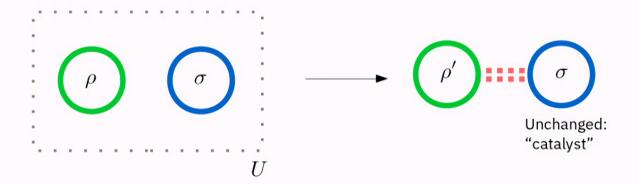


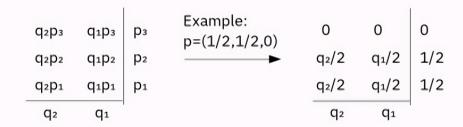
Q: Which states can be reached if we can choose catalyst and unitary?



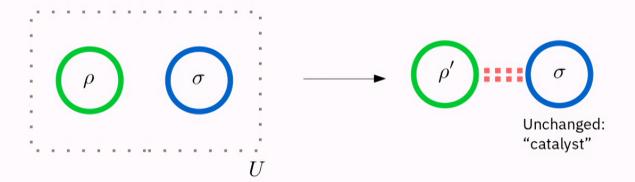
Step 1: Write bipartite distribution as table.

Pirsa: 18080084 Page 41/66



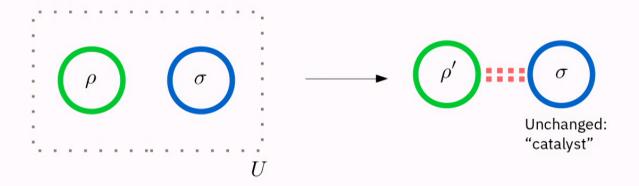


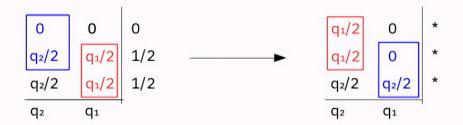
Step 1: Write bipartite distribution as table.



$$\begin{array}{c|ccc}
0 & 0 & 0 \\
q_2/2 & q_1/2 & 1/2 \\
q_2/2 & q_1/2 & 1/2 \\
\hline
q_2 & q_1
\end{array}$$

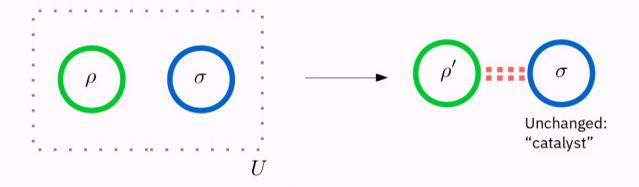
Step 2: Choose a permutation on the joint-distribution.

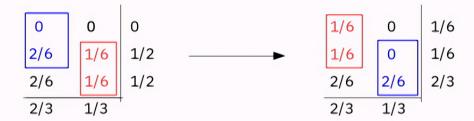




Step 3: Solve equations to ensure "catalyticity".

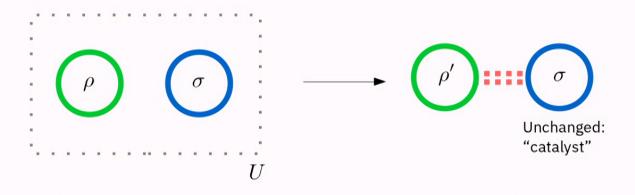
Pirsa: 18080084 Page 44/66

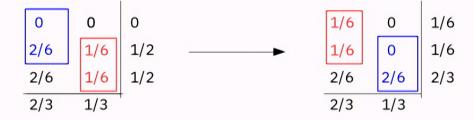




Step 3: Solve equations to ensure "catalyticity".

Pirsa: 18080084 Page 45/66

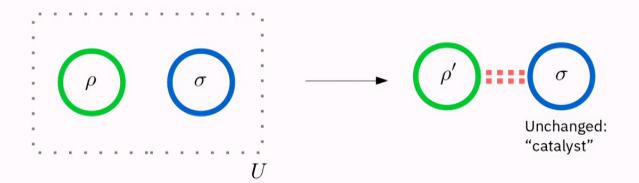




Largest probability increased from 1/2 to 2/3. Thus min-entropy decreased.

Pirsa: 18080084 Page 46/66

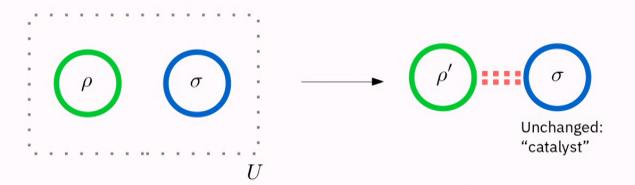
Catalytic transitions



Q: Which states can be reached if we can choose catalyst and unitary?

Pirsa: 18080084 Page 47/66

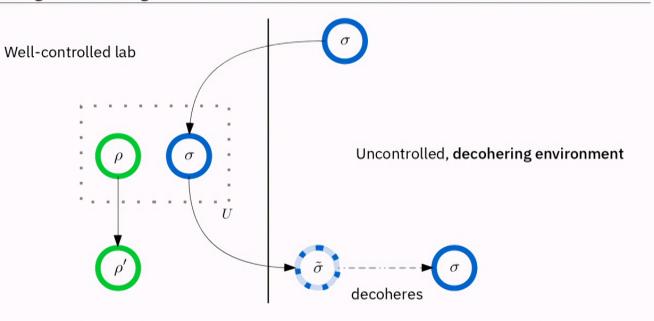
Catalytic transitions



Q: Which states can be reached if we can choose catalyst and unitary?

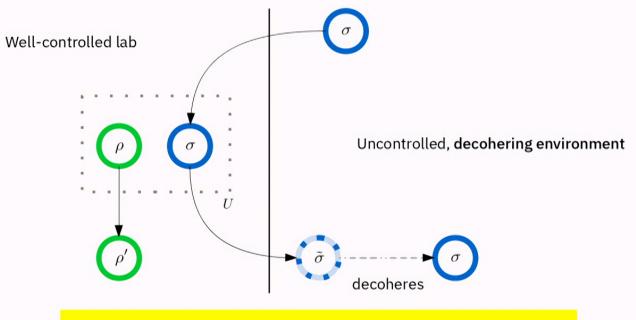
A: ??? (but we have a conjecture)

A more general setting



Pirsa: 18080084 Page 49/66

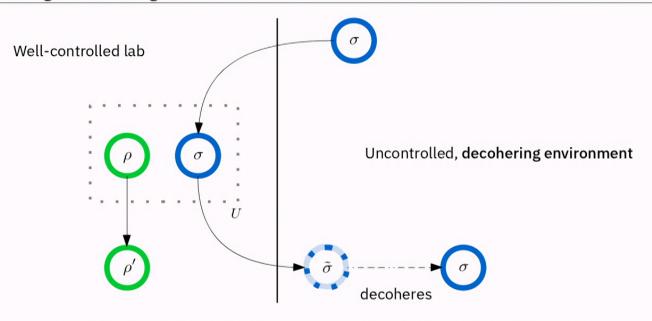
A more general setting



 $\rho \stackrel{\mathrm{dec.}}{\longrightarrow} \rho' \quad :\Leftrightarrow \quad$ Can find corresponding unitary and catalyst

Pirsa: 18080084 Page 50/66

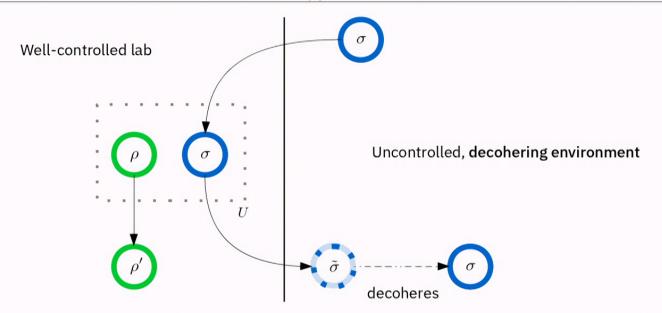
A more general setting



$$\rho \xrightarrow{\operatorname{dec.}} \rho' \quad :\Leftrightarrow \quad \begin{aligned} \operatorname{Exists \ unitary \ and \ catalyst \ such \ that:} \\ \operatorname{Tr}_1\left(U\rho \otimes \sigma U^\dagger\right) &= \rho' \\ \mathcal{D}\left[\operatorname{Tr}_2\left(U\rho \otimes \sigma U^\dagger\right)\right] &= \sigma \\ \mathcal{D} : \operatorname{Decoherence \ in \ fixed \ basis} \end{aligned}$$

Q: Which states can be reached?

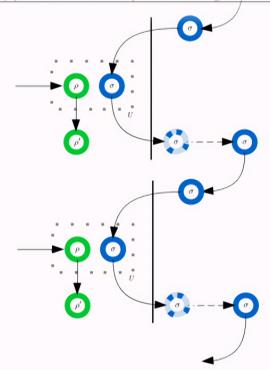
A characterization of von Neumann entropy without iid limit



Theorem

Let $\operatorname{spec}(\rho) \neq \operatorname{spec}(\rho')$. Then:

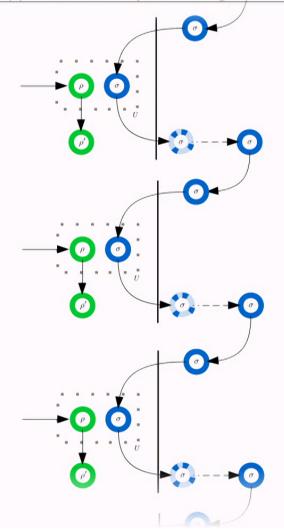
$$\rho \xrightarrow{\operatorname{dec.}} \rho' \quad \Leftrightarrow \quad S(\rho') > S(\rho) \quad \operatorname{and} \quad \operatorname{rank}(\rho') \geq \operatorname{rank}(\rho)$$



Can use a **single** catalyst to transform arbitrary many copies. Each undergoes transition

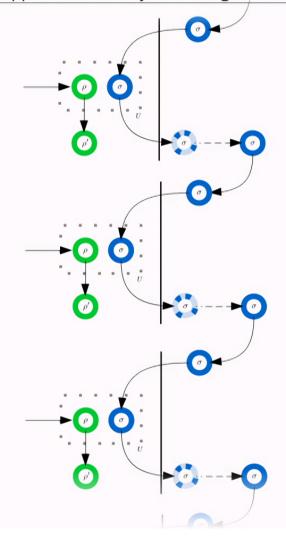
$$\rho \longrightarrow \rho'$$

Pirsa: 18080084 Page 53/66



Can use a **single** catalyst to transform arbitrary many copies. Each undergoes transition

$$\rho \longrightarrow \rho'$$



Can use a **single** catalyst to transform arbitrary many copies. Each undergoes transition

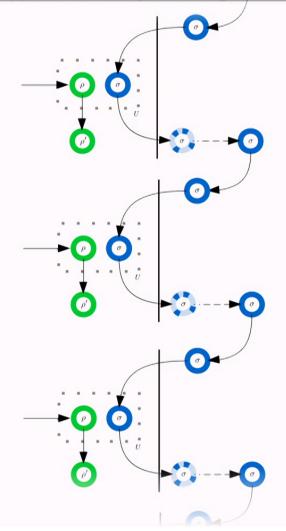
$$\rho \longrightarrow \rho'$$

Example:

$$ho = \chi \otimes \chi, \quad S(\chi) < \frac{1}{2}\log(2)$$

$$\rho' = \frac{1}{2} \otimes |0\rangle\langle 0|_{\varepsilon}$$

Full-rank state arbitrarily close to |0>



Can use a **single** catalyst to transform arbitrary many copies. Each undergoes transition

$$\rho \longrightarrow \rho'$$

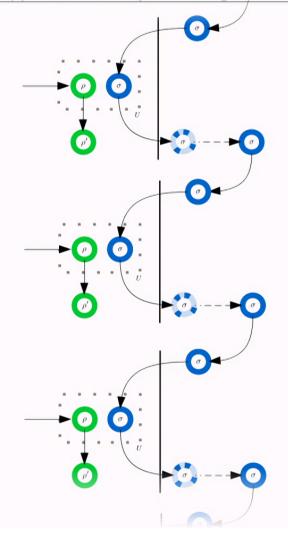
Example:

$$ho = \chi \otimes \chi, \quad S(\chi) < \frac{1}{2}\log(2)$$

$$\rho' = \frac{1}{2} \otimes |0\rangle\langle 0|_{\varepsilon_{\bullet}}$$

Full-rank state arbitrarily close to |0>

Half the systems get cooled to (almost) zero temperature, while the other half gets heated up to infinite temperature.



Can use a **single** catalyst to transform arbitrary many copies. Each undergoes transition

$$\rho \longrightarrow \rho'$$

Example:

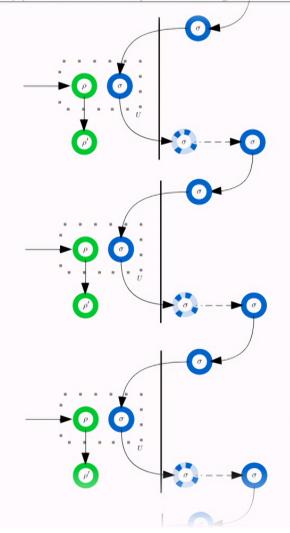
$$ho = \chi \otimes \chi, \quad S(\chi) < \frac{1}{2}\log(2)$$

$$\rho' = \frac{1}{2} \otimes |0\rangle\langle 0|_{\varepsilon_{\blacktriangledown}}$$

Full-rank state arbitrarily close to |0>

Half the systems get cooled to (almost) zero temperature, while the other half gets heated up to infinite temperature.

Like algorithmic cooling without iid limit.



Can use a **single** catalyst to transform arbitrary many copies. Each undergoes transition

$$\rho \longrightarrow \rho'$$

Example:

$$ho = \chi \otimes \chi, \quad S(\chi) < \frac{1}{2}\log(2)$$

$$\rho' = \frac{1}{2} \otimes |0\rangle\langle 0|_{\varepsilon_{\bullet}}$$

Full-rank state arbitrarily close to |0>

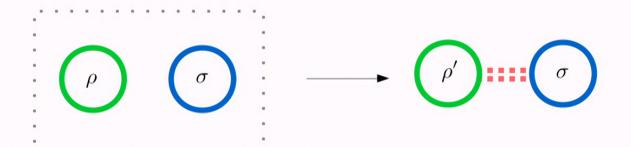
Half the systems get cooled to (almost) zero temperature, while the other half gets heated up to infinite temperature.

Like algorithmic cooling without iid limit.

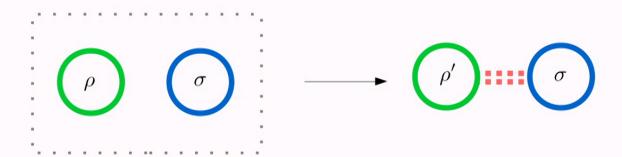
However, correlations are created:

$$\rho^{\otimes n} \longrightarrow \rho'_{1,\dots,n} \neq {\rho'}^{\otimes n}$$

Back to catalytic transitions



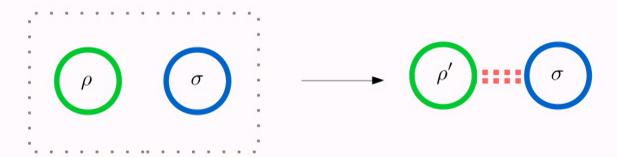
Back to catalytic transitions



Q: Which states can be reached if we can choose catalyst and unitary?

 $ho \longrightarrow
ho' \quad :\Leftrightarrow \quad$ Can find corresponding unitary and catalyst

Catalytic entropy conjecture

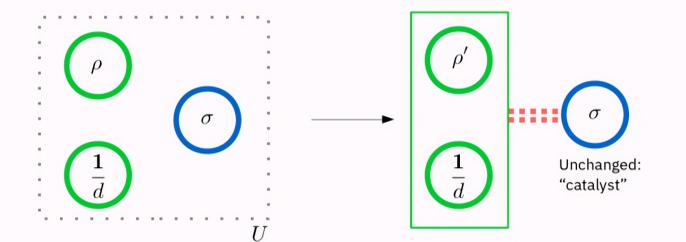


Catalytic entropy conjecture

Let $\operatorname{spec}(\rho) \neq \operatorname{spec}(\rho')$. Then:

$$ho \longrightarrow
ho' \quad \Leftrightarrow \quad S(
ho') > S(
ho) \quad {\rm and} \quad {\rm rank}(
ho') \geq {\rm rank}(
ho)$$

Weak solution to catalytic entropy conjecture



Weak solution to catalytic entropy conjecture



Lemma (Weak solution to conjecture)

Let $\operatorname{spec}(\rho) \neq \operatorname{spec}(\rho')$. Then the following are equivalent:

i)
$$S(\rho') > S(\rho)$$
 and $\operatorname{rank}(\rho') \ge \operatorname{rank}(\rho)$

ii) There exists some finite dimension d such that

$$\rho \otimes \frac{\mathbf{1}}{d} \longrightarrow \rho' \otimes \frac{\mathbf{1}}{d}$$

Implication of weak solution

Monotone: Any function *f* on the set of density matrices such that

$$\rho \longrightarrow \rho' \quad \Rightarrow \quad f(\rho) < f(\rho')$$

Call f additive if $f(\rho_1 \otimes \rho_2) = f(\rho_1) + f(\rho_2)$.

Pirsa: 18080084 Page 64/66

Implication of weak solution

Monotone: Any function *f* on the set of density matrices such that

$$\rho \longrightarrow \rho' \quad \Rightarrow \quad f(\rho) < f(\rho')$$

Call f additive if $f(\rho_1 \otimes \rho_2) = f(\rho_1) + f(\rho_2)$.

Proposition (Quasi-unique monotone)

Let f be a monotone on catalytic transitions. Then exactly one of the following statements is true.

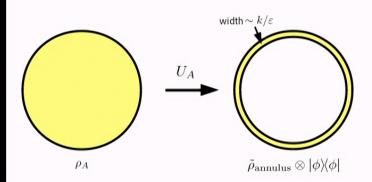
i)
$$S(\rho') > S(\rho) \quad \Leftrightarrow \quad f(\rho') > f(\rho)$$

ii) The function f is **non-additive** or **discontinuous**.

In particular, this rules out all Rényi entropies as monotones.

Pirsa: 18080084 Page 65/66

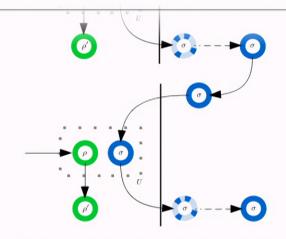
Thank you for your attention!



Lemma

$$\sum_{j=1}^{M} p_j \ge 1 - \frac{S(\mathbf{p})}{\log(M)}$$

Holographic compression from the Area Law With Jens Eisert, soon on arXiv.



Catalytic entropy conjecture

Let $\operatorname{spec}(\rho) \neq \operatorname{spec}(\rho')$. Then:

$$\rho \longrightarrow \rho' \quad \Leftrightarrow \quad S(\rho') > S(\rho), \quad \mathrm{rank}(\rho') \geq \mathrm{rank}(\rho)$$

ArXiv:1807.08773 With Paul Boes, Jens Eisert, Rodrigo Gallego, Markus Müller