Title: Analgebraic locality principle to renormalise higher zeta functions
Date: Aug 16, 2018 12:00 PM
URL: http://pirsa.org/18080078

Abstract: According to the principle of locality in physics, events taking place at dii—€erent locations should behave independently of each other, a
feature expected to be rei-, ected in the measurements. We propose an algebraic locality framework to keep track of the independence, where sets
are equipped with a binary symmetric relation we call alocality relation on the set, this giving rise to alocality set category. In this algebraic locality
setup, we implement a multivariate regularisation, which gives rise to multivariate meromorphic functions. In this case, independence of events is
rei-, ected in the fact that the multivariate meromorphic functions involve independent sets of variables. A minimal subtraction scheme dei—+ned in
terms of a projection map onto the holomorphic part then yields renormalised values. This multivariate approach can be implemented to renormalise
at poles, various higher multizeta functions such as conical zeta functions (discrete sums on convex cones) and branched zeta functions (discrete
sums associated with rooted trees). This renormalisation scheme strongly relies on the fact that the maps we are renormalizing can be viewed as
locality algebra morphisms. Thistalk is based on joint work with Pierre Clavier, Li Guo and Bin Zhang.
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Evaluating a fraction with a linear pole at zero

17
A Ll 4
Z] _|_ 22 |Z1 :0,Z2=0 — 0?
10000 ?

In our approach, a given choice of locality fixes the value 0.
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SET UP AND AIMS J

Our first aim

» renormalise certain higher zeta
functions at poles
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ple zeta functions revisited in the language of
Dols (1)
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Multiple zeta functions as nested sums of symbols
On R, consider the symbol map o : x > x~°.
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objects under consideration
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Higher zeta functions
generalise multiple zeta functions:

e branched zeta functions: higher zeta functions attached
to rooted trees;

@ conical zeta functions: higher zeta functions attached to
(lattice and strongly) convex cones.
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ple zeta functions revisited in the language of
nols (1)
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Multiple zeta functions as nested sums of symbols

On R, consider the symbol map o : x > x~°.

@ The Riemann zeta function: for R(s) > 1,
4(8) == Zh=y N7° = iy s(N);

@ Multiple zeta function [Euler, Zagier, Hoffman, ..] of length k: for
R(s1) > 1

4’(31’...'3;() - Z n1-51,..n;8k

0<ng <Ng-q1<'<Ny

- Z s, (Ny) - g, (Nk).

0<nk <Ak <:=<My

-84 ‘Sk_ =
ZO(HkSﬂk 155 n1 Rt nk —L0<ﬂk5”'5ﬂ1 (rS|

® The x-multiple zeta function *(sy,::+ ,8) =
Ny ) bLE (gt (nk).

O« - B O
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le zeta functions revisited using trees and cones (2)
T ultiple zeta functions as sums on decorated ladder trees
@ single root tree: e, w (8);

@ tree of length k:
.U',1 TR .[r,2 """ .U',k_ ; _.U'.k ey (( Sty , Sk )

fr— r_(177 j:o e~'f(e)de; (fy : e — e7X) = (M(fx) : s — x7%)

Multizeta functions% sums on rational convex cones

Q (s) o S1(€) = Ynec,nze™ " with C; := R, the 1-dimensional
Chen cone;

e ((515' it -.Sk) m Sk(f‘!“" ,fk) — XﬁeCLnZ*e”(ékﬁ) with

6k
Ck={0<xq <::: <Xk} the open k-dimensional Chen cone.
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first aim: Renormalisation branched and conical
functions at poles
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The maps under consideration

@ so to arooted tree T we assign a branched zeta function
defined on some domain of convergence;

@ to a (lattice) convex cone C we assign a conical exponential
sum S¢ defined on some domain of convergence.

Renormalisation to cure divergences

We want to study the infinite sums 't (resp. S¢) beyond the
domain of convergence.

@ We show that they extend to multivariate meromorphic
functions with linear poles;

@ We renormalise them at the poles, extracting a reasonable
finite part.
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ogy with perturbative quantum field theory
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Quantisation

Observable o C
Mean value over configurations
0 > (0)

Summation on trees and cones

Trees —_ C Cones — C
Summation Summation
T — &) C -, Sclp).
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2S versus cones
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Analogies: both

@ carry filtered structures: by the dimension of the cone and the size
of the tree;

@ give rise to a hierarchy of divergences with subdivergences;

Discrepancies: trees are more "rigid” than cones

@ frees are governed by the grafting operator and concatenation: the
(interpolated) Rota-Baxter summation operator o= +— 3'* _.o(n) is
lifted from the root to trees using universal properties of trees [Talk
by P. Clavier];

@ cones are governed by subdivisions: the exponential sum S on
smooth cones is linearly extended to exponential sums on general
convex cones by subdivisions [used by Berline and Vergne].
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Our second more ambitious aim

o Renormalise branched and
conical zeta functions while
preserving locality.
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ality in terms of Multiplicativity

BN-MATH-VCT1 OAL: Multiplicativity on independent events

Observable — Measurement
0O — (0)

01 and Os = \(_01 *()s) = (01 )(022 .

independent  locality multiplichtivity

Analogy: separation of variables (n = ny; + ny)

fR"f1(x1) fa(X2) dxq dxo = (me f1(x1) dx1)-(fm fg(Xg)dXQ).

N - -
S

x1 and xz independent multiplicativity

If}" B 1,; Y (v
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iplicativity for sums on trees and cones
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Concatenation of independent trees

,{Tt'Tz(p) = (T1(p)‘{T2(p);

Minkowski sum of independent cones

SC1+C9(p) = S, (P)Sc,(P)

What are independent trees and cones?

Independence will later be defined as a locality relation on the
algebras of trees and cones.
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b generally: ® ~» "

BN-MATH-VC1 ata: (A, M, )
@ a (commutative) algebra (71, x) (e.g.: trees, cones),
@ an algebra of meromorphic germs at zero to be defined M,

@ an algebra morphism & : (A, x) — (M,:) (.9: £, S)

d(aj*xap) = d(ay) - P(a2). (1)

Our aim: (A, C, ")

Build a map
™" (A, %) — (C, )

that satisfies a locality condition:

a, independent of a, = ™" (ay*xa;) = ""(ay) - ¢""(a2).  (2)
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to higher zeta functions
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The algebra 7

@ pointed convex cones C in R* equipped with the Minkowski sum (L.
Guo, S.-P,, B. Zhang 2017);

@ rooted forests F equipped with the concatenation product (P.Clavier,
L. Guo, S.-P,, B. Zhang 2018)

v

@ Preliminary remark: s, — s; + z; = poles at zero.

The map ¢ : A — M(C®)

@ Exponential sums on cones: C — Sg;

@ Branched zeta functions: F =~

¥l
£
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THE ANALYTIC SET UP J
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tis M? What are the poles of f = ®(a) ?

BN-MATH-VC1
A first naive approach: one variable

@ M(C) meromorphic germs in one variable: f(z) = x}‘,,,, aiz” + h(2);

@ Subtract the pole and evaluate the holomorphic part at the pole
(here zero): evp™tf = evy"™® (L:‘ , 827 + h(z)) := h(0).

@ Obstacle: evo™(f; - f)#evo™t(fy) - evo"#(f2) so multiplicativity is
ruined: 1 = evy'® (% -z) #evo'E (}) . evg™8 (2) = 0.

Counterterms
@ M(C):=C[z',Zz]] > fis an algebra;
® M, (C) :=CJz]] > his an algebra;

@ Counterterms: M_(C) :=z'C[z",2]] > f - his not an ideal;
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variate meromorphic germs

BN-MATH-VC1 Iternative approach: several variables

@ multivariate meromorphic germs: e.g. f(z1, z2) = £;

f(Z1. 22) = _l_ﬂ.:' Tiz

@ independence/ locality/ orthogonality relation: le 1 2o;

1
Z 12 d 21— 2o

, ‘ . _ :
@ a (partial) product on independent germs: e.g. % =213

3w = (&= 2)

Zy *22.

Multivariate meromorphic germs with linear poles

@ M(CK)af= EL(%?TQ h holomorphic germ, s; € Zso;

® (:Ck > CandL;: Ck - Clinear forms;

@ Dependence set Dep(f) := ({1, ,€m, Ly, +++, Ly);
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lity and multivariate regularisation

heorem (L. Guo, S.-P.,, B. Zhang/ N. Berline, M. Vergne
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CK) = M_(C*)®* M. (C¥), where M_(C¥) > %(i%l with

Dep(h) L (Ly, -+, Ly) and fyLf, &= Dep(f;)LDep(fz).

Locality ideal
@ M(CK)is a locality algebra (to be defined);
@ M, (CK)is alocality algebra ;

@ No counterterms: M_(CX) is a locality ideal (to be defined);

Our main protagonists

@ Orthogonal projection . : M(C¥) — M, (C¥) is a locality
morphism (to be defined) ;

@ Generalised evaluator evy™" := evpom,. : M(C“) — C.
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ALGEBRAIC LOCALITY STRUCTURES )
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pbraic locality
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Definition of locality

A locality set is a couple (X, T) where X isasetand T C X x X is a
symmetric relation on X, called locality relation (or independence
relation) of the locality set.

X1TXo & (X1,X2) €T, VYxq,X € X.

Two basic yet important examples of locality
@ XTY & XnY = (0 on subsets X, Y of aset Z.

@ XTY & XLY on subsets X, Y of an euclidean vector space V.

v

Separation of variables
On M(C®), fy L, & Dep(f).LDep(f2). J
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lal operations

BN-MATH-VC1 peration on the graph of a locality relation
® Locality set: (X, T),

@ Graph: T = {(a,b) € X?, aTb),

@ Partial operation:

*x  XXXDT — X
(a,b) +— axb.

Partial product on meromorphic germs
The partial product on M(C®) = [Jxeny M(C¥):

MEC®)x M(C®) 5T — M(C®)

o hy(f ho(€o hi(€3) - ho(
fq = I.gs.l),f2= 255.2) — f1-fo = 1(__1) _25(. 2)-
Ly’ L* Gl
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braic locality structures

BN-MATH-VC 1 pcality structures

@ A locality semigroup is a locality set (A, T ) with a product law
ma : A XA D T4, — A compatible with the locality relation:
Vx,y,2€ A, ((XTayY)A(¥YTaz) A(XxTaz)) =
((ma(x,y)Taz) A (xTama(y, 2)))and locally associative.

@ A locality vector space is a locality set (V, Ty) with a linear
structure such that for any subset X of V, the set X'V is a linear
subspace of V.

@ A locality (unital) algebra is a locality vector space (A, T ) equipped
with a bilinear map my : T4 — A such that (A, Ta,ma)is a
locality semi-group (monoid).

A counterexample relevant for applications

On R equipped with the relation x T y & x + y¢ Z the addition does not
yield a locality semi-group: for U = {1/3) we have

(1/3,1/3) e (U" xU")N T but1/3+ 1/3 = 2/3¢U".
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locality semigroups to locality ideals

BN-MATH-VC1 oncepts related to locality semigroups

@ (Non commutative) partial semi-groups
R. H. Schelp, A partial semigroup approach to partially
ordered sets (1972);

@ correspond to Weinstein's selective categories with one
object
D. Li-Bland, A. Weinstein, Selective categories and linear

Methods and Applications (2014).

canonical relations, Symmetry, Integrability and Geometry:

M_(CK) is not an ideal in M(CK) yet
M_(CK) is a locality ideal in M(C¥)

M (C*) 3 h l% e M_(C") = H’. Ei e M_(CY).
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lity morphisms

ocality maps
¢ (X, Tx)+— (Y, Ty)is alocality mapif b@ d(Tx) C Ty

(almost)-Locality of distribution kernels

Let U c R" be open. We compare two locality relations on D(U):
® ¢ Ty < d(Supp(¢), Supp(y)) >€;
@ ¢ TNy = [, ¢(x)K(x,y)y(y)dxdy= 0.

The kernel K is e-local &= 1d : (D(U), T¢) — (D(U), T¥) is a locality
map.

L.ocality morphisms of algebras
A locality map ¢ : (A, T4, ma) +— (B, Tg, mg) is a locality morphism of
locality algebras if a1 T a2 == ®(ma(ai, a2))=mp(P(ai), P(az)).

= 9 s P




MULTIVARIATE REGULARISATION )
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artially multiplicative renormalised map

BN-MATH-VC1
Back to our two main protagonists
@ The orthogonal projection 7. : (M(CK), 1) — (M. (C¥), 1)
is a locality morphism of locality algebras;
@ The generalised evaluator
eV = evo o my 1 (M(C¥), L) — Cis alocality character.

v

Theorem (P. Clavier, L. Guo, S.-P., B. Zhang 2018)

A locality morphism & : (A, T) — (M(C), 1) gives rise to a
locality character

@

d)!’cn — evg-n o (b : (ﬂ, T) — C
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lusions
BN-MATH-VC artial multiplicativity preserved after renormalisation!
The renormalised map ®™" is partially multiplicative

a Tardad = dr" (81 * 32) = ¢'AC"(31) J ¢rcn(a2)' (3)

i

Multivariate minimal subtraction scheme

Provided ®(A) c M(C*), we can renormalise while preserving
partial multiplicativity using the locality projection .. to extract the
finite part at zero.

Back to higher zeta functions: one can renormalise at poles

@ Exponential sums on rational convex cones equipped with an
orthogonality locality relation (L. Guo, S.-P, B. Zhang 2017);

@ Branched zeta functions equipped with an orthogonality locality
relation (P. Clavier, L. Guo, S.-P., B. Zhang 2018).
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nerties of the renormalised sums at poles

BN-MATH-VC1

@ The renormalised higher zeta values at poles are rational, due
to the rationality of the Bernoulli numbers (arising in the
Euler-Maclaurin formula), the rationality of the convex lattice
cones and the fact that the underlying algebraic procedures
are compatible with linearity;

@ The renormalised higher zeta values restricted to ladder trees
and Chen cones yield renormalised multiple zeta values;

e Stuffle relations generalise to compatibility with subdivisions
for sums on cones;

@ The branched sum on trees factorises through words via a
"flatening operator”.

e B> « B 2 9ae
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K in progress and open question

e Work in progress
@ Generalisation of the generalised evaluators cv'g'"'o = evg o 74 %to
abstract generalised evaluators for an abstract locality relation T;

@ Study of the dependence on the underlying inner product Q on
R*:The general linear group GL(R*®) 5 L acts (transitively) on inne
products Q — Q, := L' Q L used to build the projection n_?_, and
hence on the locality relation L9 on M(C®);

=

@ Generalisation of the locality relation T on M(C®) to an abstract
locality relation T, by means of a generalisation of the orthogonal
complement map to an abstract complement map;

L)

Open question

|dentification and description of a (the renormalisation ?) subgroup of
GL(R%®) acting transitively on abstract generalised evaluators.
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