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Abstract: <p>Three& nbsp;fundamental factors& nbsp;determine the quality of a statistical learning algorithm:
expressiveness,& nbsp;generalization<wbr  />& nbsp;and& nbsp;optimization.& nbsp;& nbsp; The classic strategy for handling these factors is
relatively well understood.&nbsp;&nbsp;In contrast, the radically different approach of deep learning, which in the last few years
has& nbsp;revolutionized the world of artificial intelligence, is shrouded by mystery.&nbsp; This talk will describe a series of works aimed at
unraveling some of the mysteries revolving expressiveness, arguably the most prominent factor behind the success& nbsp;ofé& nbsp;deep
learning.&nbsp; | will&nbsp;begin by& nbsp;showing that state of the art deep learning architectures, such as convolutional networks, can be
represented as tensor networks -- a computational model commonly employed in quantum physics.& nbsp; This connection will inspire the use of
guantum entanglement for defining measures of data correlations modeled by deep networks.& nbsp; Next, | will turn to a quantum max-flow /
min-cut theorem characterizing the entanglement captured by tensor networks.& nbsp; This theorem will give rise to new results that shed light on
expressiveness in deep learning, and in addition,& nbsp;provide new tools for deep network design.</p>

<p>& nbsp;</p>

<p>Works covered in the tak were in collaboration with&nbsp;Yoav Levine&nbsp;Or Sharir,&nbsp;David Yakira and&nbsp;Amnon
Shashua.</p>
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Deep Learning

EVERY INDUSTRY WANTS DEEP LEARNING

Cloud Service Provider Medicine

» Cancer cell detection
» Diabetic grading
» Natural language processing > Drug discovery

» Image/Video classification
» Speech recognition

Source

Media & Entertainment

» Video captioning
» Content based search
» Real time translation

Security & Defense Autonomous Machines

» Pedestrian detection
» Lane tracking
» Recognize traffic sign

» Face recognition
» Video surveillance
» Cyber security

I NVIDIA

NVIDIA (www.slideshare.net/openomics/the-revolution-of-deep-learning)
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DL Theory: Expressiveness, Generalization & Optimization

Outline

€ Deep Learning Theory: Expressiveness, Generalization and Optimization
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DL Theory: Expressiveness, Generalization & Optimization

Statistical Learning Setup

X — instance space (e.g. R100%100 for 100-by-100 grayscale images)

Y — label space (e.g. R for regression or [k] := {1,..., k} for classification)
D — distribution over X x ) (unknown)

{:YxY — Rsg — loss func (e.g. £(y,y) = (y — §)? for Y = R)

Task
Given training sample S = {(X1,y1), .-, (Xm, ym)} drawn i.i.d. from D,
return hypothesis (predictor) h: X — ) that minimizes population loss:

Lp(h) := Ex y~pl[l(y, h(X))]

Approach
Predetermine hypotheses space H C Y, and return hypothesis h € H
that minimizes empirical loss:

Ls(h) = Egx sy, HOXO) = — ST €(yi, h(X:))

m ;

Nadav Cohen (1AS) Expressiveness in DL via TN and QE Perimeter, Jul'18 6 /47
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DL Theory: Expressiveness, Generalization & Optimization

Three Pillars of Statistical Learning Theory:
Expressiveness, Generalization and Optimization

h
®

Training Error

\

h,
s

Estimation Error
(Generalization)

/

\K (Optimization)

I
/.
Approximation Error

(Expressiveness)

_4

f5y — ground truth (argmingcyax Lp(f))

h}, — optimal hypothesis (argmin,c4, Lp(h))

h% — empirically optimal hypothesis (argmin,cy Ls(h))

h — returned hypothesis

Nadav Cohen (lAS)
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DL Theory: Expressiveness, Generalization & Optimization

Classical Machine Learning

e Euclidean instance/label spaces: X' = RY, Y = Rk

o Linear hypotheses space: H = {x — Wx : W € Rk}

= T
Least Squares Support Vector
Regression Machine

Nadav Cohen (lAS) Expressiveness in DL via TN and QE Perimeter, Jul'18 8 /47
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DL Theory: Expressiveness, Generalization & Optimization

Classical Machine Learning — Three Pillars

"

?® Estimation Error

T
Training Error (Generalization)
(Optimization)

€

mn Error

(Expressiveness)

4

Optimization

Empirical loss minimization is a convex program:

h~ hs ( training

Expressiveness & Generalization

Bias-variance trade-off:

H approximation err

err =0 )

estimation err

expands N

a

shrinks %

N\
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DL Theory: Expressiveness, Generalization & Optimization

Classical Machine Learning — Three Pillars

(Expressiveness)

. mn Error

b T
Training Error
(Optimization)

Optimization

Empirical loss minimization is a convex program:

h~ hs ( training err ~ 0 )

Expressiveness & Generalization
Bias-variance trade-off:

S approximation err | estimation err

expands B %
shrinks & N

Nadav Cohen (lAS) Expressiveness in DL via TN and QE Perimeter, Jul'18
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DL Theory: Expressiveness, Generalization & Optimization

Deep Learning

e Euclidean instance/label spaces

e Composite (non-linear) hypotheses space

Fully-Connected Networks Recurrent Networks

o= 0, : () @® oupuriave
o) g g ® —a) .= I?H?}—'II}—»T

OENGENG e i

Inpul layer

hidden layer 1 hidden layer 2

Convolutional Networks
input image feature maps  feature maps feature maps feature maps
(256x256) (256x256) (128x128) (128x128) (64x64)

1| r g, - category
I . 1

convolution subsampling convolution subsampling fully
layver 1 layer | layer 1 laver 1 r-mnrtlv-l.

output

Nadav Cohen (1AS) Expressiveness in DL via TN and QE Perimeter, Jul'18
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DL Theory: Expressiveness, Generalization & Optimization

Deep Learning — Three

Pillars

"

b
Training Error
(Optimization)

-

(Generalization)

h*(/) mn Error
Ly
7 Estimation Error

(Expressiveness)

_

Optimization

Empirical loss minimization is a non-convex program:

@ hg is not unique — many hypotheses have low training err

@ Stochastic Gradient Descent somehow reaches one of these

Expressiveness & Generaliza

tion

Vast difference from classical ML:

@ Some low training err hypotheses generalize well, others don't

e W /typical data, solution returned by SGD often generalizes well

Nadav Cohen (IAS) Expressiveness in DL via TN and QE Perimeter, Jul'18
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Convolutional Networks as Tensor Networks

Outline

© Convolutional Networks as Tensor Networks
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DL Theory: Expressiveness, Generalization & Optimization

Deep Learning — Three Pillars

Estima

i A
Training Error (Generaliz%
(Optimization)

Optimization

Empirical loss minimization is a non-convex program:
* - - - -
@ hg is not unique — many hypotheses have low training err

@ Stochastic Gradient Descent somehow reaches one of these
Expressiveness & Generalization

Vast difference from classical ML:
@ Some low training err hypotheses generalize well, others don't

e W /typical data, solution returned by SGD often generalizes well

@ Expanding H reduces approximation err, but also estimation err!

Nadav Cohen (IAS) Expressiveness in DL via TN and QE Perimeter, Jul'18 11 / 47
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Convolutional Networks as Tensor Networks

Convolutional Networks

Most successful deep learning arch to date!

Classic structure:

input image feature maps  feature maps feature maps feature maps
256x256) (256x256) (128x128) (128x128) (64x64)

convolution subsampling convolution subsampling fully
1 layer i layer | layer | layer | connected

category

Modern variants:
e”J‘

€,
Yerz)

&>
- Jd/ﬁ"u,

Convolution

4
output

Traditionally used for images/video, nowadays for audio and text as well

Nadav Cohen (IAS) Expressiveness in DL via TN and QE

Perimeter, Jul'l8
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Convolutional Networks as Tensor Networks

Coefficient Tensor

ConvNets realize func over many local elements (e.g. pixels, audio samples)
Let H = span{fi(x)}™, be Hilbert space of func over single element

Tensor product HEN is then Hilbert space of func over N elements

Any h(-) € H®N can be written as:

h(xl,,..,xN) = Z 4d1 dNHfd ‘ (xla--'axN»

du=1

where:

@ F(xi1,...,xy) — product (rank-1) tensor, depends only on input

e A - coefficient tensor, fully determines func h(-)

Nadav Cohen (1AS) Expressiveness in DL via TN and QE Perimeter, Jul'18 14 / 47
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Convolutional Networks as Tensor Networks

Tensor Networks

In quantum physics, high-order tensors are simulated via:
Tensor Networks

e TR,

A e e

Tensor Networks (TN):

@ Graphs in which: vertices «— tensors edges +— modes

scalar vector matrix order-3 tensor

O —@ g, s —?—

e Edge (mode) connecting two vertices (tensors) represents contraction

inner-product matrix
between vectors multiplication

N

Nadav Cohen (lAS) Expressiveness in DL via TN and QE Perimeter, Jul'18 15 / 47
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Convolutional Networks as Tensor Networks

Tree Tensor Network — Convolutional Arithmetic Circuit

A ]‘-(le...,XN) >
e ot N & z
coeff tensor input product tensor

Coeff tensor A is exponential (in # of input elements N)

— directly computing general func is intractable

Observation

Decomposing coeff tensor w/tree TN gives ConvNet w/linear activation
and product pooling — Convolutional Arithmetic Circuit (ConvAC)!

TN topology +—  ConvAC arch

TN tensors <«— ConvAC weights

Nadav Cohen (lAS) Expressiveness in DL via TN and QE Perimeter, Jul'18 16 / 47
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Convolutional Networks as Tensor Networks

Example 1: Shallow Model

116, T A B ) >
coeff tensor input product tensor

W /star TN applied to coeff tensor:
delta tensor:
i=iy=i =
- 10 Ufhem ise

CP

2 c/_ _

Nadav Cohen (lAS) Expressiveness in DL via TN and QE Perimeter, Jul'18
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Convolutional Networks as Tensor Networks

Example 1: Shallow Model

“y

h(x1,...,xN) ]:(Xls---,XN)J>

—

coeff tensor input product tensor

W /star TN applied to coeff tensor:

delta tensor:

Jh =k ==

o) = J !
iyily 10 ’ otherwise

4 d. _ ‘
func is computed by shallow ConvAC (single hidden layer, global pooling):

input X’ representation 1x1 conv

global dense
pooling  (output)

—P—

Nadav Cohen (lAS) Expressiveness in DL via TN and QE Perimeter, Jul'18 17 / 47
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Convolutional Networks as Tensor Networks

Example 2: Deep Model

hG XL XN >
N - L. “~ -
coeff tensor input product tensor

W /binary tree TN applied to coeff tensor:

Cl)i D €
(){| f]_} (13 (){‘-1 f’fr, (){(5 D

func is computed by deep ConvAC (size-2 pooling windows):

input X representation 1x1 conv :
‘ : - pooling

Nadav Cohen (IAS) Expressiveness in DL via TN and QE Perimeter, Jul'18 18 / 47
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Convolutional Networks as Tensor Networks

Example 3: Deep Model with Overlaps

]'—(Xl:...,XN) >
N~ ~ - v
coeff tensor input product tensor

¢ f‘%‘w’ f‘% e {L {

323412323434 23434 12323434 23434
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Convolutional Networks as Tensor Networks

Example 2: Deep Model

hG XL XN >
N - L. “~ -
coeff tensor input product tensor

W /binary tree TN applied to coeff tensor:

Cl)i D €
(){| f]_} (13 (){‘-1 f’fr, (){(5 D

func is computed by deep ConvAC (size-2 pooling windows):

input X representation 1x1 conv :
‘ : - pooling
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Expressiveness of Convolutional Networks

Expressiveness

N

Io

/.
7 Approximation Error

(Expressiveness)

4

f5y — ground truth (argminscyx Lp(f))
h}, — optimal hypothesis (argmin, .4, Lp(h))
h — empirically optimal hypothesis (argmin, ., Ls(h))

h — returned hypothesis

Nadav Cohen (IAS) Expressiveness in DL via TN and QE Perimeter, Jul'18
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Expressiveness of Convolutional Networks Dependencies as Quantum Entanglement

Outline

© Expressiveness of Convolutional Networks

@ Dependencies as Quantum Entanglement
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Expressiveness of Convolutional Networks ~ Dependencies as Quantum Entanglement

Modeling Dependencies in Data

ConvNets realize func over many local elements (e.g. pixels, audio samples)

Key property of such func:

dependencies modeled between sets of input elements

Modeling strong dependence between
and blue pixels is important here

. Py

& -

Less important here

Partition A Partition B

Q: What kind of dependencies do ConvNets model?

Q: How do these relate to network arch?

Nadav Cohen (lAS) Expressiveness in DL via TN and QE Perimeter, Jul'18
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Expressiveness of Convolutional Networks Dependencies as Quantum Entanglement

Quantum Entanglement

1 2 3 o N N
In quantum physics, state of particle is represented as vec in Hilbert space:

M

.. a4 -|Yqg) €H

d—].\v-/ S———
coeff basis

|particle state) = Z

System of N particles is represented as vec in tensor product space:

M (574}
|system state) = Zdl.“le Adydy *|[0a) @ ® |tg,) € H®N

coeff tensor

Quantum entanglement measures quantify “dependencies” that system
state models between sets of particles

Nadav Cohen (1AS) Expressiveness in DL via TN and QE Perimeter, Jul'18 24 / 47
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Expressiveness of Convolutional Networks Dependencies as Quantum Entanglement

Quantum Entanglement (cont'd)

M
|system state) = Z

4 ¢ F ol
v

Consider partition of the N particles into sets 7 and Z¢

[ A]z — matricization of coeff tensor A w.r.t. Z:
@ arrangement of A as matrix

@ rows/cols correspond to modes indexed by Z/Z¢

Nadav Cohen (IAS) Expressiveness in DL via TN and QE Perimeter, Jul'18
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Expressiveness of Convolutional Networks Dependencies as Quantum Entanglement

Quantum Entanglement (cont'd)

#4487
Z

M

AJ 7 - matricization
A Ya) R R | [[
dh...dy " [Ver) baw) o Awirt [

|system state) = Zd P
1...dy

Let ¢ = (01,02,...,0r) be the singular vals of [A]7

Entanglement measures between particles of Z and of Z¢ are based on o

o Entanglement Entropy: entropy of (¢2,...,0%)/ |lo|3

Nadav Cohen (lAS) Expressiveness in DL via TN and QE Perimeter, Jul'18 26 / 47
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Expressiveness of Convolutional Networks Dependencies as Quantum Entanglement

Quantum Entanglement (cont'd)

#4487
Z

M
|system state) = Zdi...dN . Ady...dy | Vay) @ - @ [Pay)

[A]z — matricization
of Aw.rt. Z

Let ¢ = (01,02,...,0r) be the singular vals of [A]7

Entanglement measures between particles of Z and of Z¢ are based on o
o Entanglement Entropy: entropy of (¢2,...,0%)/ |lo|3

@ Geometric Measure: 1 — O’%/ HO’H%

e Schmidt Number: |o||, = rank[A]z

Nadav Cohen (1AS) Expressiveness in DL via TN and QE Perimeter, Jul'18 26 / 47
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Dependencies as Quantum Entanglement

Expressiveness of Convolutional Networks

Measuring Dependence with Entanglement

Structural equivalence:
state of

quantum many-body state man}’ pamc"fs
M > ¢
|system state) = Z Ady dy *|[Vd) ® -+ @ [tdy) &
g =1 T .

coeff tensor

func over
many pixels

func over many local elements
M
Y A o g D)
N, e’

dy...dy=1

|

i

is
Iy

i

:
mu,.is

ﬁgiﬂ
i

ftlul;
!Piﬁ

coeff tensor

We may quantify dependencies func models between input
sets by applying entanglement measures to its coeff tensor!

Nadav Cohen (IAS) Expressiveness in DL via TN and QE Perimeter, Jul'18 27 / 47

Page 32/51

Pirsa: 18080040



Expressiveness of Convolutional Networks Dependencies as Quantum Entanglement

Measuring Dependence with Entanglement — Interpretation

M
Adl...dN 'fdl(xl) e de(XN)
—

coeff tensor

di...dy=1

When func h(-) is separable w.r.t. input sets Z/Z¢:

Jg. &' st h(xi,...,xn) = g ((xi)icz) - &' ((xir)ireze)

it does not model any dependence between Z/Z¢

Entanglement measures on A quantify dist of h(-) from separability:

@ A has high (low) entanglement w.r.t. Z/Z¢
= h(-) is far from (close to) separability w.r.t. Z/Z¢

@ Choice of entanglement measure determines dist metric

Nadav Cohen (1AS) Expressiveness in DL via TN and QE Perimeter, Jul'18 28 / 47
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Expressiveness of Convolutional Networks Analysis of Supported Entanglement

Outline

© Expressiveness of Convolutional Networks

@ Analysis of Supported Entanglement
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Expressiveness of Convolutional Networks Analysis of Supported Entanglement

Convolutional Arithmetic Circuits «+—— Tensor Networks

Recap
Func realized by ConvAC may be represented via tree TN

input X representation 1x1 conv g
pooling

"" >e 1x1 conv dense
®

- pooling (output)

y— —, B

structural correspondence

ConvAC TN

input elements | terminal nodes

# of layers tree depth

layer widths bond dims

pool geometry connectivity

overlaps duplications

(‘l] (]3 ('1;5 ('l.-] dr_, (J(,‘ ({,‘\'

Nadav Cohen (lAS) Expressiveness in DL via TN and QE Perimeter, Jul'18
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Expressiveness of Convolutional Networks Analysis of Supported Entanglement

Entanglement via Minimal Cuts

Theorem (Quantum Max Flow/Min Cut)

Max Schmidt entanglement ConvAC models between input sets /L€
min cut in respective TN separating nodes of T /¢

ConvAC entanglement

TN min cut separating
between input sets

respective node sets

for delta tensor at most
one edge is counted
(even if cut includes more)

=
%

ll
g zi“ﬂﬂm“&h"

fH i !;EI
i

Hiftsr,s

N

We may analyze the effect of ConvAC arch on
the dependencies (entanglement) it can model!

Nadav Cohen (IAS) Expressiveness in DL via TN and QE Perimeter, Jul'18 31/ 47
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Expressiveness of Convolutional Networks Analysis of Supported Entanglement

Depth

Conjecture — depth efficiency

Deep ConvNets realize func requiring shallow ConvNets to grow unfeasibly

152 layers

11.7
22 layers 19 layers 7

6.7 /3

B layers 8 layers shallow

ILSVRC'1S ILSVRC'14 ILSVRC'14 ILSVRC'13 ILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

Nadav Cohen (lAS) Expressiveness in DL via TN and QE Perimeter, Jul'18
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Expressiveness of Convolutional Networks

Depth (cont'd)

For certain partitions of terminal nodes, min cut in TN of deep ConvAC is
exponentially larger than in TN of shallow ConvAC

Analysis of Supported Entanglement

TN of deep ConvAC

TN of shallow ConvAC
@

only one edge is counted in the cut

~ o

i

s o oo e e e
( iy

This implies:

Deep ConvAC can model dependencies (entanglements) requiring shallow
ConvAC to have exponential width

Depth efficiency proven for ConvAC!

Nadav Cohen (lAS) Expressiveness in DL via TN and QE Perimeter, Jul'18 33 / 47
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Expressiveness of Convolutional Networks Analysis of Supported Entanglement

Layer Widths

Currently no principle for setting widths (# of channels) of ConvNet layers

Input
DEEOxG0

BPOTNSE pmoeras s o
26@18x12 230064 o081

Q: What are the implications of widening one layer vs. another?

Q: Can the widths be tailored for a given task?

Nadav Cohen (IAS) Expressiveness in DL via TN and QE Perimeter, Jul'18 34 / 47
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Expressiveness of Convolutional Networks Analysis of Supported Entanglement

Layer Widths (cont'd)

Deep (early) layer widths are important for long (short)-range dependencies

Experiment

Global Task : “ u Local Task Wide-tip

=

S
-

# of channels

layer depth

>
o
]
| -
-
L& ]
W
©

70

Wide-base

layer depth

s—-s Wide-base - test 5 S & Wide-base - test
+ Wide-base - train + Wide-base - train
o—e Wide-tlip - test . f# * Wide-tip - test

Wide-tip - traln Wide-tip - train

# of channels

20 2" 0

10 15 )
# of channels parameter

10 30

ll': .’.(‘ 23
# of channels parameter

ConvAC layer widths can be tailored to maximize
dependencies (entanglements) required for given task!

Nadav Cohen (IAS) Expressiveness in DL via TN and QE Perimeter, Jul'18 35 / 47
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Expressiveness of Convolutional Networks Analysis of Supported Entanglement

Pooling Geometry

ConvNets typically employ square conv/pool windows

convl_act
(24x24x16) pooll

12x12x16

] il

= FEHE m\li WNWI

2t S

-
|

x_lmage
(28x28)

T

Recently, dilated windows have also become popular

D=1

Q: What are the implications of one window geometry vs.

Q: Can the geometries be tailored for a given task?

Nadav Cohen (IAS) Expressiveness in DL via TN and QE

another?

Perimeter, Jul'l8
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Expressiveness of Convolutional Networks Analysis of Supported Entanglement

Pooling Geometry (cont'd)

Input elements pooled together early have stronger dependence

closedness; low closednass; | closedness; low closednass: |

Experiment

symmetry: low symmetry: low symmetry: | symmetry: |

square pooling mirror pooling
(local interactions) (interactions between reflections)

s

closedness task
T »

ConvAC pooling geometry can be tailored to maximize
dependencies (entanglements) required for given task!

Nadav Cohen (IAS) Expressiveness in DL via TN and QE Perimeter, Jul'18
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Expressiveness of Convolutional Networks Analysis of Supported Entanglement

Overlapping Operations

Modern ConvNets employ both overlapping and non-overlapping
conv/pool operations

Input patch Owtput feature vecks Chatput feature v octorn

fclxhaw) (c2xlixl) edxlxl)

Comvolunonal Filwer \ s
» Comvolutional Filer
c2xclxhxw) \
(Ixe2xlixl)

> —
\ Convolutional layer CCCP layer N\

Q: What are the implications of introducing overlaps?

Nadav Cohen (lAS) Expressiveness in DL via TN and QE Perimeter, Jul'18
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Expressiveness of Convolutional Networks Analysis of Supported Entanglement

Overlapping Operations (cont'd)

Overlaps in conv/pool operations allow modeling dependencies that
otherwise require exponential size

Area/volume law:

B

area law
d—1

lin

entanglement x A

volume law

d

lin

entanglement o A

"l'llin

ConvAC w/overlaps supports volume law entanglement!

Nadav Cohen (lAS) Expressiveness in DL via TN and QE Perimeter, Jul'18 39 / 47

Pirsa: 18080040 Page 44/51



Extensions

Outline

Q@ Extensions
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Extensions

Other Types of Convolutional Networks

We established equivalence:
ConvAC «+— TN

and used it to analyze dependencies (entanglement) ConvAC can model

ConvAC delivers promising results in practice, but other types of ConvNets
(e.g. w/ReLU activation and max/ave pooling) are more common

Our analysis extends to other types of ConvNets if we generalize the
notion of a delta tensor:

delta tensor generalized delta tensor

[u]]!l : Hgvz B ]i e ) [g(zrl,vl) s g(uz,vz), i
./‘ S
G ® @

Nadav Cohen (IAS) Expressiveness in DL via TN and QE Perimeter, Jul'18
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Extensions

Recurrent Networks

We analyzed convolutional nets via equivalence to TN w/tree arch

input rep conv

| 7 pool
"H—_Lﬂ. conv P
_ _b ®

pool dense A A A A
S R ’__q'___*. H ‘-|)(.|.?‘-"“.}7:(:[7“:[;( P ¢ »

dy do dy dy de dg -

Analysis extends to recurrent nets via equivalence to TN w/chain arch

Recurrent nets process data sequentially; ability to model dependencies
(entanglement) quantifies memory
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Conclusion

@ Three pillars of statistical learning theory:

Expressiveness Generalization Optimization
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Conclusion

@ Three pillars of statistical learning theory:

Expressiveness Generalization Optimization

o Well developed theory for classical ML
e Limited understanding for DL

@ State of the art DL arch can be represented as TN:
convolutional nets <«—  tree TN

recurrent nets «—— chain TN

@ Quantum entanglement quantifies dependencies modeled by DL arch

@ Quantum max flow/min cut theorem

— new results on expressiveness in DL!
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Conclusion

Convolutional Networks for Simulating Quantum States?

For quantum sim, expressiveness of tree TN typically enhanced via loops:

Pirsa: 18080040

tree IN

rh -‘f‘g f(:( [[| EI,‘. ff.', ”’T f!N

Overlaps in ConvAC give

TN of ConvAC
w/no overlaps

Lh.

.';J(.I‘)k')k|)\|‘ L.l\.\ ’.).4“)
rf| “r rJ’; r]l r] r/ lf— H’

MERATN
o ] ()\
P )\Q -

dy dy rh fl'| rf dg u’ :f

rise to new form of enhancement — duplications:

TN of ConvAC
w/overlaps

.
& &

e

ORTATIN

12123 23234 12123 12 23412323434 1212323412323434

‘f’f
'1

z = E -
o ? ; \,. "
{ Hm“ﬂv et ¢ H W v

o 5';» -0

23434 12323434 H!l

Provides volume law entanglement w/efficient calc of wave func amplitude

Useful for quantum sim?
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