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Abstract: In alarge medical trial, if one obtained aridiculously small p-value like 10n-12, one would typically move from a plain hypothesis test to
trying to estimate the parameters of the effect. For example, one might try to estimate the optimal dosage of a drug or the optimal length of a course
of treatment. Tests of Bell and noncontextuality inequalities are hypotheses tests, and typical p-values are much lower than this, e.g. 12-sigma
effects are not unheard of and a 7-sigma violation already corresponds to a p-value of about 10"-12. Why then, in guantum foundations, are we still
obsessed with proposing and testing new inequalities rather than trying to estimate the parameters of the effect from the experimental data? Here,
we will try to do this for preparation contextuality, but will also make some related comments on recent loophole-free Bell inequality tests.

We introduce two measures of preparation contextuality: the maximal
overlap and the preparation contextuality fraction. The latter is
linearly related to the degree of violation of a preparation
noncontextuality inequality, so can be estimated from experimental data.
Although the measures are different in general, they can be equal for
proofs of preparation contextuality that have sufficient symmetry, such
as the timelike analogue of the CHSH scenario. We give the value of
these measures for this scenario. Using our result, we can consider
pairty-epsilon multiplexing, Alice must try to communicate two bitsto
Bob so that he can choose to determine either of them with high
probability, but where Alice must ensure that Bob cannot guess the
parity of the bits with probability greater than 1/2 + epsilon, and
determine the range of epislon for which thereis still an advantage in
preparation contextual theories. If time permits, | will make some
brief comments on how to robustify experimental tests of this result.

joint work with Eric Fredaand David Schmid
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The Golden Rule of Resource Measures

* Paraphrasing Spekkens:

* If you want to measure a physical resource,
then you ought to first define a resource
theory, i.e. a set of state spaces and free
operations. Meaningful measures are
monotones under the free operations. The
most meaningful measures are the operational
conversion rates between states under the free
operations.

* If you are proposing arbitrary measures
without a resource theory behind them then
you are a clown.
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1. Loophole Free Bell Tests
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Loophole-Free Bell Experiments as
Hypothesis Tests

* Reported p-values of loophole free Bell tests under the most stringent
analysis (accounting for memory loophole and partial predictability of
measurement settings).

e DElft B. Hensen et. al., Nature 526 682-686 (2015). Scientific Reports 6 30289 (2016)

* 2015: p=0.039
* 2016: p=0.061

* NIST 2015 L k. shalm et. al., Phys. Rev. Lett. 115, 250402 (2015)
e p<23x1077

* VVienna: 2015 wm. Giustina et. al., Phys. Rev. Lett. 115 250401 (2015)
¢ p< 3.74 x 107"
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Fraction Measures

* Suppose you have some observed probabilities Prob,,s(a|x) and you
want to measure to what extent they can be reproduced by a model
with property Y (e.g. Y = locality, noncontextuality, etc.)

* Write
Prob,,.(alx) = pProby(a|x) + (1 — p)Prob’(a|x)

where Proby (a|x) can be reproduced by a model with property Y
and Prob’(a|x) is an arbitrary distribution.

* Define the Y-fraction as
py = maxp

where the maximum is taken over all such decompositions.
* The non Y-fraction is defined as pyy = 1 — py.
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Fraction Measures

* Suppose also that there is a linear inequalitLI(Proby) < Iy thatis
bounded by Iy for models with property Y, but violated by your observed

probabilities.

* Then,
Iops = I(Probgy,s) = pl(Proby) + (1 — p)I(Prob’)
< pIY T (1 = p)lmax

* Rearranging . .
max -~ fobs

Py =
Imax o IY
with equality if /(Proby) < Iy is a tight inequality.
* Locality fraction! and noncontextuality fraction? are examples of this.

'R. Colbeck & R. Renner, Phys. Rev. Lett. 101, 050403 (2008)
2S. Abramsky et. al., Phys. Rev. Lett. 119, 050504 (2017)
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Example: Local Fraction for the CHSH
Inequality

I(Prob) = (ab)y=oy=0 t {ab}x=0y=1 t {ab)x=1y=0 — (AD)x=1,y=1

* [hax = 4, obtained using the PR box
* [Lgv = 2, from the CHSH inequality

e I,ps < 2v/2 from the Tsirelson bound, assuming our experiment
obeys quantum mechanics.

4 — 22
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Loophole-Free Bell Experiments as Parameter
Estimation

* Delft:
* 2015: PNL = .21+ 0.1
* 2016: PDNL = 0.175 + 0.09
* Note: Errors are standard deviations without closing memory loophole.

* Vienna:
* pnL = 7.27 X 107% (4 X 107> is maximum possible for CH/Eberhard inequality)

* Note: Errors cannot be estimated from the data in the paper.
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Rate of nonlocal bit production

* We can define the rate of nonlocal bit production as

PNL
time per run of the experiment

Rni =

* Delft:
¢ 2015: Ry, = (6.5+0.3) x 107551
¢ 2016: Ry, = (6.9 4+ 0.4) x 107> s 1
* Note: Errors are standard deviations without closing memory loophole.

* Vienna:
* RNL =254 10 “5!

Pirsa: 18080032 Page 13/40



Fraction Measures

* Suppose you have some observed probabilities Prob,,s(a|x) and you
want to measure to what extent they can be reproduced by a model
with property Y (e.g. Y = locality, noncontextuality, etc.)

* Write
Prob,,.(alx) = pProby(a|x) + (1 — p)Prob’(a|x)

where Proby (a|x) can be reproduced by a model with property Y
and Prob’(a|x) is an arbitrary distribution.

* Define the Y-fraction as
py = maxp

where the maximum is taken over all such decompositions.
* The non Y-fraction is defined as pyy = 1 — py.
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2. Preparation Contextuality
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Ontological Models

Preparation
Ve
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jup

Prob(A = a|P, M) = [, Pr(A = a|M, N)dpp(X)
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Ontological Models

* An ontological model consists of
* A measurable space (A, X)
* For each preparation P, a probability measure yp: X — [0,1].
* For each measurement M a conditional probability function Pr(4A = a|M,): A -

[0,1] satisfying
vi ) Pr(A=alM,2) =1
a

* The observed probabilities predicted by the model are

Prob(4 = a|P,M) = fPr(A = a|M,A) dup
A
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Preparation Contextuality

* Two preparations P and Q are operationally equivalent if, for all (M, a)
Prob(A = a|P,M) = Prob(4 = a|Q, M)

* Note, if pp = pg then P and () are operationally equivalent.

* Amodelis {arepar_ation noncontextual if, whenever P and Q are
operationally equivalent then

Hp = Hq

* A model is preparation contextual this fails to hold.
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Preparation Noncontextual Fraction

* Spekkens showed that even a model of a qubit must be preparation
contextual?, but now we want to measure how contextual.

* A simple way of doing this is to use the Preparation Noncontextual fraction.

pnec = max{p | Prob(A|P, M) = pProbyc(A|P,M) + (1 — p)Prob’(A|P, M)}

and the associated Preparation Contextual (PC) fraction

pc=1-pnc

1R. Spekkens, Phys. Rev. A 71, 052108 (2005)
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Preparation Noncontextual Fraction

* As before, we can use any preparation noncontextuality inequality

I(Proch) < INC
to calculate

Imax - Iobs
<
PNc = ]

max ~ INC

* This is a rather crude measure, so we will also consider more
operationally meaningful measures that tell us about the
contextuality of specific operationally equivalent preparations.
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Overlap Measures

* Consider two operationally equivalent preparations, P and Q. We can define
their ontological overlap

L(P,Q) = inf(up(Q) + po(A\ )

HQ  L(P,Q) = 1in a preparation

noncontextual model.

. %(Z—L(P,Q)) is the optimal

L(P,Q) b probability of guessing whether P
- or Q was prepared given A.

o 0
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Overlap Measures

* Let P be the set of n-element partitions of A,
LE: {'Q'].J QZ) i Qn} € Pit

°QjEZ
‘.Qjﬂ.Qk=®fOI’j:f=k

* If Py, P,, -+, P, are all operationally equivalent, then we can generalize
the overlap to

n
L(B, = ,B) = inf z (Q;
(Pyy o) P) ml,nz.---,nn}ep( j:l“Pf( ,))
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Time-like CHSH Setup AT i
3 ; 4 M, 1) M. 0)

* Define the two mixed preparations . -

o 1

P, = Py + P11
_— 1
L =-Po1 +3P1o Py Py (Mo, 1)

. P_|_ and P_ are operationally equivalent. Preparations Measurements

» Spekkens et. al.! proved that a PNC model must satisfy
Prob(0|Pyg, My) + Prob(0|Pyq, My) + Prob(1|P;o, My) + Prob(1|P;1, My)
+ Prob(0|Pyy, M1) + Prob(0|P;o, M;) + Prob(1|Py,, M;) + Prob(0|P;{,M;) < 6

* The algebraic maximum is 8.
* In quantum mechanics, we get 2(2 + cosf + sinf)
* Sopne < 2 — cosf — sinf or pc = cosO + sinf — 1

1R, Spekkens et. al., Phys. Rev. Lett. 102 010401 (2009)
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Time-like CHSH Setup

* The optimum occurs at 8 = %, where we get

pne < 2 —+/2 = 0.586
pc = 0.414

* This is all very well, but can we say anything about the overlap
L(P,, P_), which is more operationally meaningful.

* |t turns out that, due to the symmetry of this setup, we get
L(P+,P-) = pnc
for this case.
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Overlap From Symmetry

(M, 0)

* Notation: wj, = Hp and yy = Up,

an
NP,

* The infimum in B T e
L(P,,P.) = rlzléf/: (e (Q) +u_(A\ Q) Preparations Measurements
is given by p in a decomposition

gdi=pe=t(l—pg. fspp & @-pjl
with maximal p.

* But this does not mean that p = pyc because we cannot necessarily write

wjk = pijc + (L= pi'p,
with

NE. B Re .1 0. 1. NC.i)NE
W= =sloo +3M11 = 3H01 T 3H10
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Overlap From Symmetry

* All we can conclude is that
Uik = ij#}ch 2 (1 - pjk)/"’ij
with
puN® = 3poottoo’ +3P11HL1 = FPo1Mor + 3P10M10

* If, for any allowed p, there always exists a model with p;; = p we

would be done, and the symmetry of the setup allows us to construct
such a model.
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Overlap From Symmetry

* We now construct a third model by taking the “direct sum” of the two:
* The ontic state space is /:\ =AUA
o Let fj(Q) = 2uj (Q\ A) + 2E(Q\ A)
Pr(k|M;,2), 2 €A
Pr(k|M;,2), 1€ A
* In this model poo = P11 = 3(Poo + P11) and Po1 = P10 = 3(Po1 + P10)
and we also have _ . . .
D =P =Poo = P11 = Po1 = P1o
* Since this model exists, we can conclude that L(P,, P_) = pyc for this
setup.

* Let ﬁ(k'M],l) =
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Overlap From Symmetry

* We can construct a new model by
reflecting everything through the origin
Of the BIOCh Sphere. Preparations Measurements

foo = U1, f11 = oo, fo1 = Uio, fio = o1

pj(OlMo,ﬂ) = Pr(llMOJ ;[)J pj (1|MO;A) == Pr(OIMO; /1)
Pr (0|My,4) = Pr(1|My, 4), Pr (1|My,4) = Pr(0|My, A)

* Because the quantum predictions are invariant, the new model will
also reproduce them.
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Robustness

* In a real experiment, operational equivalences will not hold exactly. Pusey?!
showed how to deal with this for the CHSH case.

Prob(0[Mp) — Prob(1|Mq)

Prob(0|M,) = Prob(L|A,)

Pl(]

1 M. Pusey, arXiv:1506.04178 (2015).
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Prob(0]My) — Prob(1]|My)

Plll

Prob(0|M,) = Prob(1| M)
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5. Parity € Multiplexing
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Parity Oblivious Multiplexing

* Alice has two bits ay and a; chosen uniformly at random.

* She sends a message m to Bob, such that m contains no information about
the parity ag @ a;.

* Bob is asked to guess a; with j chosen uniformly at random. Call his guess
b.

* He succeeds if b = q;
1
Doiioe = Z[Prob(b =0]|j =0,ap =0)+Prob(b=0]|j =1,a, =0)
+Prob(b=1[j=0,a5=1) +Prob(b = 1]j = 1,a3 = 1]]

* Classical success probability is %, quantum is 2%@ ~ (.85 by PNC
inequality?!

1R. Spekkens et. al., Phys. Rev. Lett. 102 010401 (2009)
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Parity € Multiplexing

* Alice has two bits ay and a; chosen uniformly at random.

* She sends a message m to Bob, such that m allows Bob to guess
ay D a, with probability at most €.

* Bob is asked to guess a; with j chosen uniformly at random. Call his
guess b.

* He succeeds if b = a;
i
Dsnce = Z[Prob(b =0lj =0,ay =0) + Prob(b =0|j =1,a; =0)
+Prob(b = 1|j = 0,a, = 1) + Prob(b = 1|j = 1,a, = 1)]
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Overlap Measures

* Consider two operationally equivalent preparations, P and Q. We can define
their ontological overlap

L(P,Q) = inf(up(Q) + po(A\ )

HQ  L(P,Q) = 1in a preparation

noncontextual model.

. %(Z—L(P,Q)) is the optimal

L(P,Q) b probability of guessing whether P
- or Q was prepared given A.

o 0
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Parity € Multiplexing

* Classical success probability is
Psucc = %(1 + €)
* There is a quantum advantage provided € < v2/2 = 0.707

—classical ,/“/
—quantum ¢=0.5 ’_/
0.95 T
d’///
0.9 /,/” Note: We have not optimized the
| quantum protocol for € > 2,
0.85 Tl 2
/f//
L
0.8 //,—
//f
oEL
L - l . " " " " . n . L €
0.5 0.6 0.7 0.8 0.9 1
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6. Time-like Chained Setup
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Time-like Chained Setup

* Qj =P + 2P are o
operatlonalfy equivalent ”
forall j.

P, (1,M,) (0, M)

* Converting Colbeck-
Renner result! into
preparation contextuality,
gives P, P F, (1.My) (0, M,)

pne = 0asn — o

1R. Colbeck & R. Renner, Phys. Rev. Lett. 101,
050403 (2008)
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Time-like Chained Setup

* Because we still have
symmetry under reflection
through the origin, we can
still get an overlap bound
from this, but it is

P P P, (1,M,) (0, M)

L(Qll QZ, s Q?’L) = 0 P, P! P, i (LMy)  (0,M,)
asn -0
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Conclusions

* When your hypothesis tests are extremely compelling, you should
move to parameter estimation.

* In Bell and Contextuality tests, there are some simple parameters you
can estimate from existing data.

* For loophole free Bell tests, this leads to a different comparison of the relative
merits of the different experiments, and shows how far we still have to go.

* In preparation contextuality tests, we can estimate more
operationally meaningful parameters provided the setup is
sufficiently symmetric. This can be used to robustify information
processing tasks that are powered by preparation contextuality.
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Open Questions

* Do the overlap bounds get smaller in more complicated preparation
contextuality proofs?

* Any Kochen-Specker proof can be converted into a preparation contextuality
proof. Can we relate the contextuality fraction of Abramsky et. al. to the
prepartion contextuality fraction and overlap bounds?

* Can we develop similar measures for contextuality as a whole
(preparation, transformation, measurement)?

* Can other information processing tasks that are powered by
contextuality be robustified using overlap measures?

* Are our measures monotones in a well-motivated resource theory of
contextuality?
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