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Abstract: <p>Despite being broadly accepted nowadays, temperature gradients in thermal equilibrium states continue to cause confusion, since they
naively seem to contradict the laws of classical thermodynamics. In this talk, we will explore the physical meaning behind this concept, specifically
discussing the role played by the university of free fall. We will show that temperature, just like time, is an observer dependent quantity and discuss
why gravity is the only force capable of causing equilibrium thermal gradients without violating any of the laws of thermodynamics. We will also
demonstrate that significant care and delicacy are necessary when extending Tolman's results to distinct classes of heat baths in stationary
Spacetimes.</p>
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Equilibrium temperature gradients - static case

Equilibrium temperature gradients - static case

» Richard C. Tolman: On the weight of heat and thermal equilib-
rium in General Relativity?.

Static spherically symmetric spacetime:

ds® = gy dt® + g dr® + r* (d6° + sin® 8d¢°)

+ perfect fluid: T2° = (p + p)V2VP 4 p gb

» (VaT? =0) + (G = 87 T3) + assumptions depending on
the fluid — temperature gradient.

Txl=Tov-¢g"

"Tolman, R. C., Phys. Rev. 35, 904 (1930).
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Equilibrium temperature gradients - static case

What are the physical consequences?

» Locally measured temperatures T (x) have a small non-zero
spatial gradient (T(x) = To v/—g1t ) for states in thermo-
dynamic equilibrium.

» However, due to gravitational redshift, observers in the fluid’s
rest frame will see a constant temperature (7Tp).

» Distinct observers will measure different values for Ty:
The temperature of a fluid in thermal equilibrium is observer
dependent.
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Equilibrium temperature gradients - static case

Constant local temperatures
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Equilibrium temperature gradients - static case

Relativistic thermal equilibrium

l hotter
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Temperature gradients in stationary spacetimes

Temperature gradients in stationary spacetimes

In 1949 Buchdahl? extended Tolman's results to stationary

spacetimes
ds® = guvdxtdx”

for fluids moving along the Killing vector K2 = (1,0,0,0).

Since then, people have been using the well known result obtained

by him:
s ||T0||'

2H. A. Buchdahl, Phys. Rev. 76 (1949) 427.
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Temperature gradients in stationary spacetimes

Temperature gradients in stationary spacetimes

Consider the relativistic Euler equation:
(p+ P)As = —(8.° + VaV2)Vyp.
For a photon gas [p = aT*4, p = (a/3) T*] this simplifies to
As = —(8:2 + VaVP)VuIn T.
At thermal equilibrium VPV, T =0, so
A, =—-V,InT.

This is a general relation between the fluid’s 4-acceleration and its

temperature gradients for any fluid in equilibrium in a stationary

spacetime3.

3R. Tolman and P. Ehrenfest, Phys. Rev. 36 (1930) no.12, 1791.
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Temperature gradients in stationary spacetimes

Temperature gradients in stationary spacetimes

Tolman'’s results can easily be recovered and extended

For any static spacetime with its metric in the block-diagonal form,

ds® = gyedt® + ggdx" dx?,

the 4-acceleration of the observers “at rest”, V2 x (1,0,0,0), is:

As = V,ln vV —8tt-

Leading to

TO ; /_gtt
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Temperature gradients in stationary spacetimes

Temperature gradients in stationary spacetimes

Buchdahl’s 1949 results can also be recovered and extended
Assume a fluid in a static or stationary spacetime following the

integral curves an arbitrary timelike Killing vector, as in

A K?
Vi=Ki= —
K]

then the fluid 4-acceleration can be easily computed to be
A, = V,iIn||K||,

leading to
Tl = ﬂfi’ﬂ
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Temperature gradients in stationary spacetimes

Temperature gradients in stationary spacetimes

Fluid following a normal flow

The other “natural” option is to take the fluid to follow a normal
flow. Explicitly,

~ Vit o . v Gl

N, = . oo
V]| V]| N

b

where N comes from the ADM-like decomposition of the metric,
ds®> = —N?dt? + hj; (dx' — v/ dt) (dx/ — v/ dit),

and satisfies ||Vt|| = /—gft = N1
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What is the temperature distribution in a rotating frame?

Jessica Santiago Equilibrium temperature gradients

Pirsa: 18080001 Page 13/28



Pirsa: 18080001

Temperature distribution in a rotating frame

The rotating frame temperature distribution

The metric seen by the rotating comoving observers is given by:

ds® = —dt? + dr® + r’(d¢ — wdt)? + dz°.

The co-rotating gas will follow trajectories of the Killing field
K? = (1,0,0,0), with ||K|| = V1 —w?r? and V2 = K?/||K?||.

Applying this result to the stationary temperature gradients, we

obtain:
T, 14

K A=

T(x) =
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What happens for a non-inertial observer?
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Temperature distribution in a rotating frame

What is the blackbody spectrum seen by a comoving observer?

With V2 the 4-velocity of the emitter (thermal bath) and V72 the
4-velocity of the internal (comoving) observer, the redshift is given

by

(gabveakb)e _ Ve
(gab ngb)o Vo

l+z=
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Temperature distribution in a rotating frame

What is the blackbody spectrum seen by a comoving observer?

With some calculations we obtain:

sin
Ve = Ye (1 i wre:;;t in ) ’

Wrat, Sin 0
o (s

Consequently
3.3
1l =uers
1 — w?r?

(It factorizes!)

Jessica Santiago Equilibrium temperature gradients

Page 17/28



Temperature distril:.nutio.n in a rotating frame
What is the black-body spectrum seen by a comoving observer?

Given that e/, = 1+ z, we have

Ve

:1—|—z

1 —w?r? s

v,
| 940 )
vV1-—w?rz | 1—wrg 1 — 522

Vo

so the temperature seen by the observer is:

T,
V1—w?r2’

which is exactly the equilibrium temperature at the observer’s
location.

T(x0) =
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Some Kerr Black Hole exémples

Some Kerr Black Hole examples
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Some Kerr Black Hole exémples

Kerr observers - Normal flow in Doran coordinates

Let us choose the Doran coordinate system:

2 2 P - . 2 2
ds dt? — (\/—rzﬁdrﬂ(dt—asm ()dgf)))

—p?d6? — (r? + a%)sin®0 d¢°,

« p_l vamr, p2 = r® + a°cos®0

In these coordinates the normal flow is

No = =V.i=(E1000).

We have ||Vt|| = N~ = 1, implying A = 0. That is, our “reference
fluid” is now in free-fall and we deduce T(x) = (constant).
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Some Kerr Black Hole exémples

Kerr observers - Killing flows

In the Boyer-Lindquist coordinate system

dt do

I 2mr 5 4mrasin® 0

_1 12 + 22 cos? (9] 2+ a2 cos? 0

"2 4 a%cos” 0
r2 —2mr + a°

] dr? + (r? + a° cos® 6) d6?

[ 2mra® sin®
+ [P+ a2 + Lol lsingﬂddfz.

r2 + a2cos? 6

we have the “natural” timelike Killing vector (1,0,0,0) plus the
rotational Killing vector (0,0,0,1). Let us look at some interesting
cases.
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Some Kerr Black Hole exémples

Kerr observers - Killing flows

» Setting (2 — (24, the angular velocity of the horizon, we have
the Killing vector (1,0,0,f2y), which gives us

To
\/N2 e h(ﬁ)(f)(vt) o ‘(ZIH)2 .

In this situation the Killing vector has a norm ||(1,0,0,024)]||
which is zero at the horizon — not at the ergosurface.

T(x)

However, its norm also vanishes in the asymptotic region, near
rsinf ~1/0y. 5

®(Which is not a “problem”. The same thing happens for a rotating
coordinate system in flat Minkowski space.)
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Some Kerr Black Hole exémples

Kerr observers - ZAMO flow

Still in the Boyer-Lindquist coordinate system, the normal flow is
given by:

] - vEET

The corresponding flow vector in terms of the time translation and
axial Killing vectors is

—gu + — (=1;0,0,0).
oo

. Wi gy ﬁ\/ 22

jyo = AT + @Kol

Va: L = =Lt :
K+ k| == Eto/&n

Note that this is not a Killing vector since w is not a constant.
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Some Kerr Black Hole exémples

Kerr observers - ZAMO flow

Since this is still a special case of a normal flow, we obtain
To tt
T(x)=Tol||Vt]| = i Tov/—g*™.

In terms of these coordinates and the free parameters m and a,

T =To \/1+ FTr (2 + )

a2 —2mr+r?) (r2 + a2 cos?6)

Noticing that (a®> —2mr 4+ r?) = 0 defines the event horizon,

2mr (r? 4+ 3?)
i \/1+ (=)

r—r_)(r? +a%cos?6)
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Some Kerr Black Hole exémples

Kerr observers - ZAMO flow

2mr (r? 4 a?)
Tmm%+0rm

r—r_)(r?+ a%cos?0)

For this particular ZAMO gradient flow the redshifted temperature is well
behaved from just above the horizon all the way out to spatial infinity

with
T(x)—> Ty for r— o0

and diverging only at the event horizon.
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Some Kerr Black Hole exémples

Summary

Tolman temperature gradients depend both on the spacetime
and on the choice of 4-velocity for the heat bath of interest.

For a heat bath that follows the trajectories of any timelike

Killing vector

To
T(x)= W

For a suitably chosen normal flow,

_
-2

T(x)

For more general cases, A, = —V,In T.
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Some Kerr Black Hole exémples

Additional references

J. Santiago and M. Visser,
Tolman temperature gradients in a gravitational field;
arXiv:1803.04106 [gr-qc],

J. Santiago and M. Visser,

Gravity's universality: The physics underlying Tolman temperature
gradients;

Int. J. Mod. Phys. D (published online)
https://doi.org/10.1142/5021827181846001X

J. Santiago and M. Visser,
Tolman-like temperature gradients in stationary spacetimes;
arXiv:1807.02915 [gr-qc].

Jessica Santiago Equilibrium temperature gradients

Page 27/28



Some Kerr Black Hole exémples

Summary

Tolman temperature gradients depend both on the spacetime
and on the choice of 4-velocity for the heat bath of interest.

For a heat bath that follows the trajectories of any timelike

Killing vector

To
T(x)= W

For a suitably chosen normal flow,

_
-2

T(x)

For more general cases, A, = —V,In T.
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