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Abstract: The past decade or so has produced a handful of derivations, or reconstructions, of finite-dimensional quantum mechanics from various
packages of operational and/or information-theoretic principles. | will present a selection of these principles --- including symmetry postulates,
dilational assumptions, and versions of Hardy's subspace axiom --- in a common framework, and indicate several ways, some familiar and some
new, in which these can be combined to yield either standard complex QM (with or without SSRS) or broader theories embracing formally real
Jordan algebras.
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Color-coding

definitions in blue

potential axioms in green
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Test spaces

In discrete classical probability theory, a probabilistic model is a
pair (E.pu): E a set of outcomes, 1« a probability weight on E.

Obvious generalization: Allow both E and p to vary. Start with E:

A test space: a collection
M = {E F, .}

of (outcome-sets of ) possible experiments, tests, etc.
Mathematically, M is just a hypergraph.

Remarks: |dea due to C. H. Randall (1928-1987) and D. J. Foulis
(1930-2018). Original (better?) term: manual. Also called contextuality

scenarios in some more recent literature.
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Test spaces

Let X := [ JM, i.e., space of all outcomes. A probability weight
on M:

a: X —[0,1] with Za(x)—lVEEM.

xeE

Remarks:

(i) probability weights are non-contextual

(ii) Contextuality easy to handle if desired.

(iii) Set of all probability weights on M a convex subset of [0. 1]X;
closed if all tests are finite.
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Triangular Example (rather weird)

O O X = nodes; M = sides

Sample probability weights:

1
2
¢
// S\ / \
0/ /o D\l O/o/ \O
/ //
d O D : (

-

170 0 0

Note: Both of these are pure!
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(General) Probabilistic models

Generalizing classical definition:

A probabilistic model (or just model): a pair A = (M, Q),
o M =: M(A) a test space,
e QO =:Q(A) a closed, convex set of probability weights on
M (the state space of A).

Remark: (i) Such models are easy to build and manipulate.

(ii) Easy to add more structure (topological, group-theoretic, etc.)
if desired.

Standing assumption: €(A) always finite-dimensional.

Pirsa: 18070055 Page 8/38



Classical and Quantum Examples

Simple classical model: A = ({E}, A(E)) — one test, all
probability weights.

Simple quantum model: For a (f.d.) Hilbert space H, let
e M(H) = set of ONBs for H;
e Q(H) = all probability weights states of the form

a(x) = (Wx, x),

W a density operator on ‘H (= all prob. weights, if
dimH > 2).
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Two-bit examples

The square bit B and diamond bit B’ have the same test space:
M(B) = M(B') = {{x. X} {y.y'}}
but different state spaces:

y

5y

1
Q(A) = all prob weights on M(A)
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Some properties of probabilistic models

A probabilistic model A is

e uniform iff all tests E € M(A) have a common size, say
|E| = n (the rank of A)

e sharp iff Vx € X(A) 365 € Q(A) with dx(x) = 1,
e spectral iff sharp and, Va € Q(A), 3E € M(A) with

a — Z a(Xx)0x.
xck

Triangle, square bit — uniform, not sharp.
Diamond bit — uniform and sharp, not spectral.
Classical and quantum models — uniform, sharp, spectral.
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The spaces V(A) and E(A)
V(A) := span of Q(A) in RX(A) with positive cone

VAL, ={talacQ, t>0}

Effects are elements a € V(A)* with 0 < a(a) < 1 Va € Q(A).
(“mathematically possible” measurement-outcomes). Note that

R(a) = a(x)

is an effect for all x € X(A). For convenience, from now on
identify x with X, so that X C V(A)*.

Also useful to define E(A) := V(A)*, but ordered by

k
E(A). = { Z tix

xi € X(A), ti > O}
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No-Restriction Hypotheses

We always have a unit effect up(«r) =1 on Q(A). An observable
is a set of effects ay,....a, with Y. a; = ua. Thus, each test
E € M(A) is an observable.

A mathematically attractive assumption:

No Restriction Hypothesis: Every effect a € E(A). (or even in
V(A)*) is physically accessible measurement outcome.

A weaker assumption of a similar kind:

NR Hypothesis for measurements: If a;....., a, € E(A), with
a1 +---+ap = up, then {a;,....,a,} is a physically accessible
measurement.

Both are true in QM, but neither is easy to motivate!
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Joint States

A (non-signaling) joint state on A and B is a mapping
w: X(A) x X(B) — [0.1]

with
(a) (E.F) e M(A) x M(B) = Z(X_y)eExFq;(x.y) = 1;
(b) x € X(A), y € X(B) =

LL-‘(X : ) = V+(8) and ;u( - y) € V+(A)

Condition (b) implies w has well-defined marginal and
conditional states:

wi(x) := Z“"‘("Y) € QA) and wy(y) = W(Xy) € Q(B);

vEF

similarly for wa(y),wy)y.

Pirsa: 18070055 Page 14/38



Joint States

Marginal and conditional states are related by a

bf Law of total probability: V E € M(A), F € M(B),

Wy = Z ;A.,-*]_(X)LU2|X and w1 = Z;ﬁz()/)idlw

xeE yeF

Important observation: Every joint state extends to a unique
positive linear mapping

5 E(A) = V(B).

such that W(x)(y) = w(x,y) ¥x e X(A), y € X(B). If @ is an

order-isomorphism, call w an isomorphism state.
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. An easy route towards QM
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Euclidean Jordan algebras as ordered vector spaces

Let E be a f.d. ordered real vector space with positive cone E.
and with an inner product (. ). E is

e self-dual iff (a,b) >0Vbe E, iffac E,.

e homogeneous iff group of order-automorphisms of E is
transitive on the interior of E ..

Koecher-Vingerg Theorem [1957/1961]: E is HSD < E a
euclidean (=formally real) Jordan algebra with E, = {a°|a € E}

Jordan-von Neumann-Wigner Classification [1932]: Formally
real Jordan algebras = direct sums of self-adjoint parts of M,(IF),
F =R,C,H, Ms;(0), or “spin factors” V,, ("bit" with state space
an n-ball.)
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Self-duality in QM

H a complex Hilbert space, dim(H) = n. Let E = L,(H) with E
— cone of positive operators. This is SD w.r.t.

(a, b) ;= +Tr(ab).

Note that ( ) = 1?Tr is a bipartite state: if

1 _ T
W= %;x.xxe’){a H.
E any ONB for H, then ((a®@ b). W, W) = ITr(ab).

So W perfectly, and uniformly correlates every ONB of ‘H with its
counterpart in H: |[(W.x@y)2=1ifx=y 0ifx Ly Wis
uniquely defined by this feature.
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Conjugate Models

Let A be uniform, with rank n. A conjugate for A: a model A plus
an isomorphism v4 : A ~ A taking x € X(A) to
X = va(x) € X(A), and a joint state 774 on A and A such that

Yy

(
(a) n(x.y) =n(y.x) and
1

(b) na(x.x) = = Vx € X(A).

n

Lemma: /f A is sharp, spectral, and has a conjugate, then

(a, b) :=na(a, b)
is a self-dualizing inner product on E(A).

See arXiv:1606.09306 for the easy proof.
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Why spectrality?

A joint state w € Q(AB) correlating iff 3E € M(A), F € M(B),
and partial bijection f C E x F such that

w(x,y) >0 & (x,y) € f.

Lemma: A sharp and w € Q(AB), correlating = w spectral.
This suggests the

Correlation Principle: Every state is the marginal of a correlating
joint state.

So: CP = spectrality.
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Processes and dual processes

A process from A to B is represented by a positive linear mapping
o :V(A) = V(B) with ug(d(a)) <1 Va € Q(A).

(p = ug(7(cx)) = probability for the process to “fail” on input
state «v.) Equivalently, the dual process

¢" :V(B)" = V(A)
given by ¢*(b) := bo ¢, takes effects to effects (so that
(')*(UB) < ugp.

Remarks: (i) Not every such map needs to count as a physical
process; (ii) A dual process need not preserve M(A), or even

E(A). !
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Processes

We can enrich our notion of a model by equipping A with a
designated semigroup Proc(A) of processes.

A process ¢ € Proc(A) is p-reversible iff there exists 1) € Proc(A)
with 1o ¢ = pida, where 0 < p < 1.

Think of p as the probability with which > undoes &. Implies @
invertible as a linear map, with positive inverse. If p =1, 1) = ¢!

and ¢ is simply reversible.

A symmetry of A: a p-reversible process g such that g* maps

M(A) onto M(A).

This implies g is reversible with p = 1. Let G(A) = set of
symmetries, and note it's a group.
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Symmetry Principles

QM suggests looking at models in which M(A) is very
homogeneous under G(A):

Call a model A

(a) symmetric iff G(A) acts transitively on outcomes;

(b) fully symmetric iff for every bijection f : E — F,
E.F e M(A), 3g € G(A) with gx = f(x) Vx € E;

All of the examples above except the triangle are fully symmetric.
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Symmetry Principles

Alternatively, one can impose homogeneity conditions on 2(A)

[MU, BMUJ:

A list a1, ..., o) of states is sharply distinguishable iff there exist
effects aj....,ap, with > . a; < w and a;(x;) = 0; ).

A model A is

(a) bit-symmetric iff for all sharply distinguishable pairs (aq, a»)
and (31, 32), there exists g € G(A) with ga; = 3;;

(b) strongly symmetric iff for all maximal sharply distinguishable

sets of states ay,...a, and f31..... 3, dg € G(A) with
g(a;) = 3 for all i

Remark: In some sense, these depend on NR/NR for
measurements.
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Mueller-Ududec Theorem

The following really remarkable result gives another route to
self-duality:

Theorem [Mueller and Ududec, 2010] /f Q(A) is bit-symmetric,
then V(A) carries a self-dualizing inner product.

See (arXiv:arXiv:1110.3516) for the beautiful proof.
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Why Homogeneity?

We still need to motivate homogeneity. We'll see several ways to
do so, but here are two easy ones:

e Just take it as an axiom! (All nonsingular states are “alike”)

e Adopt the Iso-dilation principle! Every state is the marginal
of an isomorphism state

Another approach involves the concept of a filter:

'H. Barnum, C. P. E. Gaebler, AW, arXiv:0912.5532
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Filters and Homogeneity

A filter for E € M(A): a process ® : V(A) — V(A) such that
Vx € E dty > 0 with

d(a)(x) = txa(x)
for all o € Q(A).

_—— X prob = 2a(x)

0] -

— z  prob = a(y)

Example: For W a density operator on H, & : a+— W1/23W1/2 s
a filter for any eigenbasis of W, reversible iff W is nonsingular.
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Lemma: Let A be sharp, spectral. Then TAE:
(a) A has arbitrary reversible filters

(b) V(A) is homogeneous

So if Ais also self-dual, E(A) ~ V(A) has a euclidean Jordan
structure. (One can also show that then X(A) is the set of all

minimal idempotents in E, and M(A) is the set of Jordan frames,

i.e., Ais a Jordan model. See arXiv: 1206.2897.)
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Theory-wide axioms

A probabilistic theory: a class, C, of models — maybe a category,
with designated processes C(A, B). More sparingly, a class of
models equipped with semigroups Proc(A)

All axioms, principles, etc. considered to this point have been
“single-system” [BMU]. But some widely used assumptions depend
the entire theory:

(1) An isomorphism principle,
(2) the subspace axiom

(3) monoidality, and, related to this, the PP and the principle of
local tomography

Let's review them in turn.
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Subspace postulates

For x € X(A), let
M (A) = {E\{x} | E € M(A)} and Q(A) = {a € Q(A) | a(x) = 0}.
States in ©,(A) can be regarded as states on M (A). Let

A = (Mx(A), Q(A)).

Subspace Postulate: For every A € C, and every x € X(A), Ax
also belongs to C. Any symmetry g € G(Ay) extends to some
g1 € G(A) with g1(x) = x.

Equally plausible:

Strong subspace postulate (SSP): For every A € C, and every
x € X(A), A also belongs to C. Any process ¢ € Proc(Ax)
extends to some ¢ € Proc(A) with ¢](x) = x.
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Subspace postulates

By induction on rank, one has

Lemma: Let C satisfy the SP, and suppose every A is uniform,
with X(A) compact. Then

(a) Every A is spectral (in particular: sharp).
(b) If every A € C is symmetric, then every A € C is fully
symmetric.

Moreover, if C satisfies the SSP and every A is symmetric, then A
has arbitrary reversible filters.

Proposition: Suppose C is a theory in which every A is uniform,
with X(A) compact. If C satisies the SSP and every A is
symmetric, then A is homogeneous. If every A has a conjugate, A
is also self-dual.
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Monoidality

A theory C is monoidal iff it supplies, for every pair of models A, B
in C, a composite model AB and, in particular, a joint state space
Q2(AB). (Strong version of this: require C to be a symmetric
monoidal category).

Purification Principle [CDP]: Let C be monoidal. For every
model A in C, every state of A is the marginal of a pure state of
some Q(AB), unique up to a reversible transformation on the
purifying system B.

Remark: If V(A) is irreducible, isomorphism states are pure
[BGWI]. In this case, Iso-dilation implies the purification postulate.
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Local tomography

A monoidal theory C is locally tomographic (LT) iff states in
Q2(AB) are distinguishable by joint tests E x F, where E € M(A)
and F € M(B), for all A.B in C.

Equivalently: V(AB) ~ V(A) ® V(B) as a vector space, i.e.,
dim(V(AB)) = dim(V(A))dim(V(B)).

QM over C satisfies LT, real/quaternionic QM do not. LT often
invoked to rule out the latter two.

Theorem [BW]: IfC is a locally tomographic theory consisting of
Jordan models, and contains the qubit, it is a subtheory of QM
over C.
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Two involving conjugates

A) For all systems A in C,
(1) Ais sharp,

(2) A has a conjugate,

(3) A satisfies the Correlation Principle (CP)
(4)

A has arbitrary reversible filters

B) C satisfies SSP, and for all systems A € C,
(1) Ais sharp,

(2) A has a conjugate,

(3) Ais symmetric, with X(A) compact;

Theorem : (A) — Jordan algebras (EJAs). (B) — irreducible
EJAs.
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Another route to EJAs

(C) [BMU] Every system satisfies

1) NR for measurements

)
)

2) Spectrality
) Strong symmetry
)

(
(
(3
(

4) Existence of an energy observable (not covered here)
(1)-(3) lead to EJAs. (1)-(4) single out standard QM without
SSRs.
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The Classics

(D) [MM] C satisfies
Subspace Principle

NR for bits

)
)
2) lsomorphism
)
) Local tomography

(E) [CDP] C satisfies

State-discrimination (not discussed here)

Pure conditioning (w preserves pure states)

(1)
(2) ldeal Compression (implies SSP)
(3)
(4)

Purification Principle ((1) - (4) imply CP and existence of
conjugates)

(4) Local tomography

Evidently, many other choices are possible!
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A conclusion, a question, and a speculation

(1) While there's more to do, it's pretty clear one can give a
unified and streamlined account of all the main reconstructions,
steering a course towards/through EJAs.

(2) Can one obtain the JNW classification directly, without appeal
to the KV theorem and Jordan structure?

(3) That one can so freely “mix and match” of axioms and arrive
more or less the same place suggests (to me, at least right now)
that the probabilistic apparatus of QM arises more from
methodological than from physical constraints.
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