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Abstract: From a brief discussion of how to generalise Reichenbach&€™s Principle of the Common Cause to the case of quantum systems, | will
develop a formalism to describe any set of quantum systems that have specified causal relationships between them. This formalism is the nearest
guantum analogue to the classical causal models of Judea Pearl and others. At the heart of the classical formalism lies the idea that facts about causal
structure enforce constraints on probability distributions in the form of conditional independences. | will describe a quantum analogue of this idea,

which leads to a quantum version of the three rules of Pearl&™s do-calculus. If time, | will end with some more speculative remarks concerning the
significance of the work for the foundations of quantum theory.
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Introduction

The framework of classical causal models describes classical random variables with
specified causal relationships between them.

The causal relationships induce constraints on probability distributions.

The framework is useful in many contexts. It enables us to make inferences about
causal structure in cases where we have observed data, but the causal structure is
unknown.

This in turn enables us to make deductions about what will happen in alternative
scenarios, e.g., if | intervene and fix a variable to have the value that | want, what

happens to the other variables? It also enables a rigorous account of counterfactual
statements.

The main aim of this talk is to describe a framework for quantum causal models.
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Summary

The classical notion of common cause.
The quantum notion of common cause.
Causal models.

Independence and causal structure.

Conclusions.
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Assume finitely-valued random variables and finite dimensional Hilbert spaces
throughout!
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Reichenbach’s principle

Y, Z are classical random variables.
Suppose they are correlated, i.e., P(YZ) # P(Y) P(2).

Then: one variable is a cause of the other, or there is a common cause, or both:
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Reichenbach’s principle

This one’s special, because in this case, the
principle also implies a constraint on the
probabilities

Y, Z are classical random variables.
Suppose they are correlated, i.e., P(YZ) # P(Y) P(2)

Then: one variable is a cause of the otherer there is a common cause, or both:
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Reichenbach’s principle

(v) (z
N

X

If X is a complete common cause of Y and Z, and Y is not a cause of Z and Zis not a
cause of Y, then:

Y and Z are conditionally independent given X : P(YZ|X) = P(Y|X)P(Z|X)
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A question

Following J. Pearl, Causality, let us take:

-- causal relationships between variables to be facts about the world (ontic)
-- probabilities to be the degrees of belief of a rational agent (epistemic)

Then a question arises. Suppose a rational agent takes the causal relations to be like
this:

Y ) [z
Why should the rational agent arrange their beliefs such that Y and Z are conditionally

independent given X?

If the agent does not do this, are they irrational? Will they lose bets?
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Dilation to functions

A (partial) answer:

Suppose that the agent cannot observe all variables and takes it that causal
relationships are fundamentally deterministic, i.e., functional.

Suppose that the agent takes the functional relationships to be as follows:

Y =QAX) Z=fuX)

Y does not depend on u and Zdoes not depend on A.

SO

In this situation we will say that X is the complete common cause of Yand Z.

Suppose further that the agent assigns P (AXu) = P(A)P(X)P ().
Then it follows that the agent will assign P(YZ|X) = P(Y|X)P(Z|X).
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Dilation to functions

This goes in the other direction too. Hence:

Classical Reichenbach Theorem

Given a conditional distribution, P(YZ/X), the following are equivalent:

(i) Itis possible to define random variables A, i, and functions fy, f-, such that
Y=1fAX),Z =f,(u,X),and P(AXp) = PQPX)P(u).

(i) P(YZ|X) = P(YIX)P(ZIX)

A/Y\ /2\

Pirsa: 18070048 Page 12/38



Same thing in circuit language

Think of P(YZ[X) as a channel.

P(YZ|X)=P(Y[X)P(Z]|X) if and only if the channel can be dilated to a function g such
that:

JHER

P(YZ|X)

‘

Y s classical copy
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2

The quantum notion of
common cause
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Suppose that we take the causal situation to be as
shown.

What do the arrows mean?
Following the classical discussion, we expect the

arrows to be telling us, that Ais (in some sense) a
complete common cause of B and C.

Suppose that there is some quantum channel from A
to BC.

We should then expect that “A is the complete
common cause of B and C” places a constraint on this
channel, analogous to the classical factorisation of
P(YZ|X).
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Notation:

Consider a quantum channel, with input A and output B, corresponding to a CP map
E:
pe = E(pa).

Let the Choi-Jamiotkowski-isomorphic operator be given by:

PBIA = Z E(|i) a(j]) @ |i) a- (J]

| Pg|a s @ positive operator, with TTB(()BM) = I4

Definition:
For a generic bipartite unitary U: say that B does not influence C if:
Al s

« for all inputs p,, the marginal p. is independent of pg
* equivalently, Trp pepiap = Pcia @ I
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Definition:

Given a unitary U:

u does not influence B
Adoes not influence C

say that A is the complete common cause of B and C if: {
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Quantum Reichenbach Theorem (1-Mm. Allen, et al. arxiv:1609.09487) :

Given ppc|a, the following are equivalent:

(i) there exists a unitary dilation of pg¢|4, with latent systems A and p, such that A is the
complete common cause of B and C, and p;4, = pa ® pa @ p,

(i) PBC|A = PBIAPC|A

NB Each of the following is also equivalent to the two conditions above:

(i) 1(B:C|JA)=0 (evaluated on the positive operator (1\(iA)pB(;|A)

(iv) Hy = @ (Hfh_ X Hfh'_) , PBC|A = me_,\}. X Pc| Al

i

Cf P. Hayden et al., Comm. Math. Phys. 246, 359 (2004).
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Same thing in circuit language

Pecia = PrlaPc)a if and only if pge 4 can be dilated to a unitary U such that:

o| + |

T T

- <

In quantum theory, there is no copy. So what is this?
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3
Causal models
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Classical causal models

A directed acyclic graph with A set of conditional probabilities:
random variables on nodes: For each i, P(X;|Pa;)

Joint distribution:
P(Xl Xk) = ”,‘ P(X,‘IP(I,‘)

Pa; denotes the parents of X;, that is the set of nodes X, such that there is an arrow from X, to X,.
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Quantum causal models

A directed acyclic graph.
Each node is associated with a
Hilbert space H; @ H/

xa\x /\xi,
N

b4

X,

* Asetof channels: py pq, € B(H; @gepa;, Hy)

such that forall i,j [ px,| pa, Px;| Pa, ]=0.

Form a process matrix by taking the product of
these channel operators.

E.g., for the graph on the left:

0= Px,| X, PX3| X%, PX5| X, PX,

Ingeneral, 0 € B (&Q; (H;® H})).
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Quantum Reichenbach Theorem (1-Mm. Allen, et al. arxiv:1609.09487) :

Given ppc|a, the following are equivalent:

(i) there exists a unitary dilation of pg¢|4, with latent systems A and p, such that A is the
complete common cause of B and C, and p;4, = p3 ® pa @ p,

(i) PBC|IA = PB|APC|A

NB Each of the following is also equivalent to the two conditions above:

(i) 1(B:CJA)=0 (evaluated on the positive operator (1\(1A)p3(;|,4)

(iv) Ha = €D (Hi, ® Hjy,) pcia =D Ppia; ® Po)a;

i

Cf P. Hayden et al., Comm. Math. Phys. 246, 359 (2004).
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Remarks

The approach of two Hilbert spaces per node, and the resulting ¢ operator, has
much in common with the multi-time formalism, process matrices, and quantum
combs. The novel aspect is the constraints that we get on o from a particular
causal structure.

Allows for possibility of interventions at nodes. An intervention corresponds to a
quantum instrument, mediating between the input Hilbert space (H,) and the
output Hilbert space (H,’). Joint probabilities for the outcomes of these
interventions are obtained from o via a trace rule.

No intervention at a node corresponds to identity channel between input and
output Hilbert spaces. Marginalization in this case corresponds to tracing out both

Hilbert spaces, with an operator corresponding to the identity channel multiplying
o.
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Justifying the definition

B (C)
* We have already argued that in the simple case of L, , the DAG is to
A

be interpreted in terms of an underlying unitary evolution in which A is the
complete common cause of B and C.

* It followed, by one direction of the quantum Reichenbach theorem, that the
channel pgc|a should satisfy pgcia = pgia Pcja-

This leads to a process matrix of the form o = pg 4 pc|a Pa, Which is consistent
with the general definition on the previous slide.

A generalization of the quantum Reichenbach theorem plays a similar role in the
case of an arbitrary DAG, which is interpreted in terms of an underlying unitary
circuit.
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The quantum Reichenbach theorem for arbitrary causal structures

Consider a DAG G, with nodes X, ..., X,,, and a Hilbert space H; @ H; for each X;.
Consider also a positive operator 0 € B(Q; H; ® H;').

Then (JB, R. Lorenz, O. Oreshkov, forthcoming):

There exists a
unitary comb, with
o is of the form o = Il; px,|pq, causal structure
for a pairwise commuting set : N | corresponding to
of channel operators py. |pq,- . the DAG G, such
that ¢ is returned
when we
marginalize over
latent variables.
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Independence and causal structure
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Conditionalindependence in classical
causal models

In classical causal models, the structure of the DAG places constraints on the joint
probability distribution in the form of conditional independences.

In fact (turning things around) these conditional independences allow us to make
inferences about what the underlying causal structure might be in cases where we
don’t know it, but do have some observational data. This in turn allows us to answer
important questions like: what if, next time round, | don’t just observe these variables,
but actively intervene, and fix one so that it has the value | want it to have? What
happens to the other variables?

* Pearl’s do-calculus formalises some of this.
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Definition:

Consider a DAG G. Let S, T and U be disjoint subsets of nodes of G. A path fromSto Tis an
undirected path in the DAG, which starts on an S node and ends on a T node. A path from
Sto T is blocked by U if any of the following hold:

(i) The path contains a fork at a node in U.

(i) The path contains a traversal at a node in U.

(iii) The path contains a collider at a node which is not in U, and which does not have any
descendants in U.

Say that S and T are d-separated by U if all paths from S to T are blocked by U.

Theorem (see, e.g., Pearl, Causality):

d-separation is sound and complete for P(ST|U) = P(S|U) P(T|U).
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Classical split node models

A directed acyclic graph.

Each node is associated with two
random variables, X;™ and X

Xa

A set of conditional probabilities:
For each i, P(X/"|Pa{™")

Classical "process matrix”
K=T1; P(X"|Pai™"

Formally, K is a conditional probability
distribution over input variables, given output
variables.

Allows for joint probabilities of outcomes to be
calculated, when agents make arbitrary
interventions at nodes.

If there is no intervention at a node, put a delta
so that X°"' takes the same value as X"
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Independence in classical split node models

Reminder: Given three random variables, X,Y,Z, the following are equivalent ways of
defining “Y and Z are conditionally independent given X”:

P(YZ|X) = P(Y]X) P(Z]X)

I(Y:Z|X) =0

P(XYZ) P(X) = P(YX) P(ZX)

P(xvZ) =a(YX)B(ZX), for real valued functions a and f3.

Definition: Given a split node classical causal model, consider disjoint subsets of nodes
S, T, U.

Say that S and T are strongly independent relative to U if Ksry = asy Bru-

Equivalent operational statement: for all possible interventions at S, T and U nodes, the
resulting joint distribution over input and output variables satisfies:

P(sfﬂsout TI'.TLT(JML |Uiﬂ. Uout) =P (Sinsout |Uin Uuut )P(T:n Tout IUf?’l. Uou.t )
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Example of a situation where weak independence holds
but not strong independence

Y out

yin | Y |

/ yin — f(XOUf)’ where f(0) =0, f(1) =0, f(2) = 1.
quL

& P(Xm=0)=P(X"=1)=1/2.

With no interventions, Y™ = 0 with certainty, hence P(X"Y'") = P(X'")P(Y'™)
Weak independence holds.

But it is false that the classical process matrix can be written K¢ = a5 Br.
(Consider: an agent at X can signal to Y if they want to, by sometimes fixing X°!'=2.)
Strong independence fails.
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Independence in classical split node models

Theorem (JB, R. Lorenz, O. Oreshkov, forthcoming)

d-separation is sound and complete for strong relative independence.

Theorem (JB, R. Lorenz, O. Oreshkov, forthcoming)

d-separation is sound and complete for weak relative independence.
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Independence in quantum causal models

Definition: Given a quantum causal model, consider disjoint subsets of nodes S, T, U.

Say that S and T are strongly independent relative to U if asry = asy Bru,
for Hermitian operators a and f3.

Theorem (JB, R. Lorenz, O. Oreshkov, forthcoming): d-separation is sound and
complete for quantum strong relative independence.
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Remarks

In the case of o being diagonal with respect to a product basis (i.e., everything is
classical), a quantum causal model reduces to a split node classical model, and
quantum strong relative independence reduces to classical strong relative
independence.

In the case of a tripartite state, p,g¢, the definition of quantum strong relative

independence reduces to the usual definition of quantum conditional
independence:

Papc = ApaPca Iff  1(B:C[A)=0
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Conclusions

Following a close look at the notions of common cause and independence, we have
given a definition for quantum causal models. NB The most similar approach in the
literature is probably that of F. Costa and S. Shrapnel, New J. Phys. 18, 063032
(2016). But there are some significant differences.

A look at classical split node models reveals various senses in which two sets of
nodes might be regarded as independent relative to a third.

At least one of these (strong relative independence) has a quantum analogue, with
a d-separation theorem.

In fact, this theorem is a special case of the first rule of the quantum do-calculus,
which supplies quantum analogues for all three rules of Pearl’s classical do-
calculus. (But | haven’t discussed this!)
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More foundational and/or speculative remarks

The classical formalism has a natural interpretation, wherein causal structure is
explained in terms of underlying functional relationships between variables. The
functional relationships are taken to be facts about the world (ontic). Probabilities
arise when an agent does not know the values of all variables, hence expresses
degrees of belief with a probability distribution (epistemic).

The existence of a compelling quantum analogue to the classical formalism, with
unitaries replacing functions, lends support to the view that the unitaries (and the
causal structure they define) are ontic, and that the positive operators are
epistemic.

But the positive operators express ... information about what?

Outcomes of interventions or the ontic states of some underlying theory?
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More foundational and/or speculative remarks

* Isthere a quantum analogue of weak relative independence?

* Inthe classical split node case, weak relative independence essentially expresses
the ordinary conditional independence of the variables (in the case that no one
intervenes).

In the quantum case, in the absence of “some underlying theory”, there are no
underlying variables. But if we had a natural analogue of weak relative
independence, we could see this as a clue, or a constraint on the underlying
theory: weak relative independence expresses some sort of statistical conditional
independence relation that an agent’s information about the underlying ontic
states should satisfy.
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