Title: Cosmology Observations 1
Date: Jul 11, 2018 09:00 AM

URL: http://pirsa.org/18070010
Abstract:

Pirsa: 18070010 Page 1/73



Observational cosmology

Kendrick Smith
TRISEP 2018

irsa: 18070010 Page 2/73



Part 1: the standard cosmological model
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All current data can be fit by a 6-parameter cosmological model!

pa=(2.56+0.04) x 1047 GeV* Dark energy density (c.c.)

Qp, = 0.0486 + 0.0007 Baryonic™) matter abundance
Q=0.267 £ 0.009 Cold dark matter abundance
A= (2.11 £0.05)x 10° Initial power spectrum amplitude
ns = 0.967 + 0.004 Spectral index

T=0.058£0.012 CMB optical depth

baryonic matter 5%

dark
matter
27%

dark energy
68%

™) “Baryons” = protons + neutrons + electrons(!)
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Ingredients in the standard cosmological model:

+ Background metric is FRW

 Expansion history is ACDM

+ Initial perturbations are Gaussian random

+ Initial perturbations are scalar adiabatic

« Power spectrum of 1nitial perturbations is a
power law: (k°/27%)P(k) = AZ(k/ko)™ ™!

In the next few slides, we’ll describe these ingredients at an
informal level, just to set the stage. (Focus of these lectures is
data analysis and statistics, theory lectures are next week!)
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“Background metric is FRW?”

The expansion of the universe is described by a function a(t),
such that a=0 at the big bang, and a=1 today. (a = “scale factor™)

Formal meaning: metric is ds’ = -dt* + a(t)* dx?

Intuitive meaning: if points x, X’ are separated by distance D
today, then their separation at time t is a(t)D.
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“Expansion history is ACDM”

Energy densities evolve with scale factor a(t):

Pde = constant dark energy (assuming it is a c.c.!)

, =3 . . .
Pm X a(t) nonrelativistic matter (dark + baryonic)
Prad o a(t)”? relativistic particles (photons, neutrinos)

baryonic baryonic baryonic

matter 5%

matter 5% matter 5%
dark

energy 7% dark

matter
27%

dark
matter
27%

radiation
74%

dark energy
68%

+ radiation + radiation
9x10° 8 x 104

=] a=0.33 a=10"
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“Expansion history is ACDM”

Scale factor a(t) evolves via Friedmann equation

: 1/2 1/2
dloga 8 / 8rG | .. /
= 5 Ptot - . (P(l(‘. + Pm(”r) + Pra.(l(u-‘))
dt 3 3
rad-dominated matter-dominated  A-dominated
>« >

107! e
= [] '_,fj []
5 ' pd '
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° [ ~ [l
A ' "

107 e :

1074 f‘(-; I-1 : I 0 I 1 ‘ 2 ‘ 3 - 4

10 10 10 10 10 10 10
t (Myr)
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The expansion history is parameterized by the first three parameters
in the standard model (pa, 2b, £2¢).

pa=(2.56 £ 0.04) x 1047 GeV* Dark energy density (c.c.)

Q= 0.0486 + 0.0007 Baryonic matter abundance
Qc=0.267 +0.009 Cold dark matter abundance

A =(2.11 £0.05) x 10° Initial power spectrum amplitude
ns = 0.967 + 0.004 Spectral index

T=0.058 +£0.012 CMB optical depth

So far, we have not talked about perturbations. The next two
parameters (A¢?, ns) specify the initial perturbations.
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[nitial conditions: at early times, the FRW metric has small
perturbations.

ds® = —dt* + a(t)*e**") da?
The field {(x) is called the “adiabatic curvature” or the “initial

curvature”. This 1s a random field whose statistics can be described
informally by the following statements:

« Initial perturbations are self- & o ”N : «*;‘Lw
similar (no preferred scale) B, Y .

* Almost scale-invariant, small o
trend toward more power on QP et | oy
large scales. % | SR

»Characteristic size of 5 s e
fluctuations is A¢ ~ (5 x 10-5) el ke
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[nitial conditions: at early times, the FRW metric has small
perturbations.

ds?® = —dt? %—cl(t)zﬁziijq(trg

More formally, {(x) is a Gaussian random field with the following
power spectrum P¢(k). (This will be defined precisely later!)

k3 k "
972 9( ) 5 (0.05 h Mpt‘-l)

with free parameters

A2 =(2.11£0.05)x 10  Initial power spectrum amplitude
ns = 0.967 + 0.004 Spectral index

Pirsa: 18070010 Page 11/73



“Initial perturbations are scalar adiabatic”.

-+ “Scalar” means that there are no gravity wave perturbations
in the initial metric. (Some models of inflation predict this,
but so far it has not been observed.)

absent

» “Adiabatic” is more technical. It means that the C field also
completely determines the perturbations in the stress-energy
tensor, by a universal set of rules which will be explained
later!

p(x,t) = p(t) (1 + ;g(x))
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The statistics of the initial perturbations are parameterized by
parameters (A¢?, ns) below.

pPa=(2.56 +0.04) x 1047 GeV* Dark energy density (c.c.)

Q= 0.0486 + 0.0007 Baryonic matter abundance

Q= 0.267 £ 0.009 Cold dark matter abundance

A2 =(2.11 £0.05) x 107 Initial power spectrum amplitude
ns = 0.967 + 0.004 Spectral index

1=0.058 +£0.012 CMB optical depth

The final parameter T is an astrophysical nuisance parameter which
we define for completeness.
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[onization history of the universe

Xe(t) = electron 1onization fraction

= probability that a random electron in the universe is 1onized
(rather than being part of an atom)

1.0 1
i z=1100:;
! “recombination”
0.8 - i (CMB 1s formed)
[T
x
&
= 0.6 1 y—.
® | z=7.
b i “reionization”
o 1 ~
= ! (stars form)
© 0.4 i
c
=4
0.2 1
“dark ages”
0.0 1
Time
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[onization history of the universe

T = CMB optical depth

= probability that a CMB photon emitted at z~1100 scatters from
an electron at low redshift, before being observed at z=0.

Astrophysical nuisance parameter: T affects the CMB power
spectrum.

When fitting cosmological parameters from the CMB, we need to
include T in the fit, and account for uncertainty in T when assigning
errors to other parameters.
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Standard model of cosmology:

+ Background metric is FRW

+ Expansion history is ACDM
Initial perturbations are Gaussian random
Initial perturbations are scalar adiabatic
Power spectrum of 1nitial perturbations is a

power law: (k*/2%) P(k) = A2(k/ko)"

Six parameters:
pA=(2.56 £0.04) x 1047 GeV* Dark energy density (c.c.)

Qp = 0.0486 + 0.0007 Baryonic!™) matter abundance
Q=0.267 + 0.009 Cold dark matter abundance

A2 =(2.11 £0.05) x 10 Initial power spectrum amplitude
ns = 0.967 £ 0.004 Spectral index

t=0.058 £0.012 CMB optical depth

™) “Baryons” = protons + neutrons + electrons(!)
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High-z
The standard cosmological model specifies the perturbations at very
carly times (high-z). They are fairly simple, and parameterized by a
Gaussian random field {(x) with a featureless power spectrum.
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z=1100

High-z
The standard cosmological model specifies the perturbations at very
carly times (high-z). They are fairly simple, and parameterized by a
Gaussian random field {(x) with a featureless power spectrum.
As time evolves, the perturbations become more complex. By the
time the CMB is formed (z=1100), a lot of physics has been
“imprinted” on the power spectrum.
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z=1100

High-z
The standard cosmological model specifies the perturbations at very
carly times (high-z). They are fairly simple, and parameterized by a
Gaussian random field {(x) with a featureless power spectrum.
As time evolves, the perturbations become more complex. By the

time the CMB is formed (z=1100), a lot of physics has been
“imprinted” on the power spectrum.

At late times (z~1), nonlinear effects are important and the
perturbations are very non-Gaussian.
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inflation? gt _
cyclic universe? —— C(l) yF — > @&
something else? [~ Y osad |
o z=1100

High-z

The standard cosmological model specifies the perturbations at very
carly times (high-z). They are fairly simple, and parameterized by a
Gaussian random field {(x) with a featureless power spectrum.

As time evolves, the perturbations become more complex. By the
time the CMB i1s formed (z=1100), a lot of physics has been
“imprinted” on the power spectrum.

At late times (z~1), nonlinear effects are important and the
perturbations are very non-Gaussian.

There are also models for the “early universe”, a hypothetical phase
preceding the radiation-dominated part of the expansion, which try
to explain where the Gaussian field C came from.
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#i5, W
e

inflation? _ | _
cyclic universe? ——— C(L) Y — &

something else? B g )

z=1100

H-igh-z
In each of these three stages, different physics is important:

 Early universe: Quantum mechanics in expanding spacetime
generates Gaussian perturbations from vacuum

« Formation of the CMB: Linear perturbation theory in a
plasma with multiple components (dark matter, baryons,
photons, neutrinos) + metric degrees of freedom

 Late times: Gravitational N-body physics. Messy
astrophysics! (galaxy formation, star formation, ...)
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s R

Cosmological constant pa
Baryon abundance €2y

Fundamental | park matter abundance Q. ~ Data
physics analysis

Initial amplitude A¢?
Spectral index ng
CMB optical depth 1

- %

Challenge for observers: which model fits the data?

~1930: Expanding universe
1965: Big bang (discovery of CMB)
~1970: Dark matter
1992: Gaussian, nearly scale-invariant perturbations (COBE)
1998: Cosmological constant
2006: Deviation from scale invariance (ns < 1)
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Fundamental
physics

—

- N

Cosmological constant pa
Baryon abundance €2y
Dark matter abundance 2.
Initial amplitude A¢?

Spectral index ng
CMB optical depth 1

%

/UNDEH CONS TRUCTION
(474 /7S

B ———

Data
analysis
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/

Fundamental
physics

—

-

\

Cosmological constant pa
Baryon abundance €2y
Dark matter abundance €.
Initial amplitude A¢?
Spectral index ng

CMB optical depth 1

%

—_—

Data
analysis

Challenge for theorists: explain this model at a fundamental level

«  What i1s dark matter?

* Why 1s the cosmological constant so fine-tuned?

(if late-time accelerated expansion is indeed a c.

c.!)

» What physics is responsible for generating the initial
Gaussian, nearly scale invariant fluctuations?
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Cosmological observables (such as the CMB power spectrum)
are sensitive to cosmological parameters, and can jointly constrain
multiple parameters.

T

0.7% — +TE+EE
BN lensing
6000 B lensing+BAO
—— Op=0.68
- 0.60
5000 1 Q=053 w
c x
o~ 52
h¥4 i 0.45
3 4000 - "
E 9 44
< 30009 | Sah "
S-)._ I‘I I il
— | 0.30 0.45 0.60 0.7%
+ 20004 | Q,
1/ Ve Fig 26. Constraints in the £,-€Q, plane from the Planck
1000 4 \‘,.. TT+lowP data (samples; colour-coded by the value of Hy) and
\ Planck TT,TE.EE +lowP (solid contours). The geometric degen
— eracy between (1, and £2, is partially broken because of the ef-
0 T T T fect of lensing on the temperature and polanization power spec-
0 500 1000 1500 2000 tra. These limits are improved significantly by the inclusion
of the Planck lensing reconstruction (blue contours) and BAO

/ (solid red contours). The red contours tightly constrain the ge-

ometry of our Universe to be nearly flat.
Planck 2015
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Cosmology 1s largely concerned with looking for extensions of
the 6-parameter standard model.

- Non-Gaussian 1nitial conditions
+ Non-minimal neutrino mass
- Extra neutrino species or other light relics
+ Interacting dark matter
+ Nonzero spatial curvature
+ Cosmological gravity waves
+ many others!

The standard model includes ingredients which were originally
surprises (dark matter, cosmological constant, quantum
mechanically generated perturbations).

Will we find new surprises?
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Part 2: random variables and fields
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The standard model of cosmology 1s a probabilistic model.

For example, it can predict the probability of a given CMB
realization occurring, but not the specific realization.

In this part of the lectures, we’ll build up some machinery for
working with random variables and fields.
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Physicist’s definition of a one-dimensional random variable X:
anything with a probability distribution function (PDF) p(x).

The meaning of p(x) is “probability per unit x™.

Here is an arbitrarily chosen example.

3.0

2.5

2.0 4

1.0 4

0.5 1

T T T T T T T
-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

Pirsa: 18070010 Page 29/73



Histogram of 10° random samples in 30 bins, compared to the
continuous PDF. The probability for the random variable X to
be in bin [a,b] 1s: :

Prob (a, <X < b) = / dx p(x)

J

Note that the PDF must satisfy f:i drp(x) =1

3.0

2.5

2.0 4

—=====
—
'~
p—ia}
~
|

1.0

0.5

0.0
-1.00 -0.75 -050 -0.25 0.00 0.25 0.50 0.75 1.00
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Four X’s added together: Y = X1+ Xz + X5+ X4

X ‘ Y=Xi1+Xo + X3+ X4
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Five X’s added together: Y = X+ Xo + X3+ X4 + X5

3.0 0.25

0.20
2,04

0.15 4
1.5 :

0.10
1.0

0.05 A

0.00 +

4 2 0 2 4

X Y=X;+Xo+ X3+ Xgq+ X5
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Twenty X’s added together: Y = Zf“ X

In the next few slides, we’ll explain where the limiting PDF
p(x) = - \"ﬁe""'/ 20" comes from (including factors of 20, ).

207

0.12 1

0.10 1

0.08 4

Pirsa: 18070010 Page 33/73



Central limit theorem: the sum of a large number of independent,
identically distributed random variables has a PDF which 1s
approximately Gaussian. (Proof omitted!)

The Gaussian PDF is defined by:

p(x) = 1 ] €T — f)B
P = 7ot O 7 a0

and has two parameters: a mean r and a width o.
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Some definitions: the mean and variance of a random variable X
are defined by:

X =(X) [ mean ]

bo

Var(X) = <X ) — _<X> | variance |
— (X — X)?)

v/ Var(X) can be interpreted as the “typical” size of fluctuations
around the mean.
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Example: For the Gaussian

7 | (z — T)°
p(x) = Vorg? CPAT Toe2
4ma~ “

a short calculation shows:

Mean = / dep(x)r =

— 00
OO

Variance = / drp(z) (2% — %) = o°
J—00

Page 36/73



Example 2: for the PDF p(z) = considered previously,

=
Var(X) = (X = X)?) = ;

Next let’s calculate mean and variance of ¥ = DD
where the X’s are assumed to be independent samples.

w
(=3

L]
i
L
|
1
|
L |

M
W

~N
o

i
)
)
)
)
3
)
)
)
B
3
b

a0 2 il 1
-1.00 =075 =050 =025 0.00 o233 oas0 ars 100
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Properties of expectation values:
(X £ X') = (X) % (X)
(cX) = c(X) if ¢ is a constant (not a random variable)
(XX = (X) (X") if X, X are independent random variables

(not true in general!)

Now we can calculate mean and variance of ¥ = > _." . X,

— (3 X2 .+Z7#’,XX)
= Do XT) 4+ D0 (X (Xy)
N (3)

Page 38/73
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. . : : < N
This calculation gives the mean and varianceof ¥ = > . X :

Y=0 Var(Y)=N/2 (for all N)

In general, the mean and variance do not determine the PDF p(x).
However, for a Gaussian PDF they do!

p(x) =~ ;c(mm)?/‘zg? = ! e T IN (for N>> 1)
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Multivariate random variables: let’s generalize to the case of N
random variables (X1, ..., Xn) which are not assumed independent.

The PDF becomes a function of N variables p(xi,...,xn), and
represents “probability per unit N-volume”.

Example: a multivariate Gaussian (X, X2) with a correlation
between X and X»>. (To be defined precisely in a few slides!)

10 +

9 4

8

'l B

6 4
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Example: p(r1,22) =

if x1,20 >0
0 otherwise

Just to show an extreme case where the variables xi, X2 are
very non-independent!

1.0 1

0.8 A

0.6 A

0.4

0.2

0.0 A

0.0 0.2 0.4 0.6 0.8 1.0
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Does the central limit theorem still hold when the random variable
1s a vector X;? (In this case, a two-component vector)

Two X’s: Y, = X,fl) i X_fié)

2.00 -
1.75 4
1.50
1.25
YE 1.00
0.75
0.50

0.25 1

0.00 A

0.00 0.25 0.50 0.75 1.00 1.25 1.50 175 2.00

Y1
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10
Ten X’s: Y; = Z XY
j=1

The distribution has become a multivariate Gaussian.

In two variables, the multivariate Gaussian has five parameters: two
“means”’, and three parameters describing the size and orientation.

10 +

Y, °] \
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In N variables, the mean becomes an N-component vector

X; = (X;)

The variance generalizes to an N-by-N covariance matrix:
Cov(X;, X;) = (XiX;) — (Xi)(X;)
= ((Xi = Xi)(X; — X))

In our example, a short calculation gives the mean and covariance:

1.0 1
X 0.64
X, )\ 064
X2
Ciy Ciz ) _ { 0.095 0.087
12 Cao ) - 0.087 0.095 )
0.0
o.'o ﬁTa 0'4 016 ()‘ﬂ 1 Il’)
Xi
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Now we can give the definition of a multivariate Gaussian PDF:

o e _ 1 . 1 " =N
])(;1,1 y T JI-N) D(.‘t(zﬂ‘(j)l/z exp | — 5 (I, - I,)(U (.I,j - .I-J‘)

-

The PDF of a multivariate Gaussian random variable 1s determined
by its mean X; and covariance matrix C;; = Cov(X;, X j)

In cosmology, we are usually interested in Gaussian random
variables. Therefore, it suffices to keep track of the mean (a
vector) and the covariance (a matrix).
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In this example:

X1\ _ (064 Cii Cia \ _ [ 0095  —0.087
X, )~ 0.64 Cra Con )~ ~0.087  0.095

In the large-N limit, these determine the PDF (central limit theorem):

4 i , I ry- ] . - 1y, s
p(;l-l,;lfg) ~ DQ’[(,ZT{'(")UJ exp (2(1 . I‘,)CH (.I?_j — .Ifj)) (N >> 1)
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Cij = (XiXj) — (Xo)(X;)
= ((Xi = X)(X; = X))

Diagonal elements C;; of the covariance matrix are variances.
Cii'2 ~ characteristic size of fluctuations in Xjaround its mean.

Off-diagonals Cjj quantify the level of correlation between random
variables Xi, X;. The correlation coefficient

Cij

Corr(X;, X;) =

1s always between -1 and 1.
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: : : . C 12
Visual representation of covariance matrix (where r = )

vV C11C22

Vo

b
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The CMB 1s a multivariate Gaussian random variable!

If the map below is represented with N=107 pixels, then the
statistics are described perfectly (as far as we know) by a
multivariate Gaussian, whose N-by-N covariance matrix can
be calculated numerically in the standard model.
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Behavior of mean and covariance under linear transformations.

Let X; be an N-component random variable, and define an
M-component random variable Y. by:

};:1 = 451(:1;1'_X-’: (A}_[i iS an M-by-N matriX)
Then the mean (a vector) and covariance matrix transform as:
r(r - <44a.7_'.X 1> — 140'_.7; X )

C OV(}::» }},) = <(Y:.' o }_:1) (}}) - }_rh)>
((Aai(Xi = X3)) (Ap (X5 — X))

= filaréfqu <(X( — Xé)(X} o X}')>
= A ai A bj COV(X, : Xj )

Or 1n index-free notation:
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For arbitrary random variables Y. = Aai Xi, the mean and
covariance transform as:

Y = AX CY = ACX AT

Theorem (proof omitted): if X is Gaussian, then Y, 1s also
Gaussian. In this case, the mean and covariance completely
determine the statistics.

In particular, the question of whether a random variable X is
Gaussian does not depend on the choice of basis. (Changing basis
Xi — X’ji1s the special case where A 1s invertible.)
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Sometimes, problems involving random variables are linear algebra
problems in disguise.

Example: how to simulate (on the computer) a Gaussian random
variable X; with specified covariance matrix Cj;?
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Sometimes, problems involving random variables are linear algebra
problems in disguise.

Example: how to simulate (on the computer) a Gaussian random
variable X; with specified covariance matrix Cj;?

Answer: diagonalize C \
1

Ao -
] where A = and R7' = R?

C = RAR

AN

Now simulate a Gaussian random variable Y; with covariance
matrix A (straightforward, since A is diagonal).

Define X = RY. This 1s a Gaussian random variable with
covariance matrix Cx = R Cy RT=R A R! =, as desired.
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Random fields.

: i it Wy,
.‘ . i N . A, i e
Consider an image f, with 2562 (say) e

pixels. (where p=1, ..., 256%). ki O S e 3

If f, is a random variable, then its RO T ¢ g e S
covariance Cpp’ is a 2562-by-2567 P, g SO R A ST
. ) = . [/ L2, b i S § »
matrix. (Assume mean f,= 0 for WA gl
simplicity.) | il 2

Now take the continuum limit;:

pixelized image f, —  continuous function f(x)

covariance matrix two-point correlation
. . — . i _ o
Cpq = <tp fp> function <f(x) f(x’)>
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Unless stated otherwise, we will be interested in random
fields which are translation and rotation invariant, so that the
two-point function < f(x) f(x’)> depends only on the scalar
separation |x - x’|.

(f(x)f(x)) = ((]x = x)

( is called the “correlation function”.
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Now let’s compute the two-point function in Fourier space.

) () <(/ e ‘/'(;;-)o"k'X) (/ e j,(.r)(J;k’-x')>

/ d‘n.x d'n‘xl <’/_'(x)j'(xl)>(_)_—"i.k-){+'i.k’-xl
- / d"x d"x' C(|x — x/|)e~ hxtik x
/ d"x d"r (I(‘r|)(i—'i.k-x+'ik"(X—t‘) (P - x — X’)

= [ / d”r((r|)v”“"] (2m)"0" (k — k')

The quantity in brackets is called the power spectrum P(k).
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We have now shown that the two-point statistics of a random field
are given equivalently by:
(f(x)f(x)) = ¢(|x = x|) in real space
(f(k)f(K)") = P(]k|]) (27)"0"(k — k') in Fourier space

and the correlation function {(r) and power spectrum P(k) are related
to each other by Fourier transforms (‘“Weiner-Khinchin theorem™):

P(A) . /(ZNI'C(’I-’)(?I'RT

‘ d"k .
) — : P k __-1_.k-r
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A random field is Gaussian if its real-space values f(x) are a
multivariate Gaussian random variable in the usual sense. In
this case, the statistics are completely determined by the two-

point function (either {(r) or P(k)).

Gaussian random fields are easy to think about in Fourier space,
since the covariance 1s always diagonal:

(fR)f(K)") = P(k]) (2m) 6" (k = k) (%)

In Fourier space, a Gaussian random field 1s just a collection of
independent Gaussian random variables (k).

The delta function on the RHS of (*) can also be understood from
translation invariance. Under a translation x => x + a, the two-point
function transforms as:

(FK)f(K)*) = e D2 f (k) f(k)*)
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Example: Two-dimensional Gaussian random fieclds with
power-law spectra P([) o [

(Note: cosmologists are hardwired to denote wavenumbers
by k in 3D, by 1 in 2D, and by w in 1D.)

A TR

' S L

h . ) R it

* S Py *,

:wﬂ‘;\ v . %

L 3 \J" g 4

A Vg |
e ghaib wis alibs e
o= —1 o= —2 a=—3

“blue” spectrum scale invariant “red” spectrum
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Gaussian white noise: simplest example of a Gaussian random
field. The correlation function is a delta function.

C(r)=Ad"(r)

Each pixel value is an independent Gaussian random variable.
(Covariance matrix is diagonal in real space and Fourier space!)

T T T T T
50 100 150 200 250

o
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A linear operator applied to a GRF (Gaussian random field)
gives another GRF. (This follows from the general statement
that linear combinations of Gaussians are Gaussian.)

Example: what 1s the power spectrum of a one-dimensional

Gaussian random walk? (Obtained by adding an independent
Gaussian random number at each timestep.)

14 —~

0 50 100 150 200 250
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A linear operator applied to a GRF (Gaussian random field)
gives another GRF. (This follows from the general statement
that linear combinations of Gaussians are Gaussian.)

Example: what 1s the power spectrum of a one-dimensional
Gaussian random walk? (Obtained by adding an independent
Gaussian random number at each timestep.)

To answer this, we note that a random walk 1s the integral of
white noise. Therefore:

_ 1
frw(w) = — fwn(w)

(109

_ 1
Prw(w) = "] W (W)

. 4"1

==

Pirsa: 18070010 Page 64/73



Another example which is more representative of the CMB.
Let f(t,x) be a field which evolves via the wave equation:

0? , 0?
_— - O — t,x) =0 cs = “sound speed”
(0?‘.2 ; e);;~2> f(t, ) “ ’
with the following initial conditions at t=0:

f(x) 1s a Gaussian random field with power spectrum Po(k)
Af /ot =0

Question: what 1s the power spectrum P1(k) of a spatial “snapshot”
f('T,x) at time t=T?
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We take a spatial Fourier transform x — k (but not t—w).
Then the wave equation (07 — c¢20%)f = 0 becomes:

o oy
((()? + ('ﬁlﬂ?‘z) f(t,k) =20

and the solution is (using 9 f /0t = 0)
f(t, k) = cos(cskt) f(0, k)
The spatial power spectrum Pr(k) at time t=T 1s:

Pr(k) = cos(cskT)? Py(k)

1.e. time evolution imprints peaks on the power spectrum.
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Analogously, time evolution “imprints” features on cosmological
power spectra, starting from a featureless 1nitial power spectrum.

3D power spectrum
of initial conditions
(adiabatic curvature)

1078
k* P(k)
z.nz
10°°
10 . A N T T L R |
104 10°* 102 107! 10°

wavenumber k (Mpc™)

2D CMB power spectrum

Goon

acoustic
H000 Hk‘ll]t.‘
(1 ~200)
10000
| R AL
2000 /\/ 27 d'dlll]‘!ill_L"
scale
1000 ’\ (1 ) IS()“)
\_—\‘ T —

L ~- —

_L A A -
1] W0 1000 15000 2000 2500

angular multipole |

A0
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We take a spatial Fourier transform x — k (but not t—w).
Then the wave equation (07 — c¢20%)f = 0 becomes:

o oy
((()? + ('ﬁlﬂ?‘z) f(t,k) =20

and the solution is (using 9 f /0t = 0)
f(t, k) = cos(cskt) f(0, k)
The spatial power spectrum Pr(k) at time t=T 1s:

Pr(k) = cos(cskT)? Py(k)

1.e. time evolution imprints peaks on the power spectrum.
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Curved sky.

So far, our fields have been defined on Euclidean space, but some
fields are defined on the unit sphere, e.g. CMB temperature T(0,0).

In Euclidean space, any field f(x) can be represented as a linear
combination of plane waves e** (Fourier transform).

Analogous statement on the sphere: any field {(0,0) 1s a linear
combination of spherical harmonics Yim(0,0).
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The spherical harmonic Yim(0,0) is a special function defined
for integers £=0,1,2,... and m=-, (-£+1), ..., ¢.

Spherical analogue of a plane wave e**. The wavenumber ¢ is
quantized (an integer), and there are (2£+1) harmonics for each £

Any function f(0,0) is representable as f (6, ¢) = >, aimYim (0, @)

¢=0 (monopole)

¢=1 (dipole) : ¢ 9
(=2 (quadrupole) &@ ® @ @ ()
¢=3 (octopole) = e €8 B et

."‘.\_\
...etc... ‘e s’ ...etc. ..
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Euclidean field Spherical field

real-space representation

f(x) 1(0,9)

harmonic-space representation

f(k) Alm,

harmonic transform

,. “d"k s
]((X) - / ( 7T)'r,~‘ -f(k)(itklx f((). d)) - Z (?fi-rr:}ff.?rr.(()%d))

(e

b

Im
i nverse trans l‘()l’l n

f(k) = / d"x f(x)e kX Ay = / d(cos0)do f(0,)Y (0, P)

power spectrum

(f(k)f(K)*) = Pk) (2m)"6" (k — K') (@@ ) = Crour S
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Part 3: forecasting and the Fisher matrix
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