Title: Welcome and Opening Remarks

Date: Jun 11, 2018 09:30 AM

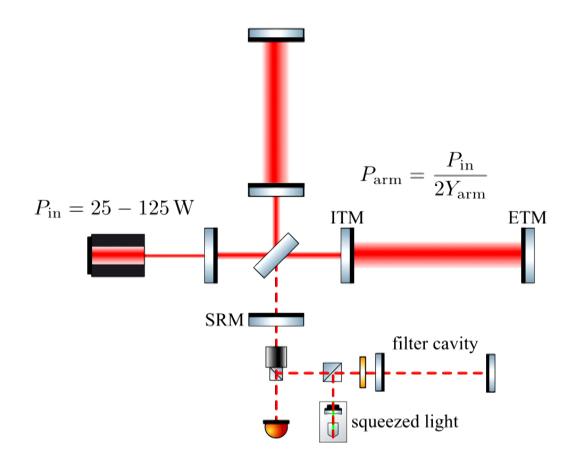
URL: http://pirsa.org/18060065

Abstract:

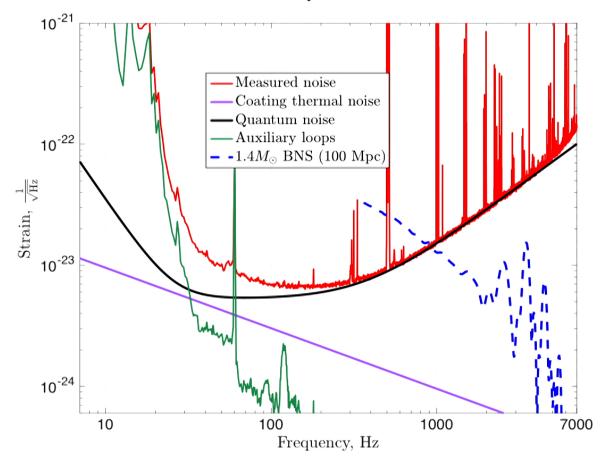
Overview

- Detector configuration
 - Current sensitivity
 - Ways to improve high frequency sensitivity
 - High power effects
- Science case
 - Neutron star and black hole physics
 - Cosmology
 - Multi-messenger astronomy
 - Ultralight particles
- Future facilities

Pirsa: 18060065 Page 2/17


First direct observation of GW from the BNS

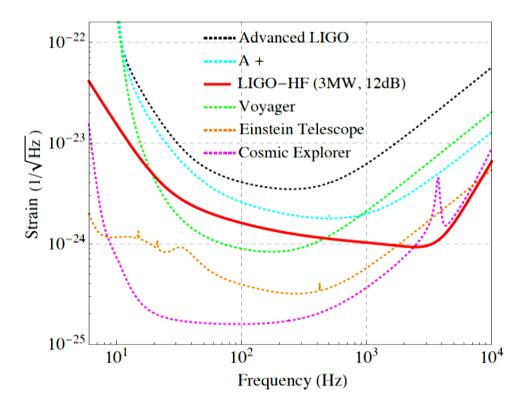
	Low-spin priors $(\chi \le 0.05)$
Primary mass m_1	1.36–1.60 M _☉
Secondary mass m_2	$1.17 – 1.36~M_{\odot}$
Chirp mass \mathcal{M}	$1.188^{+0.004}_{-0.002}M_{\odot}$
Mass ratio m_2/m_1	0.7-1.0
Total mass m_{tot}	$2.74^{+0.04}_{-0.01}M_{\odot}$
Radiated energy $E_{\rm rad}$	$> 0.025 M_{\odot} c^2$
Luminosity distance $D_{\rm L}$	$40^{+8}_{-14} \text{ Mpc}$
Viewing angle Θ	≤ 55°
Using NGC 4993 location	≤ 28°
Combined dimensionless tidal deformability $\tilde{\Lambda}$	≤ 800
Dimensionless tidal deformability $\Lambda(1.4M_{\odot})$	≤ 800


- Astrophysical rate is $R = 1540^{+3200}_{-1220} \; \mathrm{Gpc^{-3} \, yr^{-1}}$
- Tests of gravity: speed of graviton was constrained using GRB
- Cosmology: $H_0 = 70^{+12}_{-8} \text{ km s}^{-1} \text{ Mpc}^{-1}$
- Remnant is unknown

3

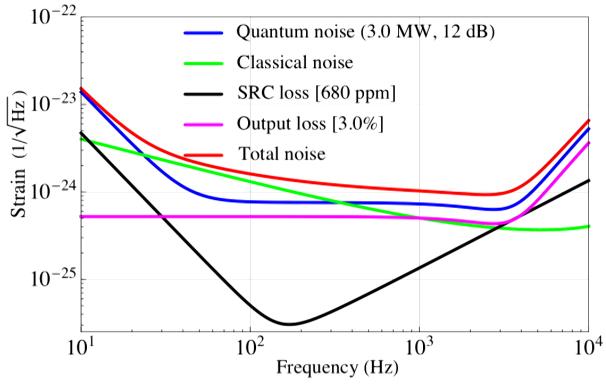
LIGO optical layout

Current sensitivity



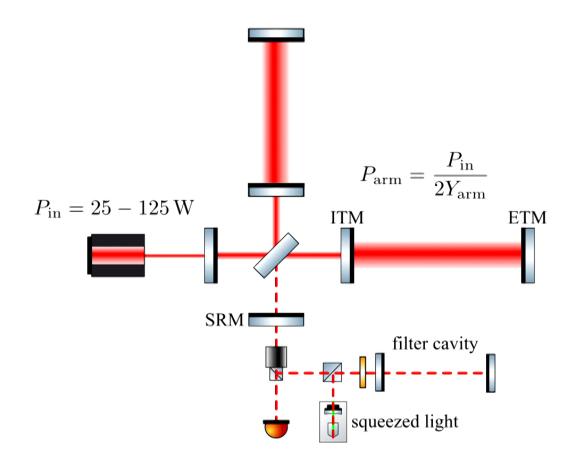
Pirsa: 18060065 Page 5/17

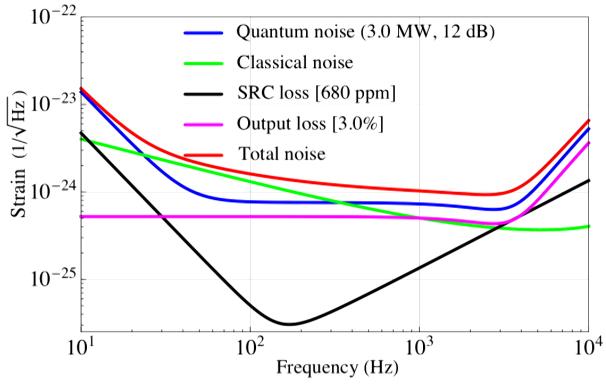
Ways to improve the quantum noise


- Use white light cavities, i.e. increase the gain-bandwidth product of the interferometer using Haixing's unstable filter
 - Design of a table-top experiment at University of Birmingham
 - Zhao and Co models high-quality mechanical oscillator at UWA
 - Thomas does opto-mechanics at LSU (see his talk tomorrow)
 - MIT thinks about a proof-or-principle experiment; recently, McGill has joined the effort
- Use conventional approach
 - Increase arm power and squeezing level (see Aidan's talk)
 - Optimize signal recycling cavity for high frequencies

Pirsa: 18060065 Page 6/17

See Francisco's talk about the science case for the red curve


Pirsa: 18060065 Page 7/17



Loss in the signal recycling cavity $Y_{\text{itmx,y}} = 1000 \, \text{ppm} \times \left(\frac{P_{\text{arm}}}{1 \, \text{MW}} \frac{\alpha_{x,y}}{0.5 \, \text{ppm}} \frac{30}{\kappa_{\text{itm}}} \right)^2$

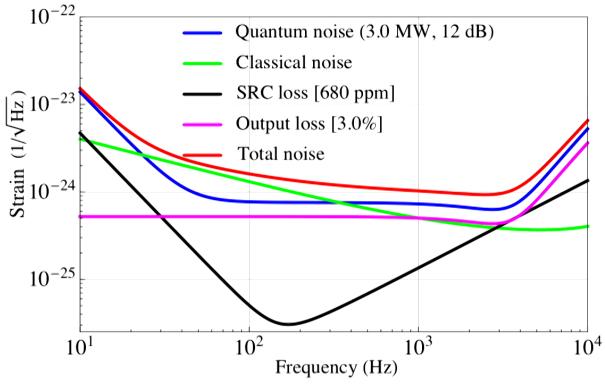
Pirsa: 18060065 Page 8/17

LIGO optical layout

Loss in the signal recycling cavity $Y_{\text{itmx,y}} = 1000 \, \text{ppm} \times \left(\frac{P_{\text{arm}}}{1 \, \text{MW}} \frac{\alpha_{x,y}}{0.5 \, \text{ppm}} \frac{30}{\kappa_{\text{itm}}} \right)^2$

Pirsa: 18060065 Page 10/17

Problems at high power

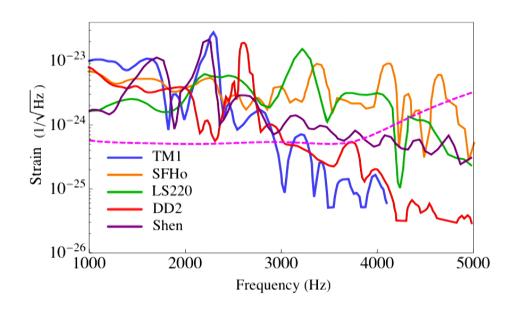

- Parametric instabilities
 - Body modes of the mirrors are excited by radiation pressure
 - See Zhao's talk on passive damping of the modes
 - Can we passively damp parametric instabilities without increasing thermal noise below 5 kHz?
- Thermal lenses in the fused silica mirror substrates
 - See Hartmut's talk about high power operation in GEO
 - See Aidan's talk about thermal compensation in LIGO
 - What is the maximum suppression of the wave-frontdistortion can we achieve?

Pirsa: 18060065 Page 11/17

Silicon: no thermal effects (see Rana's talk today)

- What is the maximum power that Voyager can resonate?
 - In the case of radiative cooling
 - In the case of cooling through the suspension fibres/ribbons
- Loss in the signal recycling cavity should be smaller than in Advanced LIGO
- Can we have good high and low frequency sensitivity at the same time?
- What is the relevant frequency range and the cost function for optimising detector sensitivity?

Pirsa: 18060065 Page 12/17

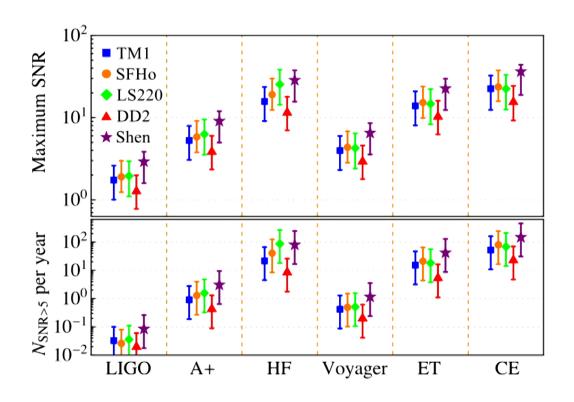


Loss in the signal recycling cavity $Y_{\text{itmx,y}} = 1000 \text{ ppm} \times \left(\frac{P_{\text{arm}}}{1 \text{ MW}} \frac{\alpha_{x,y}}{0.5 \text{ ppm}} \frac{30}{\kappa_{\text{itm}}}\right)^2$

Pirsa: 18060065 Page 13/17

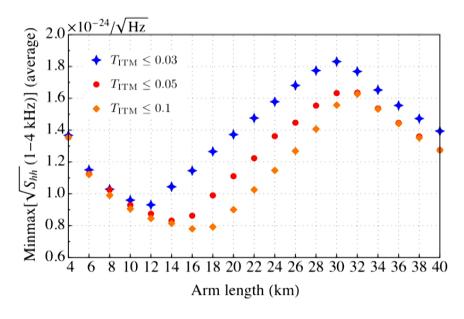
Science case for high frequency detectors

 How to convert detected spectrum into the physics behind it?


Pirsa: 18060065 Page 14/17

Science case for high frequency detectors

- Neutron star equation of state (see William's and Andreas' talks)
 - Which mode(s) are more sensitive to the inner-core QCD physics?
 - Can we isolate different effects, e.g. EOSs, finite temperature, magnetic field, and neutrino transport from the spectroscopic measurement of different modes of the merger remnant?
 - Can we determine the NS collapse time?


Pirsa: 18060065 Page 15/17

Future detectors

Future facilities

- What is the optimal arm length to study NS?
- How to deal with classical noise around free spectral range of the arms cavities?
- 4-km detectors might not be useless in the 3g era

Pirsa: 18060065 Page 17/17