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Abstract: | describe recent progress in classifying 5d N=1 field theories with interacting UV superconformal fixed points (i.e. 5d SCFTS). In the first
part of the talk, | review a newly proposed catalog of candidate (simple) gauge theories which captures theories missed by prior field theoretic
classification efforts. In the second part of the talk, | discuss a classification program for rank 1 and 2 5d SCFTs in terms of Calabi-Yau 3-folds,
along with prospects for its extension to arbitrary rank. This geometric classification program refines the field theoretic approach by incorporating
non-perturbative physics, predicts a number of dualities between 5d gauge theories, and supports the idea that al 5d SCFTs can be obtained by
compactifying 6d (1,0) SCFTson acircle.
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Introduction

The subject of this talk is recent progress in classifying 5d N’ =1 SCFTs
in the Coulomb phase

Based primarily on:
» 1705.05836 (PJ, H.C. Kim, C. Vafa, G. Zafrir)
» 1801.04036 (PJ, S. Katz, H.C. Kim, C. Vafa)
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Introduction

Part of larger effort to classify d > 4 SCFTS using SUSY & geometric
singularities in string theory. Inspiration:

» 6d (2,0) SCFTs = ADE singularities [witten '95]

» 6d (1,0) SCFTs = 7-branes wrapping collapsing configs of P!'s in
F—theory [Heckman-Morrison-Vafa ‘13] [Bhardwaj ‘'15] [Heckman-Morrison-Rudelius-Vafa
15]

String theory/geometry instrumental for understanding UV completions

5d is a natural next step, related to many (possibly all?) 6d theories via
KK compactification
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Status of 5d classification problem

A bit of history

Systematic investigation of 5d N = 1 theories initiated by series of
papers from ‘96-'98  [Seiberg] [Morrison-Seiberg] [Douglas-Katz-Vafal
[Ganor-Morrison-Seiberg] [Intriligator-Morrison-Seiberg (IMS)] [Diaconescu-Entin]

Used interplay of geometric engineering, brane constructions and SUSY
to identify theories with nontrivial interacting UV fixed points

Two (partial) classifications were proposed:
» Geometric: Rank one theories = contracting del Pezzo surfaces
dPn<s
» Gauge theoretic: bounds on matter hypermultiplet representation R
and topological data k for given (simple) gauge algebra g
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Status of 5d classification problem

However, both seem to be incomplete.

Geometric classification for theories of arbitrary rank has not been
pursued

Moreover, stringy counterexamples to gauge theory (IMS) classification
have been studied:

» Quiver gauge theories
» 5d theories exceeding IMS bounds

How can we explain this?

IMS criteria are too restrictive (sufficient, but not necessary). Possible to
relax IMS criteria to necessary (but perhaps not sufficient) criteria,
leading to catalog of candidate gauge theories with interacting UV fixed
points
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Status of 5d classification problem

What approach should be taken to classify 5d fixed points?

Only surefire way to argue existence is to carefully account for
non-perturbative physics

UV completions are indispensable, i.e. 5-brane configurations (type |I1B)

or geometric singularities (M-theory), which exhibit non-perturbative
physics

However, geometric classification is difficult compared to gauge
theory. . . is this a reasonable strategy?
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Goal and outline of talk

| hope to convince you of the following:

» Classification of 5d N =1 SCFTs (including non-Lag theories) is
incomplete

» Gauge theory classification is still an open problem

» Classification of geometric singularities has a hope of being a viable
solution

Plan for talk

1. Gauge theory

1.1 Review of 5d N' = 1 gauge theories
1.2 (Simple) gauge theory classification

2. Geometry

2.1 M-theory compactifications on CY 3-fold
2.2 Geometric classification
2.3 Future directions
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Review of 5d V' = 1 gauge theories

N =1 SUSY algebra in 5d consists of 8 supercharges

5d superconformal algebra has bosonic subalgebra so(4,1) x su(2)g

Massless fields:

{vector multiplet (A, ¢; A) in adjoint of gauge algebra g

hypermultiplet (g7 1) in rep R = @®¢R¢ (w/ g7 an su(2)g doublet)

Moduli space of vacua:

» Higgs branch My parametrized by vevs of hypermultiplet scalars

» Coulomb branch M parametrized by vevs of vector multiplet
scalars ¢

The focus of this talk will be on Mc
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Review of 5d V' = 1 gauge theories

Coulomb branch

At a generic point ¢ € Mc, ¢ takes values in the Cartan subalgebra
t C g, breaking the gauge group G to the stabilizer U(1)="(¢) C G

Consequently, Mc is a subset of the (dual) fundamental Weyl chamber
R/ W,

SUSY protected data: spectrum of massive BPS states:
» Electric particles/gauge instantons, central charge

Ze =Y 09" + 3 semy + somo
» Magnetic strings, central charge Z, =), n.g;)(bDi

Gauge instantons charged under U(1) current j = xtr F A F, instanton
number sy (can carry gauge charges as well)
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Review of 5d V' = 1 gauge theories

What does SUSY buy us?

Constraints of SUSY imply low energy EFT characterized by prepotential
which is at most cubic in ¢:

F(9) =5 mohyd' + kddldio*

2

oo | S ool =30 3 16 we) + mel

acadj F wrERf

Perturbatively, F is 1-loop exact
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Review of 5d V' = 1 gauge theories

Phase structure of M

For ¢ € Mc, BPS spectrum generically massive; however, states can
become massless/tensionless for special values ¢,

Particle masses are linear in ¢, mf = hypermultiplets states massless on
interior hyperplanes (“walls") of M ¢; monopole strings tensionless at
boundaries of M

Walls denote sharp phase transitions, characterized by singular behavior
(e.g. kijk jump discontinuously); this is evident from absolute values

(¢, we) + me| CF

Conformal limit at the origin ¢ = ms = 0,1/g2 — 0, characterized by
interacting massless/tensionless states
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Review of 5d V' = 1 gauge theories

Phase structure of Mc, cont ...

M has the structure of a fan consisting of several cones

\/‘
&
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Classifying UV fixed points

Criteria for existence (IMS)

Effective coupling 7;;(¢) = mohj; + 0;0;F (¢) must be positive on
Mc =R"/W, as mg = 1/g2 — 0 [Seiberg] [IMS]

Equivalently, F is convex on Mc

Matter hypermultiplet contribution negative =—> more matter makes JF
“less convex”

Convexity therefore bounds “size” of the matter representation
R = ®¢Ry (i.e. multiplicities N and types of representatations f)

This leads to constraints on (g, Nf, k) admitting UV fixed points. E.g.:
> su(N), Ne + 2|k| < 2N
> su(N), Nyp =1, Ng +2|k| <8— N
» No quiver gauge theories
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Classifying UV fixed points

Disagreement with stringy constructions

Counter-examples:
> quiver gauge theories (e.g. su(2) + su(2) w/ one bifund.
<> Fo U BI5F singularity)

> brane systems beyond IMS bounds, e.g. su(3) w/ Nf = 10 [Yonekura
‘15] [Hayashi-Kim-Lee-Taki-Yagi ‘15] [Zafrir ‘15]

Source of the discrepancy? Assuming Mc = R"/W(g) is too restrictive

Resolution: only assume Coulomb branch is a proper subset
Mc C R"/W,, as EFT could be unphysical for some regions of R" /W,

Extra restrictions on M ¢ come from non-perturbative states/instantons;
perturbatively we do not know how to compute their masses, thus cannot
see how they affect M¢
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Classifying UV fixed points

Example: 511(2)71- + 511(2);. W/ N(F,F’) =1 [Aharony-Hanany '97]

Non-perturbative construction using geometric singularity (equivalently,
(p, q) 5-brane web in 1IB)

R?/Wsu(2)+su2) = R%o. Consider the phase (R2,)* = {¢1 > ¢ > 0}
(shaded region) - -

IMS criteria excludes this theory because 7; develops zero eigenvalue on
(blue line, ¢o/¢1 =~ 1/4)

However even before 7;; degenerates, one encounters a massless instanton

é1
N

(RZ,)*
— ¢p2=10
< det(r) =0
> 2

2¢2i§_>0 $o2|| ¢m1
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Classifying UV fixed points

Example: su(2) + su(2)’, cont.. .

So, we can conclude that (/\/l'zu(z)“u(z)’fr ={¢1 2> ¢2 > ¢1/2}

In fact, S-duality shows this theory is dual to su(3) with k =0 and
NF = 2

|

S-duality
[a)

—

su(2) x su(2)’ w/ N g =1 su(3)o w/Ng = 2

The non-perturbative state with mass 2¢, — ¢ is a W-boson of su(3)!
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Classifying UV fixed points
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Review of 5d V' = 1 gauge theories

What does SUSY buy us?

Constraints of SUSY imply low energy EFT characterized by prepotential
which is at most cubic in ¢:
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2

oo | S ool =30 3 16 we) + mel

acadj F wrERf

Perturbatively, F is 1-loop exact
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Review of 5d V' = 1 gauge theories

Phase structure of Mc, cont ...

M has the structure of a fan consisting of several cones

\/‘
&
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Classifying UV fixed points

What have we learned?

M may be a subset of a Weyl chamber, corrected by non-perturbative
states

How to modify gauge theory approach?

Relax assumption M¢ = R" /W,

Determine M using following constraints:

1. All BPS states (including monopole strings) have positive tension at
generic ¢ € M¢

2. Tjj is positive definite on interior

We cannot compute all BPS masses, but can compute string tensions
¢pi; accurate because string tensions “know" about instanton masses
(e.g. often ¢p; ~ ZeZes; in s5u(2) + su(2)’ example,

Pp2 = 12¢2(2¢2 — ¢1).)
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Classifying UV fixed points

Example: su(3)x + NeF + NgymSym

OpE Bpw O oOpIW X

prior construction
?

[Yonekura '15]

[Hayashi-Kim-Lee-Yagi "15]
[Yonekura '15]

?

?

?

Table: “Extremal” su(3)x gauge theories with Nsym symmetric, N¢ fundamental
matters, and classical Chern Simons level k.

Above theories expected to have 6d fixed points

5d fixed point theories obtained by integrating out massive matters,
reducing numbers of flavors and shifting k
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Classifying UV fixed points

New gauge theory classification

Use above strategy to classify (simple) gauge theories, possibly
overcounting

New classification recovers IMS theories, along with all known stringy
examples beyond IMS bounds! [PJ-Kim-Vafa-Zafrir '17]

Consists of standard and exotic theories:
» Standard theories, classical g predictable patterns for arbitrary r
(e.g. pure su(N) satisfies |k| < NI% )
» Exotic theories, r < 8, require case-by-case analysis
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Classifying UV fixed points

But ...too early to declare victory

General comment, gauge theory description limited; e.g. su(2), + su(2),
description only applies to phases 4 and 5 of full Coulomb branch M:

16

20

Instantons could exclude some candidate gauge theories
Non-gauge theory phases?

Focus on stringy constructions, which exhibit the full BPS spectrum
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Part 2: Geometry
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Stringy constructions

M-theory on R® x (local) CY; type IB w/ 5-brane webs

-
(low energy)

5d field theory
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Review of M-theory on CY 3-folds

Geometric engineering

Possible to “engineer” 5d N =1 SCFT by compactifying M-theory on
singular CY 3-fold X [witten '96] [(many others)]

Massive BPS spectrum

Consider M-theory on a smooth 3-fold Y degenerating to singularity X

BPS spectrum:

> Particles <+ M2-branes wrapping holomorphic 2-cycles (complex
curves)

> Strings <> M5-branes wrapping holomorphic 4-cycles (divisors)

Masses (tensions) <> volumes of 2-cycles (4-cycles)
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Review of M-theory on CY 3-folds
BPS data in terms of triple intersection numbers
Given a basis of (1,1)-forms Dj_y . p.1(x)—1 dual to 4-cyclesin Y,
K(Y/X) = {Kahler forms J = ¢©'D; : /CJ > 0 for all cx curves C}

Algebro-geometric setting: volumes of classes D corresponding to
(complex) p-cycles are

vol(D) = L] JP = lD +JP (- intersection product)
P! Jo p!

All EFT data can be expressed in terms of triple intersection numbers
hi : : :
D; - D; - Dy “E" (#points w/ mult.); in particular,

1 1.
~7’—(¢,m):aJ'J'JZQW’WWkDi'Dj'Dk
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Review of M-theory on CY 3-folds

In practice, more intuitive to with the 5-brane diagrams, keeping in mind
correspondence with geometry

Compact faces S; are 4-cycles, compact line segments are 2-cycles
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Review of M-theory on CY 3-folds

Kahler cone phase structure

Given a smooth 3-fold Y, the conformal limit is singular limit Y — X
where all 2-cycles and 4-cycles collapse to zero volume

Several (topologically distinct) Y may map to same singularity X and
form an equivalence class; Y — X, Y’ — X implies Y and Y’ are related
by flop transitions

Coulomb branch identified as closure of set of all resolutions preserving
CY structure (Kahler deformations) Y; of X, the extended Kahler cone:

Mc & UK(Yi/X)
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Review of M-theory on CY 3-folds

Kahler cone phase structure, cont ...

Phase transitions in Coulomb branch are flop transitions:

YI

| —)fol(C’) + vol(C") AC,

< !
\ 52
7

vol(C) — —wvol(C)
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Review of M-theory on CY 3-folds
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Geometric classification program

How can we classify 5d theories using geometry?

Classifying smooth 3-folds or singularities is a hard problem

Assumption: Y realized as neighborhood of a singular compact complex
surface S = US; intersecting pairwise transversally, and maps to
canonical singularity X, which has nice properties

Simplification: physical equivalence classes (i.e. CFT fixed points up to
decoupled free states) suggests geometric notion of physical equivalence
classes of singularities, X ~ X', roughly up to rank preserving cx
structure deformations (including HW transitions)

Problem reduces to graph-theoretic problem:

r = # of nodes o e,e

m =" m(S;) — # of edges
normal bundle of 5; N S; satisfies CY cond. e
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Geometric classification program

Classification algorithm

To make this into an algorithm, we need to know
1. Allowed nodes, i.e. compact Kahler surfaces S;
2. Allowed graphs, i.e. intersection configurations 5; N S;
3. If geometry defines a canonical singularity

(by thm

Point 1 has a partial answer: X canonical "= ) S; must be rational or
ruled surfaces (IP? or locally C; x P! and blowups)

Point 2 is a bit subtle, answer only known case-by-case for r < 2.

Point 3 has a robust check—must be able to shrink all cycles S;, C; to a
point, or starting from the singularity, bring 5;, C; to positive volume in Y
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Geometric classification program
Checking positive volume

Expand class of J in terms of classes of S, J = ¢'S;

Imposing J - C = vol(C) > 0 for all C = n/(; equivalent to imposing
positivity on generators C; of cone of effective curves for all surfaces §;

By a theorem (Kleiman), J- C > 0 guarantees that volumes of all cycles
will be positive!

All triple intersections can be computed in S;—suppose C € S; and let
CU =S N Sj, then using S; - 5_,' - Sk = (5,. . Sj)Sk-

J-C=(K-C)s +32(C- C)s
J#i

where K is the canonical class of S;
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Results

Consistency check: rank one surfaces (r = 1)

Graphs are just a single node:

)

We have! J = ¢S, hence
vol(C)=J-C=¢S-(—C)=—¢p(K-C)s >0

= S is a del Pezzo surface dP,<g = Bl,<glP?, gauge description su(2)
w/ Np=p—1orFy=P! x P!

1A subtle point is that if we want J to have positive coefficients ¢, we must study
the negative of the Kahler cone, —K.
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Results

New: rank two surfaces (r = 2)

Graphs are now non-trivial! Multiple gluings? Self-gluings?

Using physical equivalence we argue

where S; N S, = P!, and that all geometries take the form

B, F, U dP,
Blpan U IFO

5251U52={

where F, := P[O + O(—n)] °Z" P! x P!

Parameters (p1, n, p2) bounded from above by imposing positivity and
excluding 3-folds expected to correspond to 5d KK theories w/ 6d fixed
points

Pirsa: 18060061 Page 43/51



Geometric classification program

Classification algorithm

To make this into an algorithm, we need to know
1. Allowed nodes, i.e. compact Kahler surfaces S;
2. Allowed graphs, i.e. intersection configurations 5; N S;
3. If geometry defines a canonical singularity

(by thm

Point 1 has a partial answer: X canonical "= ) S; must be rational or
ruled surfaces (IP? or locally C; x P! and blowups)

Point 2 is a bit subtle, answer only known case-by-case for r < 2.

Point 3 has a robust check—must be able to shrink all cycles S;, C; to a
point, or starting from the singularity, bring 5;, C; to positive volume in Y

Pirsa: 18060061 Page 44/51



Results

New: rank two surfaces (r = 2)

Graphs are now non-trivial! Multiple gluings? Self-gluings?

Using physical equivalence we argue

where S; N S, = P!, and that all geometries take the form

B, F, U dP,
Blpan U IFO

5251U52={

where F, := P[O + O(—n)] °Z" P! x P!

Parameters (p1, n, p2) bounded from above by imposing positivity and
excluding 3-folds expected to correspond to 5d KK theories w/ 6d fixed
points

Pirsa: 18060061 Page 45/51



Pirsa: 18060061

Results

Rank 1

{dPa)*
SU(2) + 8F

Rank 2

(BlsF, L dPg)* |
SU(8)o+ 10F, Sp(2)+ 10F

With O7*

(SU(3)o+1Sym+1F)*" |

SU(3), +18ym |
| s
SU(B)2H6F, Spla) +0F | | Spi2)+1
3ol

oF

LUdPy |

| {Fs udPs)"
| Sp(2)o+3AS

[ (Fro U Ey
[ St (@),

RG-flow diagram of rank 1 and 2 SCFTs

Page 46/51



Results

Interesting conclusions

Many dualities among su(3), sp(2), G, theories

Nearly all candidate rank 2 theories were validated, with two exceptions:

» Gauge theory analysis produces bound |k| < NN—_zz, for su(N)y, but
su(3)k=+s is excluded

> 5u(3)% + 1Sym related to 6d singularity involving O7%

Family of RG flows encoded in geometry
All rank 2 theories have a 5-brane web description

All rank 1 and 2 5d theories descend from KK compactification of some
6d (1,0) theory!

» Rank 1 theories have a single “parent” theory

» Rank 2 theories have five parents
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Summary and future directions

Summary

Classification of 5d gauge theories with UV fixed points is still an open
problem, needs non-perturbative input

Geometric classification is a solution, potentially reduces to a graph
theoretic problem where nodes are Kahler surfaces and edges are
intersections

Rank 1 and 2 can be obtained systematically

Rank 2 classification confirms nearly all theories predicted by gauge
theory analysis
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Summary and future directions

Future directions

Higher rank, r > 2? (Which nodes and graphs are allowed? Loops now
included, e.g. consider 5d T theory given by C3/Zs x Zs)

Geometric computation of flavor symmetry enhancements due to U(1),?
(e.g. T3 = C3/Z3 x Z3 has manifest F = SU(3)3 but is equiv to dPg for
which F = Eg can be computed geometrically)

Top down approach: compactify 6d (1,0) theory on S* and then
integrate out matter (i.e. blowdowns)
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Thank you!
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