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# How can we coherently combine Information from different observations? .
Questions on instrument

High power
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& What s the maximum power that Advanced LIGO and Voyager can sustaln In the arms?

“ How does this number change If Silicon test masses are cooled through fibres?

% Canwe passively damp parametric instablilities without increasing thermal noise below 4 kHz?
% How hard is it to correct thermal lens on the beam splitter?

Can we correct spgltta change by shining CO2 on the front surface of the test masses?

Optical loss

&

% What s the reasonable level of signal-recycling cavity loss for Advanced LIGO and Voyager?
Future instruments

< What Is the sensitivity of Voyager when optimised for high frequencies?

» How can we combine LF and HF designs?

#*  What s the perspective of Implementing optomechanical filters In GW detectors?
& What s the optimal detector length for different sclentific purpose?
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tering from their surfaces Yiimx,y and Yy are the losses due to
the wavefront distortion in the input test masses and the beam
splitter. These factors are given by the equations

———— . — g mm = == =

Pum @y 30
1 MW 0.5 ppm Kitm

Pps  aps 1 2
6kW 1 ppm«kys/ !

Yitmx,y = 1000 ppm X (
(3)

Ybs = 250 ppm X (

where a,, is the absorption coefficient of the coating of the
x- and y- test masses, @y 15 total absorption coefficient of the
beam splitter and «ps 1s suppression factor of the beam splitter
wavefront distortion. In these equations we omit power ab-
sorbed by the substrates of the test masses since this power is
significantly smaller than Yji.y [12]. Power absorbed by the
beam splitter Yy 1s also significantly smaller than Yj,y y, but
it introduces an imbalance between the two Michelson arms
according to the equation
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Advanced LIGO LIGO-HF

Parameter e
Mirror mass 40kg 40kg
Arm gain 260 139
Power recycling gain 60 86
Signal recycling mirror transmissivity 0.32 0.085
Signal recycling length 56m 300 m
Coupled SRC-arm cavity resonance 4.0kHz 3.7kHz
Coupled resonance bandwidth 68 kHz 34kHz
Arm cavity bandwidth 448Hz 85.9Hz
Input power 125W S00W
Power on beam splitter 6.2kW 43 kW
Arm power 0.8 MW 3.0MW

Squeezing level (observed) — 12dB

Filter cavity (bandwidth=detuning) o 30.3Hz
SRC static loss, ¥y 500 ppm 200 ppm
Suppression of ['TM distortion, &y, 30 70
Suppression of BS distortion, ki 1 3
Heating loss on input test masses, Y, 1000 ppm 800 ppm
Coating absorption, o, 0.5 ppm 0.25 ppm

Beam splitter absorption, a, 1 ppm I ppm
Heating loss on beam splitter, ¥y, 225 ppm 500 ppm

which is not acheivable in the current facilities. In order to
overcome this issue, we increase finesse of the arm and signal
recycling cavities and keep the length at a practical level of
~ 100 m.

Our design has also a significant advantage compared to
the detuned signal recycling cavity proposal. Since both the
arm cavity and signal recycling are on resonance, the signal
response of the interferometer is balanced for the upper and
lower audio sidebands. As a result, there are no optical springs
effects in the interferometer. Moreover, the GW signal is in
the phase quadrate and only one filter cavity is required for
the optical interferometer operation. Tais in contrast to the

Yimx + Yimy + Yas

) (2)

Yspe = Yy +
where Y, is the loss due to clipping on the mirrors and scat-
tering from their surfaces, Viumx,y and Yy, are the losses due to
the wavefront distortion in the input test masses and the beam
splitter. These factors are given by the equations

P arm @y ﬂ 2
1 MW 0.5 ppm &y,

Pog @y 1 i
6 kW 1 ppm Ky

Ynmx.y = 1000ppm x (
3)

Yps = 250 ppm X (

where @, is the absorption coeflicient of the coating of the
x- and y- test masses, ag is total absorption coefficient of the
beam splitter and kps is suppression factor of the beam splitter
wavefront distortion. In these equations we omit power ab-
sorbed by the substrates of the test masses since this power is
significantly smaller than Yimxy [12]. Power absorbed by the
beam splitter Yy is also significantly smaller than Yjyy.y, but
it introduces an imbalance between the two Michelson arms
according to the equation

YMI - Yitmx - Yllmy + YBS ) (4)
2

This imbalance leads to the coupling of the laser noises, such
as beam jitter, frequency and intensity noises. For this reason,
we require Yy, < 500 ppm for our design. At P, = 25kW
we need to reduce wavefront distortion on the beam splitter
by Kbs = 3.

Second, resonating power exerts force on the suspended
mirrors. Small beam off-centering results in the radiation
pressure torque given by the equation [13, 14]
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Some orders of magnitude

FQL for Advanced LIGO (simply the shot-noise limited sensitivity):

¥ 1 1 1 1
oL syt (1MW 2 A O\E[AF\E[/10)2
Pap: O LT He ( Parm ) 1064nm ) \1kHz) \e>

Internal ponderomotive squeezing (amplification):

2
K ~ 10 10 Hz 40 kg 1kHz
f M Af
SRC loss:

s 1 (IMWY\Z /A f ) [0.015\2 esncy
SRC ~ 25 1
VS~ Ax1077 Hz (Parm) (106411111) (1kHz) (TITM) (10-3)

Notations:
GW frequency: f = /(2m) Detector bandwidth: A f
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FIG. 1. Schematics showing the detector design (left) and the result - ; ————— 9
Advanced LIGO plus (A+) [6], LIGO Voyager [7], Einstein Telesca o : <t
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where Q,, and @, is frequency and quality factor of the me 10 100 1000
chanical mode, ¢ is the speed of light, A = 1064 nm is thi Frequency [Hv]
oesod laser wavelength, Re[G,] is the real part of the optical gain -
Slide 2 of

and B, , is the overlap between the mechanical mode m ang
optical mode n. If the parametric gain R,, > 1, the mode be
comes unstable and ultimately saturates the photodiodes. Fo
Advanced LIGO operating at full power, the largest expectea nernmail noise, (1) MITor SUDSIrale Mermal NOISe and (1v) un-
parametric gain is R,, ~ 10 and the number of unstable modes ~ suppressed laser noises such as beam jitter, frequency and am-
is = 40 in the frequency range 10-50kHz. In the proposed de-  plitude noises. Fig. 2 shows the classical noise level of the
tector, we plan to increase P, and have maximum parametric Advanced LIGO detectors. Further in this section, we discuss

pz! ain of R, ~ 50 and see unstable modes up to 80kHz. The L shot noise
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On the other hand, the absence of a matched filter means
that BayesWave does not reconstruct the entire signal,
but only its most prominent features. We study the re-
construction performance and its relation to the strength

of the signal in the following section.

104 3
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2 F
g [
8 10? 3
101 3
10° | I ! ! ! A —
2 3 1 5 6
Number of Wavelets
FIG. 3. Histogram of the number of wavelets BayesWave

used for the signal reconstructions of Fig. 2. BayesWave uses

model selection to determine the most probable number of

wavelets.
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