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Background

. . -
* Would like t | time delay from light t I
ou IKé TO Cancel time delay 11ro I rave
t| me Enhancing the bandwidth of gravitational-wave detectors with unstable optomechanical filters
Haixing Mi;m,' Yigiu Ma,? Chunnong Zhao,? and Yanbei Chen?
'School of Physics and Astronomy, University of Birmingham, Birmingham, B15 2TT, United Kingdom
28chool of Physics, University of Western Australia, Western Australia 6009, Australia
Theoretical Astrophysics 350-17, California Institute of Technology, Pasadena, CA 91125, USA
For gravitational-wave interferometric detectors, there is a tradeoff between the detector bandwidth and peak
sensitivity when focusing on the shot noise level. This has to do with the frequency-dependent propagation
phase lag (positive dispersion) of the signal. We consider embedding an active unstable filter—a cavity-assisted
optomechanical device operating in the instability regime—inside the interferometer to compensate the phase,
and using feedback control to stabilize the entire system. We show that this scheme in principle can enhance the
bandwidth without sacrificing the [ll'.ll\ sensitivity, However, there is one |)r;|rl|¢"|| difficulty for |||||:|1'l||s'||[1u}'_
it due to the thermal fluctuation of the mechanical oscillator in the optomechamcal hlter, which puts a very
stringent requirement on the environmental temperature and the mechanical quality factor.
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Our devices

* Cantilever mirror
* Fabricated by Garrett Cole
* T=250 ppm
* Mirror diameter: 70 um

* Cantilever dimensions:
55 um long by 8 um wide

* Mass: 50 ng

* Fundamental frequency: 876 Hz

* Q=17,000

* T/Q=0.017 K (room temperature)

* Missing about 8 orders of
magnitude to meet requirement

* Crystalline coatings are being
considered for future GW
detectors because of their low
mechanical loss
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The trap of measuring QRPN /
why did we design it this way

Thermal noise from structural damping falls off more rapidly than quantum radiation
pressure noise (QRPN) -> use low frequency mechanical oscillator.
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Cantilever Mirror Design

Considerations

Goals: Low thermal noise, low mass, high reflectivity

Parameter

Advantages for
decreasing

Disadvantages for
decreasing

Fundamental frequency

Structural thermal noise
starts to fall off sooner

More higher order modes
between 10 kHz and 100
kHz

Mass

Increase ratio of QRPN to
structural thermal noise

Increase fundamental
frequency, worse higher
order modes

Mirror transmission

Increases cavity finesse

Increases thickness of
mirror and mass
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Making up some ground

Optical dilution and feedback cooling of a gram-scale oscillator to 6.9 mK

Thomas Corbitt,! Christopher Wipf,! Timothy Bodiya,! David Ottaway,'

Daniel Sigg,? Nicolas Smith,' Stanley Whitcomb,” and Nergis Mavalvala® PhyS Rev, Lett, 99’

LIGO Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

IFH.'E; Hanford Observatory, Roule 10, :U;n'r mru,’.ra. Hanford, WA 08352, USA 160801 (2007)

'LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125 USA
(Dated: .\]:n_\ 30, 2018)

We report on use of a radiation pressure induced restoring force, the eptical spring effect, to

“i'”('ﬂ]l\ '|i|||fi' [‘I" |II('('|H|TIi5"I| il?l||’l}'\||L’, of a l graimn “1[.\;’1'“""'! mirror, \\'hi"]l 15 II\"I'I "UC“"(I |'\

active ‘i'!'(”‘il[ |i (('(llll (l.'t]l!llll\!ﬂ. ‘}[ll\('[ll ll]ll\'l“l] I't'lilVi“\ ‘llt‘ {]III!‘ Or ¢ ill‘L!ILl l]ll["i‘-l‘il }l_\ [Hi'!'ll;\llli'.ll .
: 2 Eacio of =~ 40000 For structural damping,

losses, allowing the oscillator mode to reach a minimum temperature of 6.9 mK, a lactor of

t]i‘]'!\'. h[' cny illl””l(‘]l H] cmpoerature. \ ur ]li'l \Iil\-l\l ARe O ||‘ (818 i(;‘l sSpring o |ll i‘\ l]-l ] - - -
: ecfivye i ik me i St b oS e ieag e effective quality factor is

can increase the number of oscillations before decoherence by several orders of magnitude, In the
present experiment we infer an increase in the dynamical lifetime of the state by a factor of ~ 200 enhanced by the Square
For structural damping, the thermal noise PSD is: of the ratio of the
02 1 /'m optical spring to the
Sestructural = 4kpT —= :
Dx,structural mechanical frequenc
S s QQ (2, — 02)2 + Q2 /Q? s
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Stiff optical springs

* To reach the desired T/Q for the filter cavity, we
have about 8 orders of magnitude of make up:

* Let’s suppose that we can operate at 5 K. Given the
required power levels and absorption levels, this is
reasonable. That gives us about 2 orders of magntiude.

* To make up the remaining 6 orders of magntiude, we
need only make an optical spring a million times stiffer
than the mechanical system (while not doing anything
to spoil the noise performance).

* Stiff optical springs like this were demonstrated over 10 years
ago (but not without extra noise).

* So how close are we?
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Experimental Setup

* Optomechanical cavity
* 1-cmlong
* Finesse = 13,000
* Detuned 0.6 linewidths

to get large optical PRA 97, 013827 (2018)
spring
* PD, fed back to AM to/
acquire lock using optical
spring (OS) \ Specltrum
* PD,,loop maintains lock i i
after PD, loop is 1SS
disconnected L:iczrgrggo?wgt]or
* Intensity stabilization L b

servo (ISS) P4

AM

'5 [I PDL
AT

* Only 100 microWatts Laser ] End Miror
input needed to reach PZT
150 kHz OS.
T=50ppm
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Thermal Noise Model

* Based on finite element model using measured
frequencies
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Thermal Noise Model

* Measured at low optical power to avoid QRPN

1010 e s e o el
! = Modeled viscous thermal noise (293 K)
101t ‘ = Modeled structural thermal noise (293 K)|+
. —Measured thermal noise (10 mW)
J 1072 = ;
g [0l ;
E
® 1074} ;
R
[
Z 10-15 L il
10718 F ) : 4
i Thermoelastic damping of drumhead mode ~ | ‘
10717 ) . o ) AR | . L -
102 10° 104 10°

Freauencv [H71
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Cooling and the Standard
Quantum Limit

* At room temperature:

* Thermoelastic damping limits performance and optimal
OS frequency. T/Q=5x10° K

* SQL
* Not really standard
* Not really a limit
* But... it still serves as a benchmark

* Advanced LIGO currently within a factor of about 4 of
SQL

* This experiment is within a factor of about 4.5 at room
temperature — limited by thermal noise
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Cryogenic performance

Cryostat is installed and connected, allows for operation at 10 K. Need frequency stabilization

RPN Sl LT IR e CR SRS
N 10 3 I T I
= e i —Quantum noise
£ ’ Thermal noise (10K)
E 1012} Total noise
2> = —Standard Quantum Limit
® =
e i
L 1014k Same input power as before, but with
® larger detuning, less circulating power
g ]
G107°F ~d
o ! Reduced thermoelastic noise
QEJ 10-18 | allows for OS to be pushed out
@ © to about 300 kHz and gain more
@ ! optical dilution. T/Q =3 x 10°K
0 an200 S EREEY - rq o

10

10° 10° 10

Frequency [HZ]
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Quantum Noise Model

* Measurements of
power, mode
matching, optical s 8w
spring frequency =
and linewidth to

-

o
L
X}

Noise [m / Hz'"?
>

constrain 1018
= 'Modeled viscous thermal noise (293 K)
pa ra mete rs 16 L/ ™ 'Modeled structural thermal noise (293 K)
10 ——Measured thermal noise (10 mW)
* No free . {[=_~QRPN model (220 mW)
1075 =
parameters used 102 103
to calculate QRPN soaicney L
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Adding it up
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QRPN Measurement

—
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Noise Scaling with Power

{ SN + DN measurement
¢ Displacement noise measurement

—Total
* Integrate the noise — Total minus QRPN
between 21 kHz and o
22 kHz to check if 911015
QRPN scales with the ?/ ;
square root of power ¢ L T 4
l-—-l6 / 1
* Account for QRPN, ¢ b i /
thermal noise (TN), -2 o = ‘
shot noise (SN), dark Z4
noise (DN), classical ¢
RPN 3
10 10°

Circulating Power [mW]
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Manipulating QRPN

* What can be done about the QRPN?
* Squeezing

* Variational readout

* Other QND techniques
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Squeezing the QRPN

Need BRIGHT squeezing. Done with ANU.

Spectrum; _
analyzer { , n

| A ‘ :
SS 84 ‘ PDMm End Mirror
—< =N \ PZT
Main Laser bk |
AV i PO,
C -~ B
WM T sa R9T| D]
feegt::: t(x:Jngser /I f:\ Microresonalor
frequency OPOPD |
Green CLF F’[g \%‘
70 MHz B OPO
Red CLF — i n Y | feedback to
feedback to = | | cavity length
PZT mirror PM |

CLF Laser ¢ )
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Displacement spectral density [m /rt HZ]

Results of squeezing
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A little more than 1 dB reduction of TOTAL
L noise observed when injecting

Improved centering of the optical beam on micromirror
» Centering is power dependent

N :
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Amplitude squeezing

-16 _ amplitude squeezed light, limited by thermal
- noise and optical losses
10° 10° 104

Freauencv [Hz]

Page 21/28



Leavmg the opt|ca| spring in

-16 _
Sy R REEs! T ———— Optical spring = TTf
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Reshapes noise such that radiation pressure noise is frequency independent below resonance

A different way to look at the same data
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Squeezing with OS
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Variational readout

QRPN is not a purely a displacement noise.
Noise at 11 kHz

10! = r , : ; : 1 1
) [
w
[s)
C
©
L
n i I
8 B il B
o) /
=
= 100 _\\ ]
_ / b
g
= —Quantum noise
% —Thermal noise
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[s) —Amplitude quadrature in reflection
< : Amplitude quadrature in transmission
1 O* I | 1 | 1 1 1 1 J
-80 -60 -40 -20 0 20 40 60 80

Readout angle [degrees]
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Transmission vs reflection

| Spectrum
" analyzer

1SS SA | Pom
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Spectrum
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ISS

Microresonator

AM n 3" PDM
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Laser . R N
4 Input Mirror -
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Variational readout

Cavity circulating power, optical spring, detuning held constant
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What about the QRPN ruining the
filter cavity?

Towards the design of gravitational-wave detectors for probing neutron-star physics

s ' ) '
Haixing Miao,! Huan Yang,>** and Denis Martynov*'

laser wavelength 1064 nm

2 photodiode quantum efficiency 0.999

X cavity length 10 cm

—; cavity bandwidth, detune 60 kHz. 0.9 MHz

2 FESORANNg power O8O0 W

& round-trip loss I ppm
temperature 16 K

Suppression of quantum-radiation-pressure noise in an optical spring

L : 2 2l L. 1 ~ g N 8l 2 : -
W. Zach Korth,' Haixing Miao,"? Thomas Corbitt,* Garrett D. Cole,* Yanbei Chen,”> and Rana X. Adhikari'
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Outlook

* Optical losses — total efficiency of our cavit% is about 30%
(99.9% needed for elimination of QRPN). This is mostly
limited by optical losses due to diffraction around cantilever
mirror — likely a technical issue and not a fundamental one.

* Absorption in micromirror is in single digit ppm

* The current devices were optimized for radiation pressure
and SQL measurements, and were not optimized Por filter
cavities. There is room for improvement in the mechanical
design.

* Thinner cantilevers, lower fundamental frequency

* Strong optical springs are achievable with modest optical

power — simpler setup, compatible with cryogenics.

* Low noise cryogenic operation needs to be demonstrated.
* Worth considering these devices for filter cavities.
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