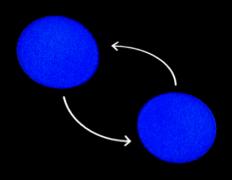
Title: Post-Merger Gravitational Wave Emission

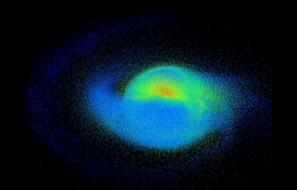
Date: Jun 11, 2018 11:30 AM

URL: http://pirsa.org/18060046

Abstract:

Pirsa: 18060046 Page 1/70


Postmerger gravitational wave emission


Path to Kilohertz Gravitational-Wave Astronomy, Perimeter Institute, Waterloo, 11/06/2018

Andreas Bauswein

(Heidelberg Institute for Theoretical Studies)

with K. Chatziioannou, J. A. Clark, H.-T. Janka, O. Just, N. Stergioulas

Pirsa: 18060046 Page 2/70

Time scales

- ► Neutron stars are among the most exciting objects in the Universe not only for astophysics, but many more fields beyond
- ▶ Dynamical time scale of 1.4 Msun neutron stars (rotation period similar):

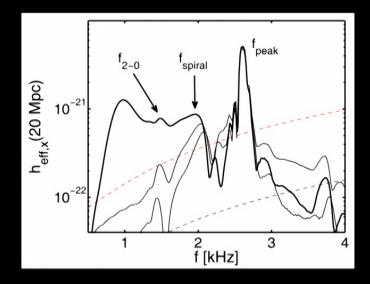
$$t_{\rm dyn} = \sqrt{\frac{R^3}{GM}} \approx 2 \ ms$$

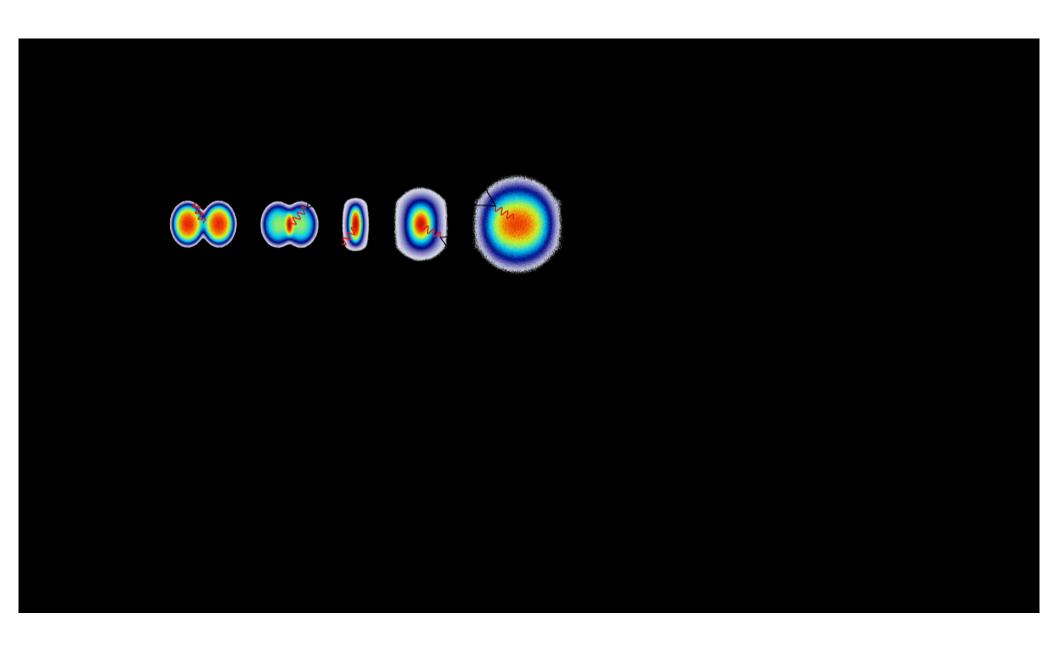
=> ***kHz*** Gravitational-Wave Astronomy

Pirsa: 18060046 Page 3/70

Outline

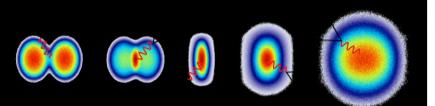
- ► Motivation / Introduction
- Dominant postmerger frequency
 - → NS radius measurements
 - → GW data analysis
- Secondary features of the postmerger GW spectrum
 - → unified picture of postmerger dynamics and GW emission
 - → EoS dependence
- ► Collapse behavior
 - → NS radius constraints
 - [→ Maximum mass]
- ► Conclusions and summary


Pirsa: 18060046 Page 4/70

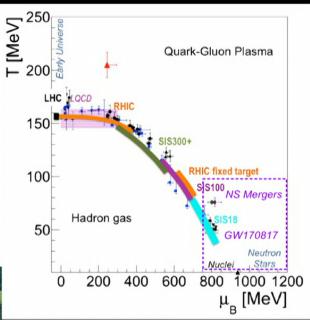

Pirsa: 18060046 Page 5/70

Motivation: kHz GW emission

- Learn about unknown properties of high-density matter
- ► Link postmerger dynamics and multi-messenger picture: em counterpart, r-process, ...



Pirsa: 18060046 Page 6/70

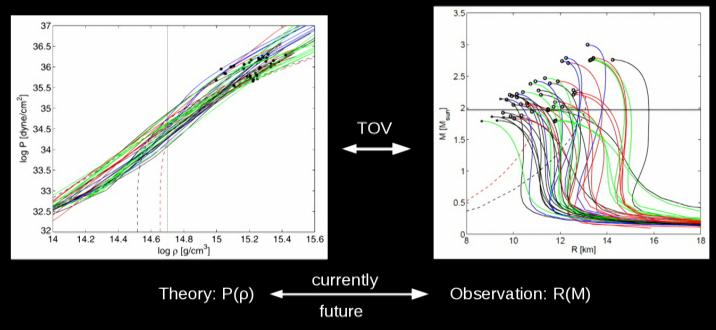


Pirsa: 18060046

Phasediagram of matter

Many experiments world-wide trying to access high-density (high temperature) regime of matter through heavy-ion collisions, e.g. CBM @ FAIR

Pirsa: 18060046 Page 8/70


The EoS of high-density matter

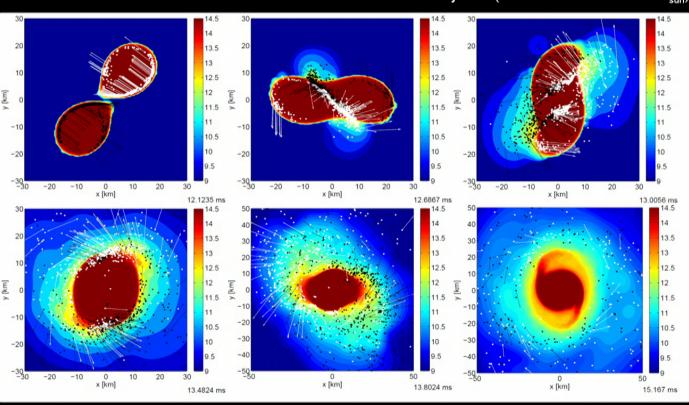
- ► NSs and the high-density EoS
 - properties of nuclear matter (stiffness) determine nuclear parameters
 - fundamental constituents hyperons, kaons, ...
 - deconfinement quark matter → understand confinement
 - EoS also critical for many astrophysical phenomena: supernovae, NS cooling,
 - → determine NS radii uniquely linked to EoS
- ► Postmerger (= kHz) GWs are similar and complimentary to inspiral methods
 - \rightarrow properties of cold EoS (e.g. NS radii, tidal deformability) \rightarrow important to cross-check inspiral results (still plagued by systematics)
 - → probe higher density regime
 - → access to hot temperature

Pirsa: 18060046 Page 9/70

Introductory remark

 Mass-radius relation (of non-rotating NSs) and EoS are uniquely linked through Tolman-Oppenheimer-Volkoff (TOV) equations

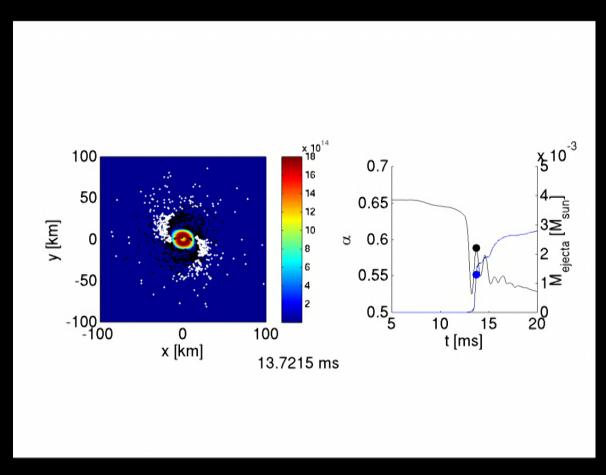
→ NS properties (of non-rotating stars) and EoS properties are equivalent !!!


(not all displayed EoS compatible with all current constraints)

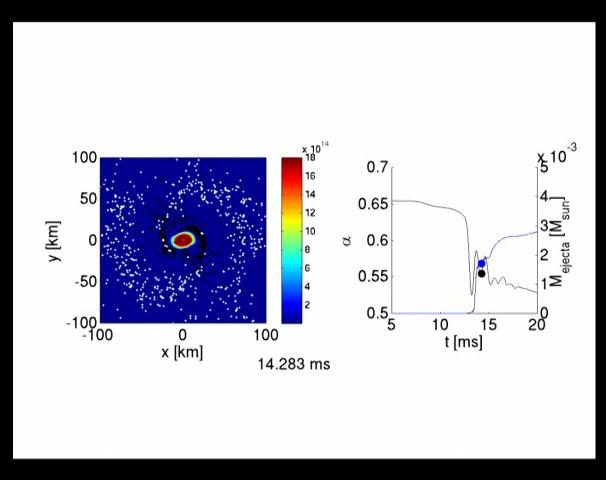
Pirsa: 18060046 Page 10/70

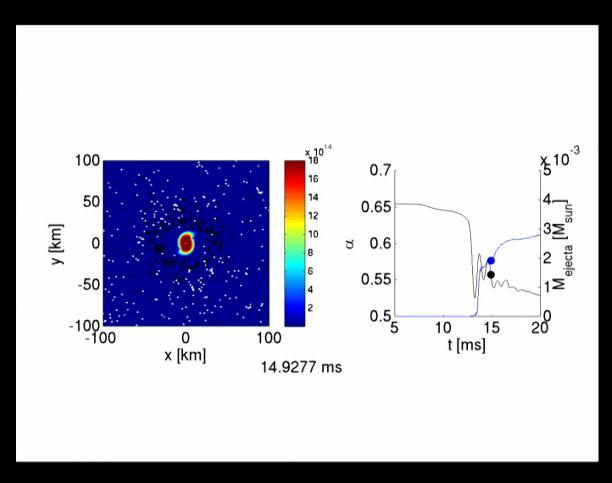
Mass ejection - Simulations

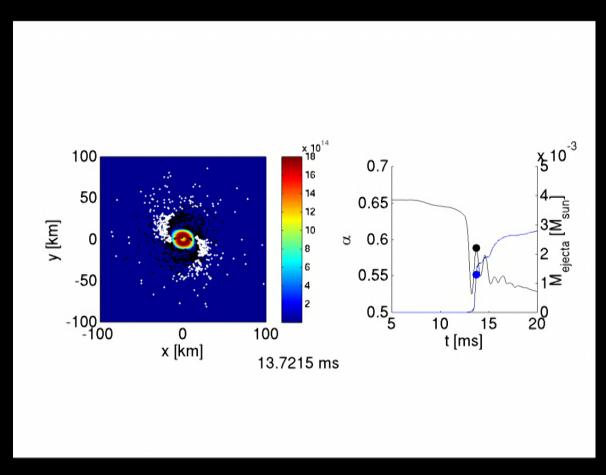
Dots trace ejecta (DD2 EoS 1.35-1.35 M_{sun})



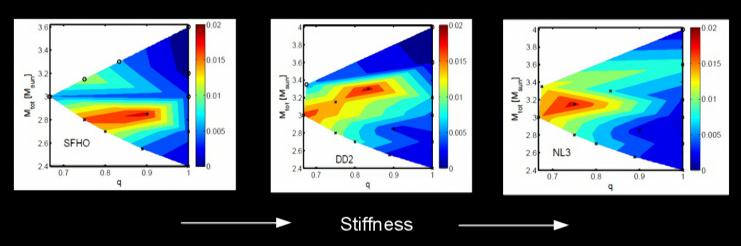
Bauswein et al. 2013


Pirsa: 18060046 Page 11/70

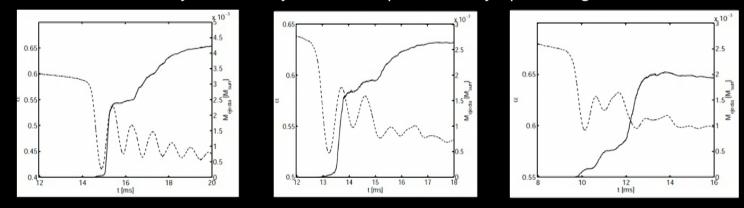

Pirsa: 18060046 Page 12/70


Pirsa: 18060046 Page 13/70

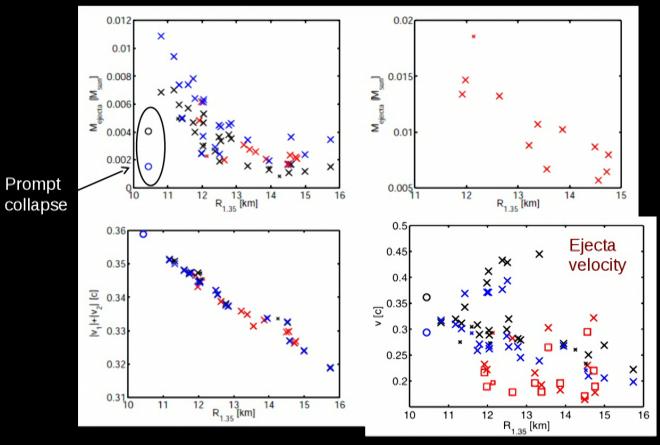
Pirsa: 18060046 Page 14/70



Pirsa: 18060046 Page 15/70



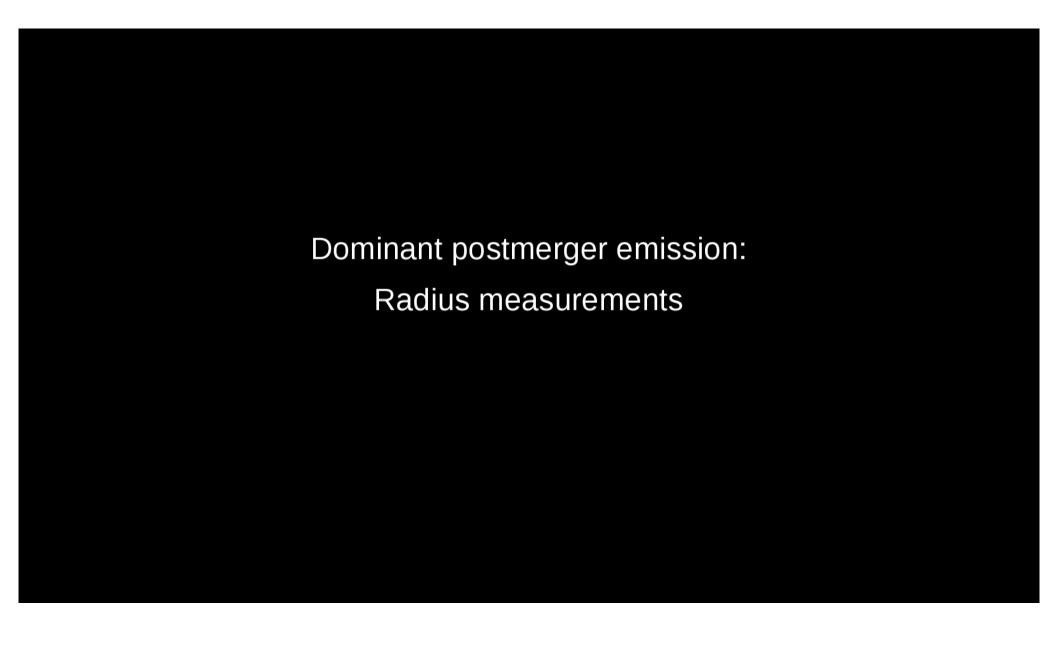
Pirsa: 18060046 Page 16/70


understandable by different dynamics / impact velocity / postmerger oscillations

Central lapse α traces remnant compactness / oscillations / dynamics (dashed lines)

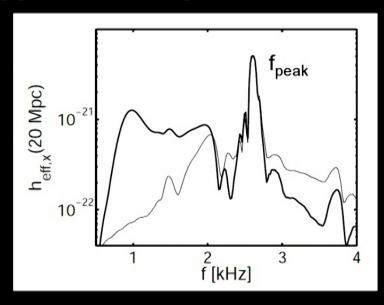
Pirsa: 18060046 Page 17/70

Ejecta mass dependence


Different EoSs characterized by radii of 1.35 M_{sun} NSs (note importannee of thermal effects)

Pirsa: 18060046 Page 18/70

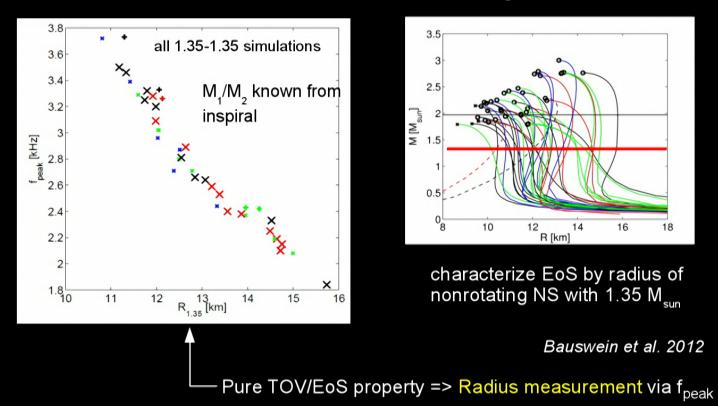
Outlook: postmerger dynamics and outcome accessible by kHz GWs


- ightharpoonup Mass ejection ightharpoonup em counterpart (incl GRB) depends critically on collapse behavior
 - → postmerger kHz GW emission will tell nature of remnant
- ► kHz GWs encode dynamics of postmerger remnant
 - \rightarrow should be reflected in properties of em counterpart \rightarrow details to be worked out
 - → multi-messenger astronomy

Pirsa: 18060046 Page 19/70

Pirsa: 18060046 Page 20/70

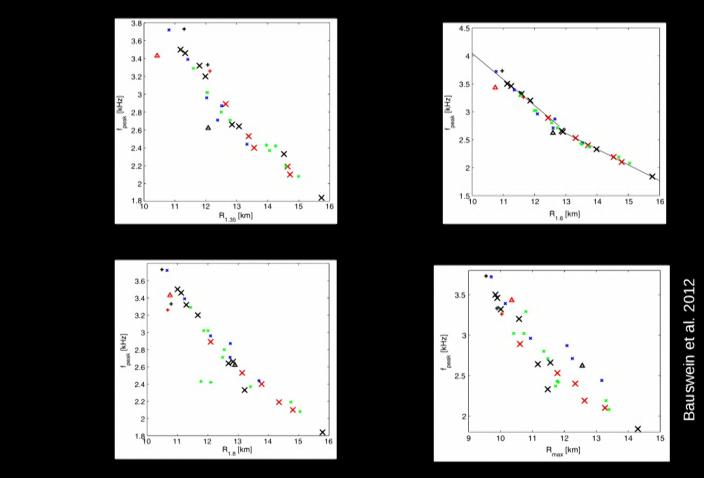
Typical GW spectrum


Thin line postmerger only

Note: no unique nomenclature in the literature, e.g. f_{peak} is also called f_2 ...

- Up to 3 pronounced features in postmerger spectrum (f_{peak} + up to two secondary peaks at lower frequencies (subdominant wrt to sensitivity curve; not always present) + structure at higher frequencies)
- f_{peak} robust feature present in all models leading to a NS remnant
- Focus on f_{peak} in comparison the easiest to measured
- Simulation: 1.35-1.35 M_{sun} DD2 EoS, Smooth Particle Hydro, Conformal Flatness

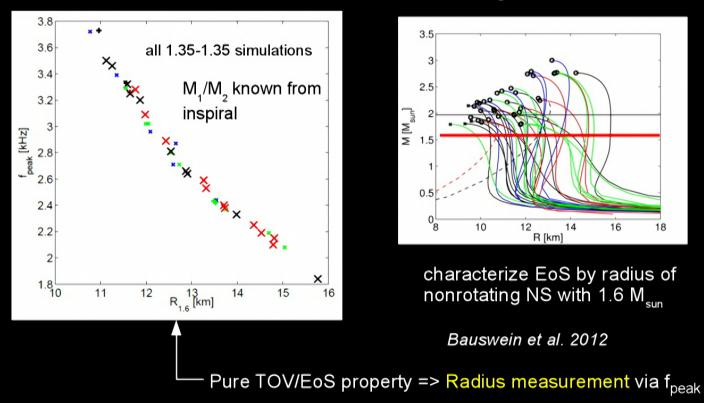
Pirsa: 18060046 Page 21/70


Gravitational waves - EoS survey

Here only 1.35-1.35 Msun mergers (binary masses measurable) – similar relations exist for other fixed binary setups !!!

~ 40 different NS EoSs

Pirsa: 18060046 Page 22/70

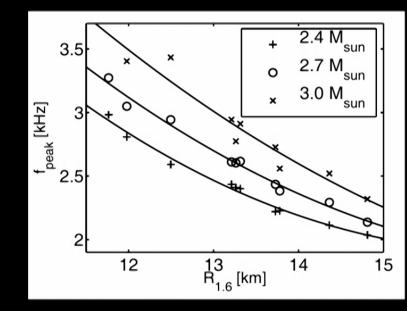


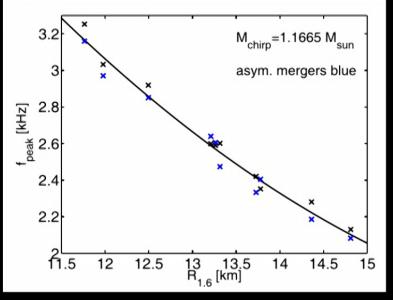
Assess quality of empirical relation relation – only infinity norm meaningful !!!

→ as many EoS models as possible !!!

Pirsa: 18060046 Page 23/70

Gravitational waves - EoS survey




Smaller scatter in empirical relation (< 200 m) → smaller error in radius measurement

Note: R of 1.6 M_{sun} NS scales with f_{peak} from 1.35-1.35 M_{sun} mergers (density regimes comparable)

Pirsa: 18060046 Page 24/70

Binary mass variations

Different total binary masses (symmetric)

Data analysis: see Clark et al. 2016 (PCA), Clark et al. 2014 (burst search), Chatziioannou et al 2017, Yang et al 2018, Bose et al. 2018

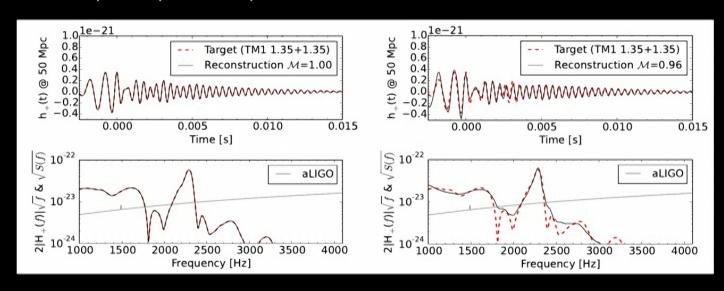
→ f_{peak} precisely measurable !!!

Fixed chirp mass (asymmetric 1.2-1.5 M_{sun} binaries and symmetric 1.34-1.34 M_{sun} binaries)

Bauswein et al. 2012, 2016

Pirsa: 18060046 Page 25/70

Strategy for radius measurements


- Measure binary masses from inspiral
- ► Construct f_{peak} R relation for this fixed binary masses and (optimally) chosen R
- ► Measure f_{peak} from postmerger GW signal
- ► Obtain radius by inverting f_{peak} R relation
- (possibly restrict to fixed mass ratios if mergers with high asymmetry are measured)

- ► Final error of radius measurement:
 - accuracy of f_{peak} measurement (see Clark et al. 2014, Clark et al. 2016, ...)
 - maximum scatter in f-R relation (important to consider very large sample of EoSs)
 - systematic error in f-R relation

Pirsa: 18060046 Page 26/70

Data analysis

Principal Component analysis

Excluding recovered waveform from catalogue

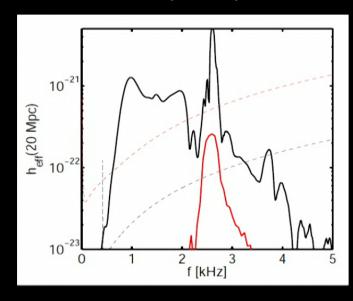
Instrument	$\mathrm{SNR}_{\mathrm{full}}$	$D_{\rm hor} \ [{ m Mpc}]$	$\dot{\mathcal{N}}_{\mathrm{det}}$ [year ⁻¹]
aLIGO	$2.99^{3.86}_{2.37}$	$29.89_{23.76}^{38.57}$	$0.01_{0.01}^{0.03}$
A+	$7.89_{6.25}^{10.16}$	$78.89_{62.52}^{101.67}$	$0.13_{0.10}^{0.20}$
LV	$14.06_{11.16}^{18.13}$	$140.56_{111.60}^{181.29}$	$0.41_{0.21}^{0.88}$
ET-D	$26.65_{20.81}^{34.28}$	$266.52_{208.06}^{342.80}$	$2.81_{1.33}^{5.98}$
CE	$41.50_{32.99}^{53.52}$	$414.62_{329.88}^{535.221}$	$10.59_{5.33}^{22.78}$

Clark et al. 2016, see also Clark et al 2014, Chatziioannou et al 2017, Bose et al. 2018, Yang et al. 2018

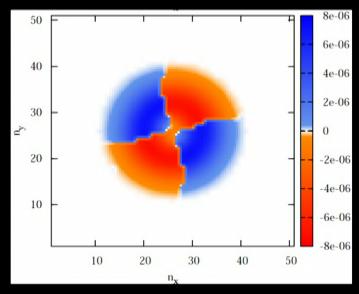
Outdated!!!

→ possible at Ad. LIGO's design sensitivity !!!

Pirsa: 18060046 Page 27/70

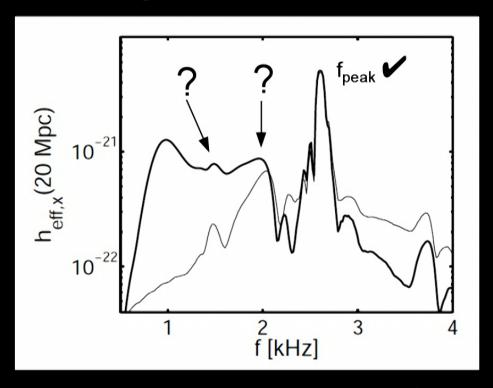

Secondary GW features and postmerger dynamics *

- → potentially EoS constraints
- → details of postmerger dynamics
- * for one-arm spiral instability see e.g. East et al 2016, Lehner et al 2016, ...
 - also CFS unstable modes may grow, e.g. Doneva et al 2015


Pirsa: 18060046 Page 28/70

Dominant oscillation frequency

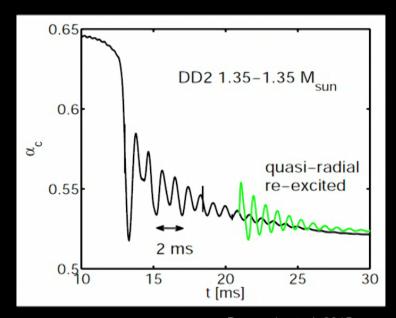
- Robust feature, which occurs in all models (which don't collapse promptly to BH)
- Fundamental quadrupolar fluid mode of the remnant


Re-excitation of f-mode (I=|m|=2) in late-time remnant (Bauswein et al. 2016)

Mode analysis at f=f_{peak} Stergioulas et al. 2011

Pirsa: 18060046 Page 29/70

Generic GW spectrum

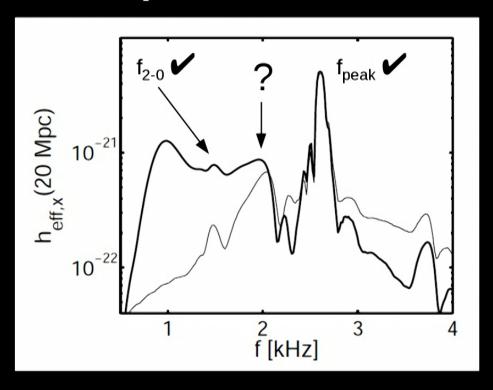


- Up to three pronounced features in the postmerger spectrum (+ structure at higher frequencies)
- 1.35-1.35 Msun DD2 EoS

Pirsa: 18060046 Page 30/70

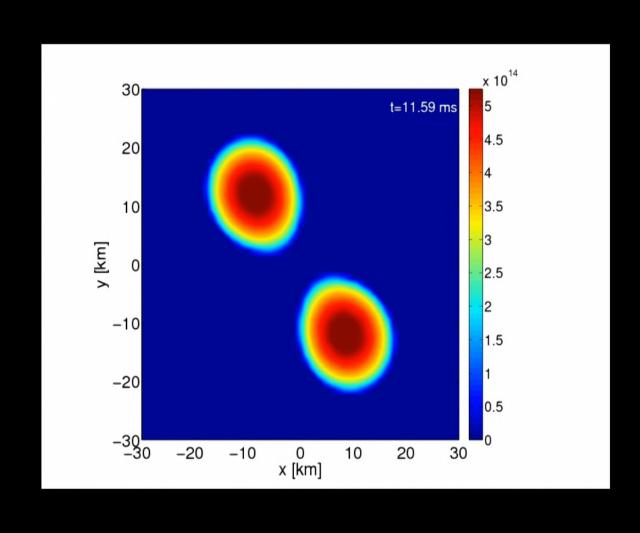
Quasi-radial mode

- Central lapse function shows two frequencies (~500 Hz and ~1100 Hz) → clear peaks in FFT
- Add quasi-radial perturbation \rightarrow re-excite quasi-radial mode => f_0 = 1100 Hz
- Confirmed by mode analysis \rightarrow radial eigen function at f_0

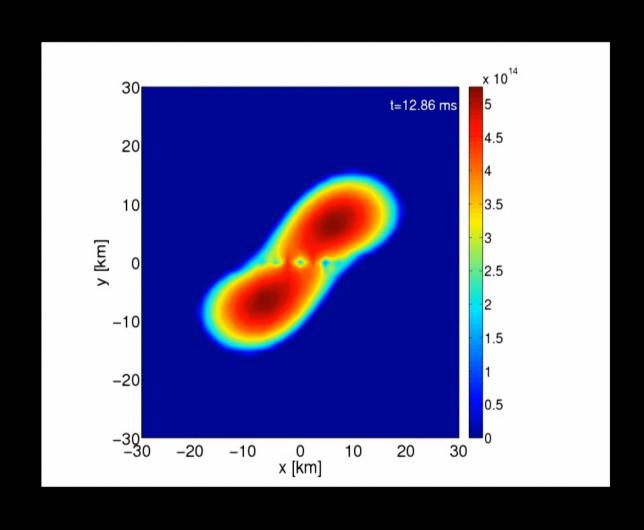

Bauswein et al. 2015

Could consider also size of the remnant, rhomax, ...

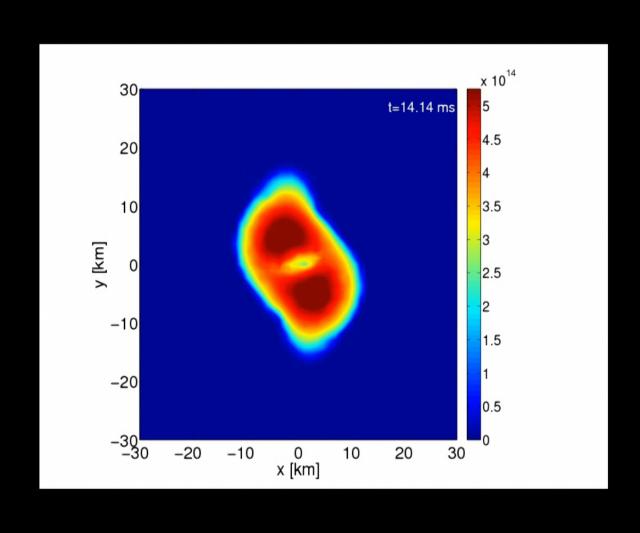
Note: additional low-frequency oscillation (500 Hz) also in GW amplitude (explained later)

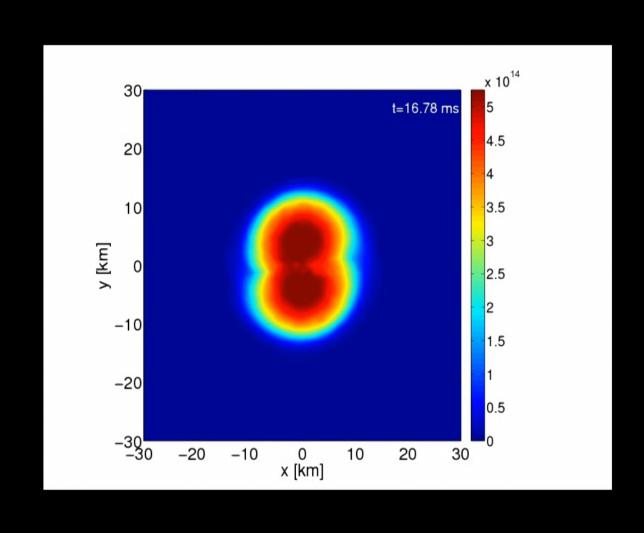

Pirsa: 18060046 Page 31/70

Generic GW spectrum

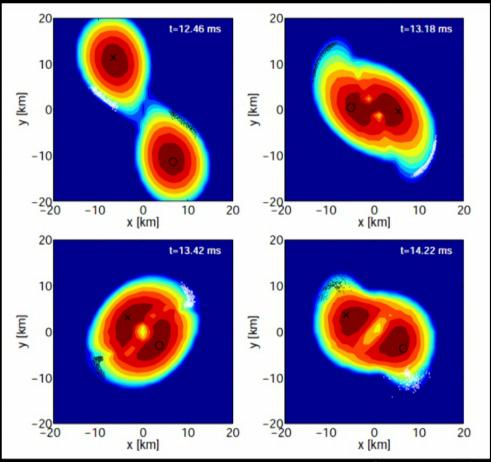


• Interaction between dominant quadrupolar mode and quasi-radial oscillation produced peak at $f_{2-0} = f_{peak} - f_0$ (see Stergioulas et al. 2011)


Pirsa: 18060046 Page 32/70


Pirsa: 18060046 Page 33/70

Pirsa: 18060046 Page 34/70



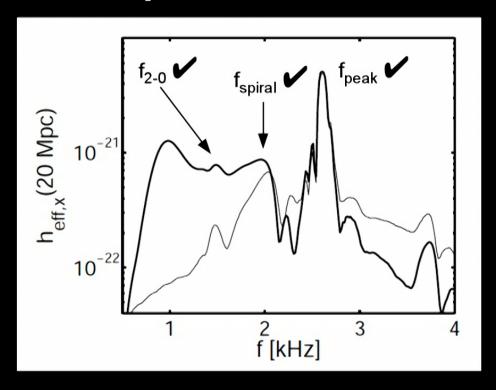
Pirsa: 18060046 Page 35/70

Pirsa: 18060046 Page 36/70

Antipodal bulges (spiral pattern)

Orbital motion of antipodal bulges slower than inner part of the remnant (double-core structure)

Spiral pattern, created during merging lacks behind


Orbital frequency: 1/1ms → generates GW at 2 kHz !!!

Present for only a few ms / cycles

Bauswein et al. 2015

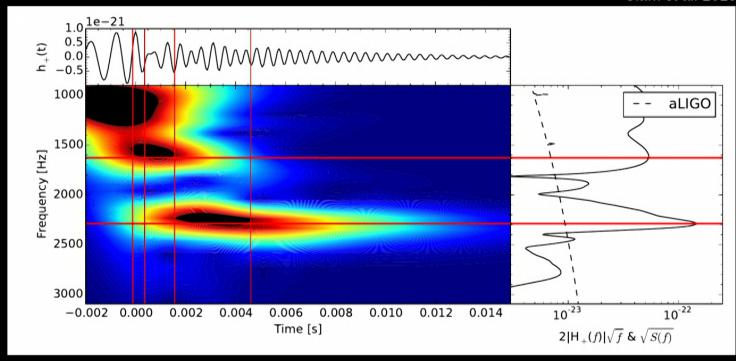
Pirsa: 18060046 Page 37/70

Generic GW spectrum

• Orbital motion of antipodal bulges generate peak at f_{spiral}

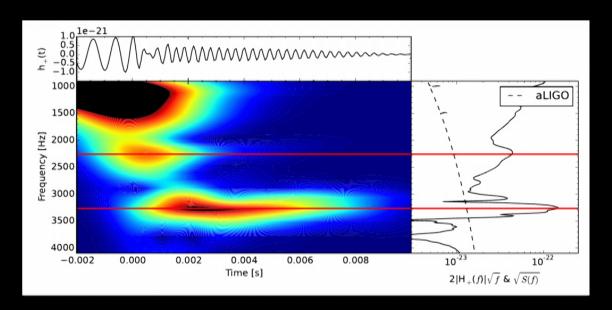
Pirsa: 18060046 Page 38/70

Further evidence


- Presence of spiral pattern coincides with presence of peak in GW spectrum (different time windows for FFT)
- \bullet Mass of bulges (several 0.1 M_{sun}) can explain strength of the peak by toy model of point particles the central remnant for a few ms
- Tracing dynamics / GW emission by computing spectra for "outer" and "inner" remnant → f_{spiral} emission "is produced outside"
- Dynamics of double cores (inner remnant) fail to explain this emission
- Spectrogram agrees with this picture (length, frequency), no strong time-variation of the dominant frequency

=> orbital motion => f_{spiral} peak

Pirsa: 18060046 Page 39/70

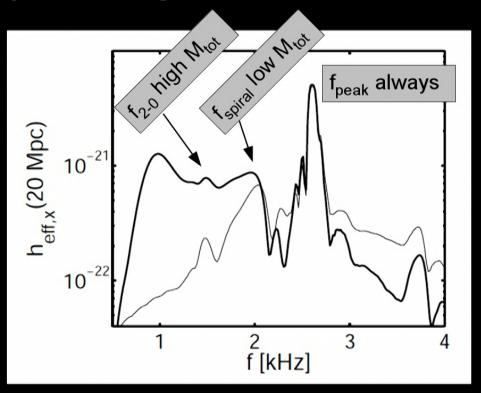

Example: TM1 1.35-1.35 Msun, strong tidal bulges, weak radial oscillation (e.g. from analysis of lapse)

Clark et al. 2016

Pirsa: 18060046 Page 40/70

SFHO 1.35-1.35 Msun, weak tidal bulges, strong radial oscillation

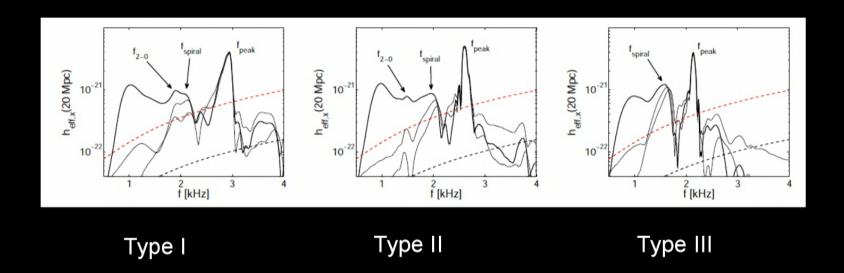
Clark et al. 2016


Discrete features!

Pirsa: 18060046 Page 41/70

Pirsa: 18060046 Page 42/70

Survey of GW spectra

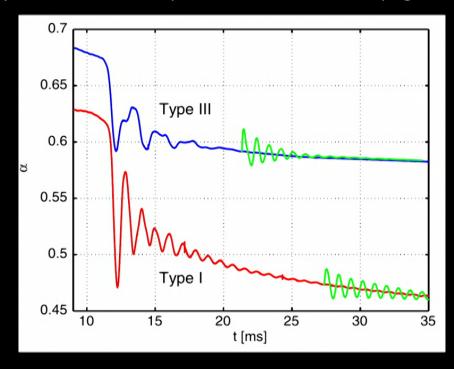


- Quantitative analysis of many models to identify which features is what
- Considering different models (EoS, M_{tot}): 3 types of spectra depending on presence of secondary features (dominant f_{peak} is always present)

Bauswein & Stergioulas 2015

Pirsa: 18060046 Page 43/70

Survey of GW spectra


LS220, DD2, NL3 EoS all with M_{tot} = 2.7 $M_{sun} \rightarrow$ consider M_{tot} relative M_{thres}

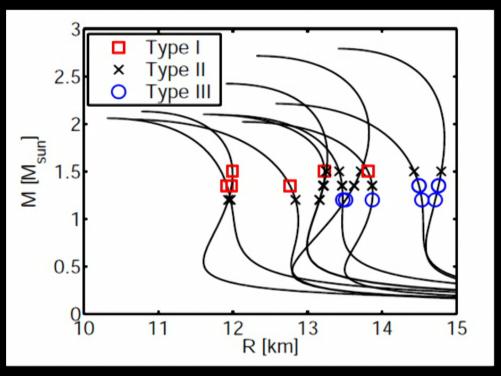
=> Depending on binary model (EoS, M1/2) either one or the other or both features are present / dominant

Pirsa: 18060046 Page 44/70

Postmerger dynamics

► Different types also reflected in dynamics – clear from underlying mechanisms

Pirsa: 18060046 Page 45/70


Classification scheme

- Type I: 2-0 feature dominates, f_{spiral} hardly visible, radial mode strongly excited, observed for soft EoS, relatively high M_{tot}
- Type II: both secondary features have comparable strength, clearly distinguishable, moderate binary masses
- Type III: f_{spiral} dominates, f₂₋₀ hardly visible, found for stiff EoS, relatively low binary masses, (central lapse, GW amplitude, rhomax show low-frequency modulation in addition to radial oscillation)
- Different types show also different dynamical behavior, e.g. in central lapse, maximum density, GW amplitude,
- High mass / low mass relative to threshold binary mass for prompt BH collapse (→ EoS dependent)
- Continuous transition between different types: a given EoS shows all types depending on M_{tot}: Type III for low M_{tot} → Type I towards M_{thres}

Bauswein & Stergioulas 2015

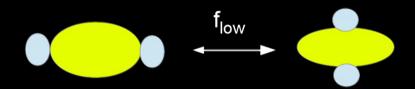
Pirsa: 18060046 Page 46/70

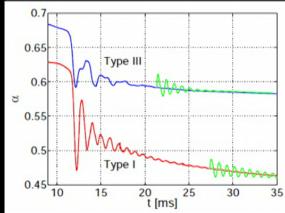
Classification scheme

Type of M_1 - M_2 merger indicate at $M_{tot}/2 = M_1$

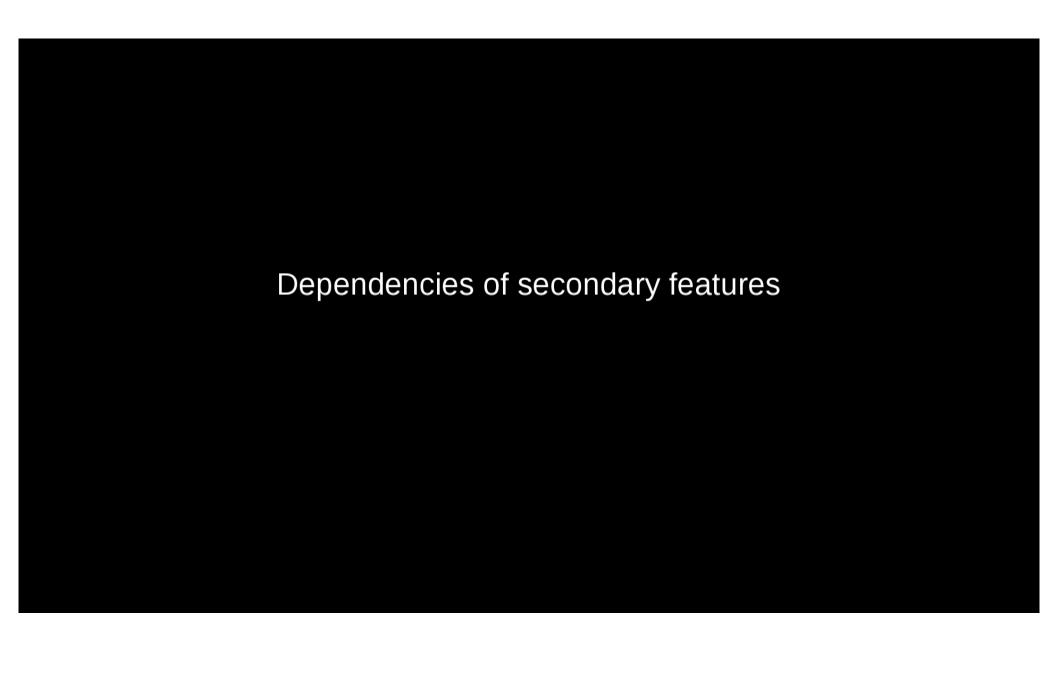
Bauswein et al. 2015

(Continuous transition between types → tentative association)


For $M_{tot} = 2.7 M_{sun}$ all Types are possible depending on EoS


Classification intuitive: merger dynamics affected by compactness

Pirsa: 18060046 Page 47/70


Classification scheme

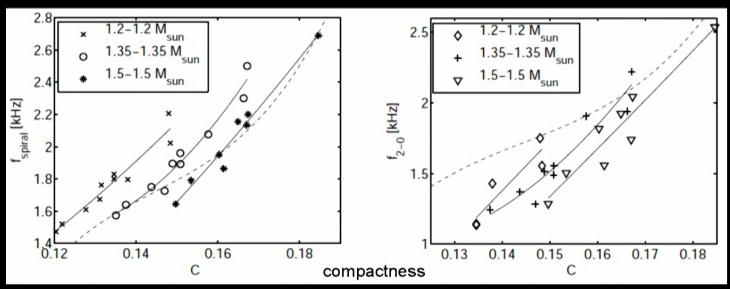
- ► Behavior understandable:
- Type I: compact NSs merge → high impact velocity / violent collision => radial oscillation strongly excited (2-0 dominant); higher compactness → formation of tidal bulges suppressed (f_{spiral} weaker)
- Type III: less compact NSs merge → lower impact velocity / smooth merging => radial mode suppressed (no 2-0); pronounced tidal bulges (strong f_{spiral} feature)
- ► For Type III and Type II low-frequency modulation with $f_{low} = f_{peak} f_{spiral}$ by orientation of bulge w. r. t. inner double-core/bar
- ► (seen in lapse, GW amp., rhomax, ...)

Pirsa: 18060046 Page 48/70

Pirsa: 18060046 Page 49/70

Dependencies of secondary frequencies

EoS characterized by compactness C=M/R of inspiralling stars (equivalent to radius as before)

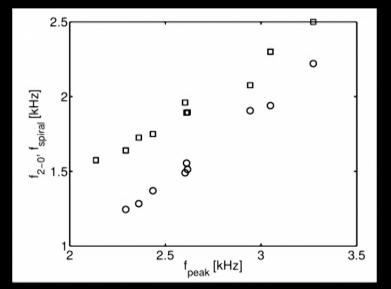

For fixed $M_{tot} = 2.7 M_{sun}$

Bauswein et al. 2015

Dashed line from Takami et al. 2014

- All three frequencies scale similarly with compactness (equivalently radius since M = M_{tot}/2 = fixed here)
- If subdominant peaks with comparable strength → risk of confusion / misinterpretation of measured frequency
- Here: only temperature-dependent EoS to avoid uncertainties/ambiguities due to approximate treatment of thermal effects (Gamma_th)
- For small binary mass asymmetry only small quantitative shifts

Different binary masses



Bauswein et al. 2015

Dashed line from Takami et al. 2014

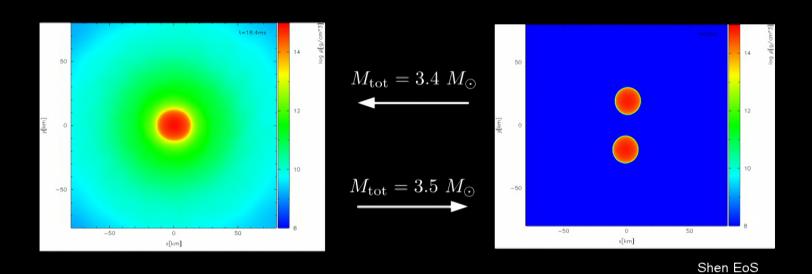
- ► for the individual secondary frequencies there are relations between C and the frequency for fixed binary masses (solid lines)
- ► (binary masses will be known from GW inspiral signal)
- ▶ no single, universal, mass-independent relation (for a expected range of binary masses), also when choosing the strongest secondary peak (risk of confusing subd. peaks)

Pirsa: 18060046 Page 51/70

1.35-1.35 Msun

Clark et al. 2016

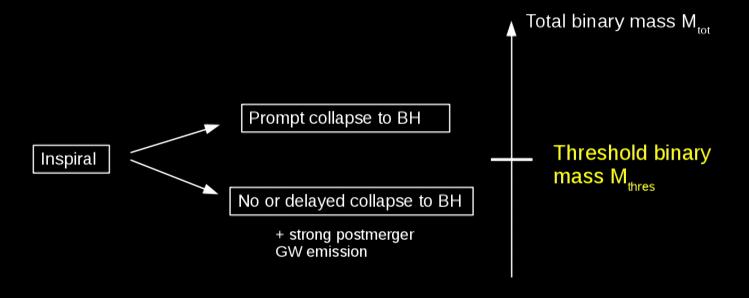
 \rightarrow secondary frequencies are essentially given by dominant frequency


Pirsa: 18060046 Page 52/70

Collapse behavior

- → from latest detection: very robust lower limit on NS radius (complementary to upper bound from inspiral)
- ightarrow maximum mass of non-rotating NSs ightarrowvery high density regime
- \rightarrow also relevant for mass ejection, em counterpart, GRB

Pirsa: 18060046 Page 53/70


Collapse behavior: Prompt vs. delayed (/no) BH formation

 $\Rightarrow M_{\rm thres} \approx 3.45 \ M_{\odot}$

Pirsa: 18060046 Page 54/70

Collapse behavior

EoS dependent - somehow M_{max} should play a role

Pirsa: 18060046 Page 55/70

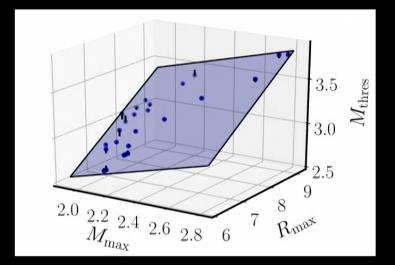
Simulations reveal M_{thres}

EoS	$M_{\rm max}$ (M_{\odot})	$R_{\rm max}$ (km)	$C_{ m max}$	$R_{1.6}$ (km)	$M_{\rm thres}$ (M_{\odot})
	(1710)	(RIII)	max	(Itili)	(1110)
NL3 [37,38]	2.79	13.43	0.307	14.81	3.85
GS1 [39]	2.75	13.27	0.306	14.79	3.85
LS375 [40]	2.71	12.34	0.325	13.71	3.65
DD2 [38,41]	2.42	11.90	0.300	13.26	3.35
Shen [42]	2.22	13.12	0.250	14.46	3.45
TM1 [43,44]	2.21	12.57	0.260	14.36	3.45
SFHX [45]	2.13	10.76	0.292	11.98	3.05
GS2 [46]	2.09	11.78	0.262	13.31	3.25
SFHO [45]	2.06	10.32	0.294	11.76	2.95
LS220 [40]	2.04	10.62	0.284	12.43	3.05
TMA [44,47]	2.02	12.09	0.247	13.73	3.25
IUF [38,48]	1.95	11.31	0.255	12.57	3.05

Bauswein et al. 2013

Smooth particle hydrodynamics + conformal flatness

Pirsa: 18060046 Page 56/70

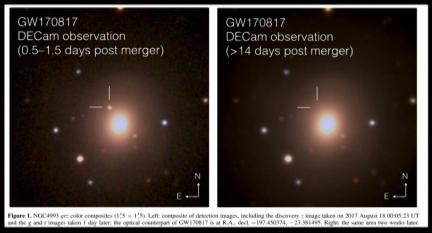

Threshold binary mass

- ► Empirical relation from simulations with different M_{tot} and EoS
- ► Fits (to good accuracy):

$$M_{\text{thres}} = M_{\text{thres}}(M_{\text{max}}, R_{\text{max}}) = \left(-3.38 \frac{GM_{\text{max}}}{c^2 R_{\text{max}}} + 2.43\right) M_{\text{max}}$$

$$M_{\text{thres}} = M_{\text{thres}}(M_{\text{max}}, R_{1.6}) = \left(-3.6 \frac{G M_{\text{max}}}{c^2 R_{1.6}} + 2.38\right) M_{\text{max}}$$

► Both better than 0.06 M_{sun}

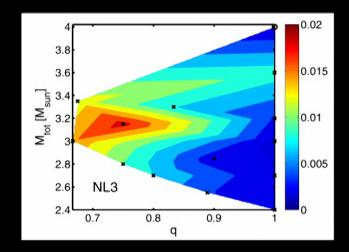


Pirsa: 18060046 Page 57/70

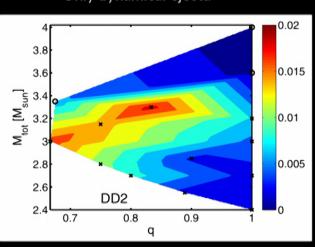
A simple but robust NS radius constraint from GW170817

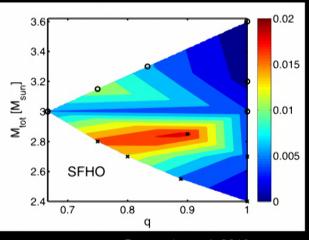
- ► High ejecta mass inferred from electromagnetic transient
 - → provides strong support for a delayed/no collapse in GW170817
 - → even asymmetric mergers that directly collapse do not produce such massive ejecta

Reference	$m_{\rm dyn}[M_\odot]$	$m_{ m w}\left[M_{\odot} ight]$
Abbott et al. (2017a)	0.001 - 0.01	-
Arcavi et al. (2017)	-	0.02 - 0.025
Cowperthwaite et al. (2017)	0.04	0.01
Chornock et al. (2017)	0.035	0.02
Evans et al. (2017)	0.002 - 0.03	0.03 - 0.1
Kasen et al. (2017)	0.04	0.025
Kasliwal et al. (2017b)	> 0.02	> 0.03
Nicholl et al. (2017)	0.03	_
Perego et al. (2017)	0.005-0.01	$10^{-5} - 0.024$
Rosswog et al. (2017)	0.01	0.03
Smartt et al. (2017)	0.03 - 0.05	0.018
Tanaka et al. (2017a)	0.01	0.03
Tanvir et al. (2017)	0.002 - 0.01	0.015
Troja et al. (2017)	0.001 - 0.01	0.015 - 0.03



Compilation in Cote et al 2018


Soares-Santos et al 2017


Pirsa: 18060046 Page 58/70

- Ejecta masses depend on EoS and binary masses
- Note: high mass points already to soft EoS (tentatively/qualitatively)
- Prompt collapse leads to reduced ejecta mass
- ► Light curve depends on ejecta mass:
 - \rightarrow 0.02 0.05 M_{sun} point to delayed collapse
- ► Note: here only dynamical ejecta

Only dynamical ejecta

Bauswein et al. 2013

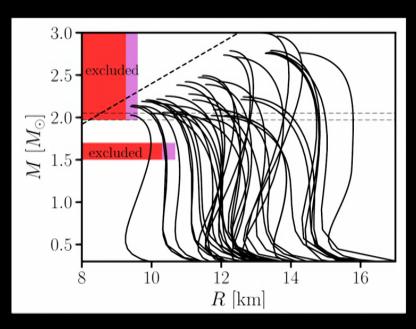
Pirsa: 18060046 Page 59/70

(1) If GW170817 was a delayed (/no) collapse:

$$M_{\rm thres} > M_{\rm tot}^{GW170817}$$

(2) Recall: empirical relation for threshold binary mass for prompt collapse:

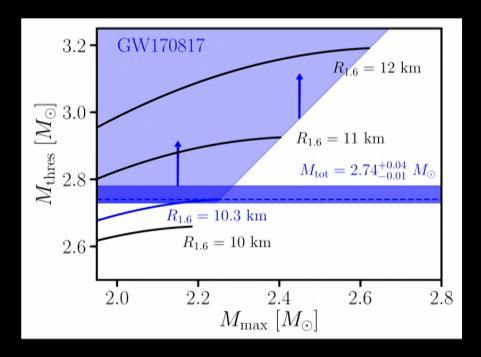
$$M_{
m thres} = \left(-3.38 rac{G\,M_{
m max}}{c^2\,R_{
m max}} + 2.43
ight)\,M_{
m max} > 2.74\,\,M_{\odot}$$
 (with M $_{
m max}$, R $_{
m max}$ unknown)


- (3) Causality: speed of sound $v_S \le c \implies M_{\max} \le \frac{1}{2.82} \frac{c^2 R_{\max}}{G}$
- ► Putting things together:

$$M_{\text{tot}}^{GW170817} \le \left(-3.38 \frac{G M_{\text{max}}}{c^2 R_{\text{max}}} + 2.43\right) M_{\text{max}} \le \left(-\frac{3.38}{2.82} + 2.43\right) \frac{1}{2.82} \frac{c^2 R_{\text{max}}}{G}$$

→ Lower limit on NS radius

Bauswein et al. 2017


NS radius constraint from GW170817

Bauswein et al. 2017

- ► $R_{1.6}$ > 10.7 km
- ► Excludes very soft nuclear matter

Pirsa: 18060046 Page 61/70

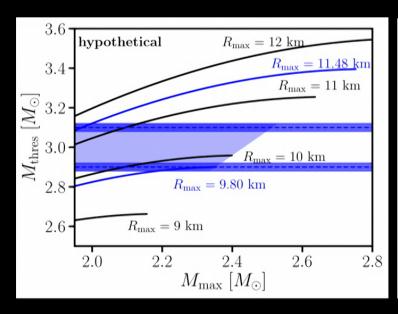
$$M_{\text{thres}} = \left(-3.6 \frac{G M_{\text{max}}}{c^2 R_{1.6}} + 2.38\right) M_{\text{max}}$$

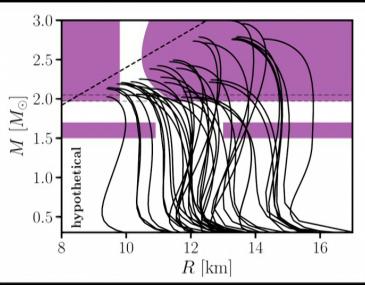
$$v_S = \sqrt{\frac{dP}{de}} \le c \rightarrow M_{\text{max}} \le \kappa R_{1.6} \Rightarrow M_{\text{thres}} \ge 1.2 M_{\text{max}}$$

Pirsa: 18060046

Discussion - robustness

- ► Binary masses well measured with high confidence error bar
- ► Clearly defined working hypothesis: delayed collapse
 - → testable by refined emission models
 - → as more events are observed more robust distinction
 - \rightarrow in future events presence of postmerger, i.e. kHz, GW emission will reveal nature of remnant
- ► Very conservative estimate, errors can be quantified
- ► Empirical relation can be tested by more elaborated simulations (but unlikely that MHD or neutrinos can have strong impact on M_{thres})
- ► Confirmed by semi-analytic collapse model
- ► Low-SNR constraint !!!


Pirsa: 18060046 Page 63/70


Future

- Any new detection can be employed if it allows distinction between prompt/delayed collapse
- ► With more events in the future our comprehension of em counterparts will grow → more robust discrimination of prompt/delayed collapse events
- ► Low-SNR detections sufficient !!! → that's the potential for the future
 - → we don't need louder events, but more
 - → complimentary to existing ideas for EoS constraints

Pirsa: 18060046 Page 64/70

Future detections (hypothetical discussion)

- \rightarrow as more events are observed, bands converge to true M_{thres}
- \rightarrow prompt collapse constrains M_{max} from above

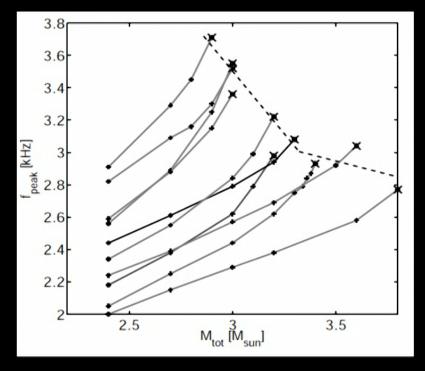
Bauswein et al. 2017

Pirsa: 18060046 Page 65/70

Future: Maximum mass

► Empirical relation

$$M_{\text{thres}} = \left(-3.6 \frac{G M_{\text{max}}}{c^2 R_{1.6}} + 2.38\right) M_{\text{max}}$$

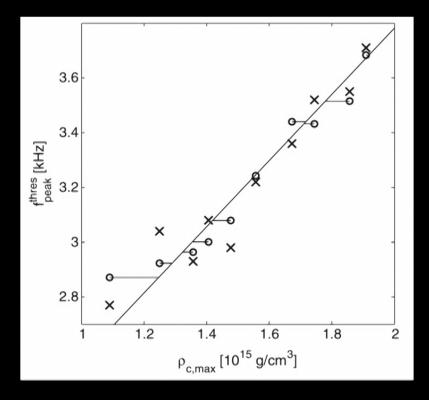

► Sooner or later we'll know R_{1.6} (e.g. from postmerger) and M_{thres} (from several events – through presence/absence of postmerger GW emission or em counterpart)

 \Rightarrow direct inversion to get precise estimate of M_{max}

(see also current estimates e.g. by Margalit & Metzger, Rezzolla et al, Ruiz & Shapiro, ...)

Pirsa: 18060046 Page 66/70

Alternative: f_{peak} dependence on total binary mass

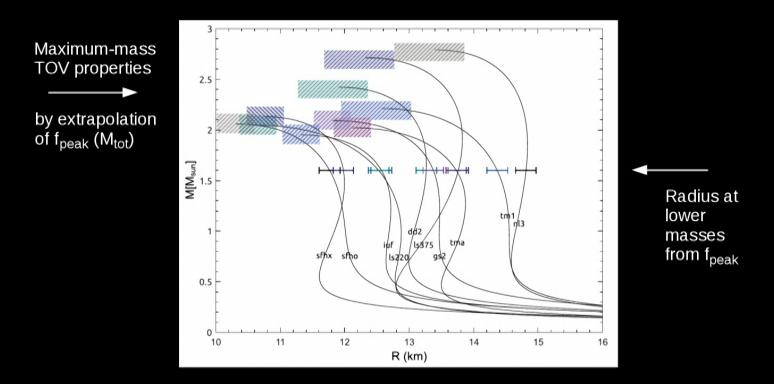

(every single line corresponds to a specific EoS → only one line can be the true EoS)

$$f_{peak} \sim \sqrt{rac{M}{R^3}}$$

Bauswein et al. 2014

- Dominant GW frequency monotone function of M_{tot}
- Threshold to prompt BH collapse shows a clear dependence on $M_{\rm tot}$ (dashed line)

Maximum density from f_{thres}



either through extrapolation or through direct measurement of f_{peak} close to threshold

Bauswein et al. 2014

Pirsa: 18060046 Page 68/70

from two measurements of f_{peak} at moderate M_{tot}

(final error will depend on EoS and exact systems measured) Note: M_{thres} may also be constrained from prompt collapse directly

Bauswein et al. 2014

Pirsa: 18060046 Page 69/70

Conclusions / future potential

- Postmerger complementary to inspiral
- ► Dominant postmerger frequency → accurate radius measurement
- ► Through extrapolation procedure access to very high-density regime → M_{max}, R_{max}, e_{max}
- ► GW data analysis simulations → postmerger measurable
- ► Unified picture of postmerger GW emission, i.e. secondary features → encoding postmerger dynamics
- ► Collapse behavior of GW170817
 - \rightarrow robust lower bound on NS radius \rightarrow R > 10.7 km
 - \rightarrow a lot of future potential \rightarrow M_{max}
- Outlook: kHz range indispensable for multi-messenger picture of NS mergers understand all details of the GW spectrum → GW asteroseismology

Pirsa: 18060046 Page 70/70