Title: Hitting the High Notes: The High Frequency Dynamics of Neutron Star Mergers

Date: Jun 11, 2018 10:00 AM

URL: http://pirsa.org/18060045

Abstract:

Pirsa: 18060045 Page 1/53

High frequency dynamics of neutron stars

Neutron stars use the whole piano... but we're only hearing the bottom half.

William East

Hitting the High Notes

Pirsa: 18060045 Page 2/53

Pirsa: 18060045 Page 4/53

Coincident detection of gamma ray burst and gravitational wave

- When/is there a final black hole?
- What causes the 1.7 second delay?
- How much material was ejected dynamically, in subsequent wind?

William East

Hitting the High Notes

Opening credits with multimessenger astronomy

William East

Hitting the High Notes

Pirsa: 18060045 Page 6/53

Opening credits with multimessenger astronomy

William East

Hitting the High Notes

Pirsa: 18060045 Page 7/53

Reasons to go after high frequency neutron star dynamics

- Better understanding of associated electromagnetic transients
- Probe non-vacuum GR in strong field regime
- Sensitive to spin and other subleading parameters
- For black hole-neutron star mergers — probe disruption?
- Encodes information about unknown neutron star equation of state

William East

Hitting the High Notes

Matter effects in inspiral

LIGO/VIRGO (2018)

- During inspiral, main matter effect is due to induced quadrapole, 5 PN effect
- Encapsulated in effective tidal deformability parameter Λ
- Somewhat degenerate with mass-ratio/spin

$$\tilde{\Lambda} = \frac{16}{13} \left[\left(1 + 12 \frac{m_2}{m_1} \right) \frac{m_1^5}{M^5} \Lambda_1 + (1 \leftrightarrow 2) \right] \text{ with } \Lambda = \frac{2}{3} k_2 (R/m)^5$$

William East

Hitting the High Notes

Binary neutron star merger or black hole-neutron star merger

- Devil's advocate: how do know an event is a binary neutron star merger and not a black hole-neutron star merger?
- Can we rule out an exotic population of low mass $(1-3 M_{\odot})$ black holes?

William East

Hitting the High Notes

Distinguishing low mass black holes in neutron star mergers

Yang, WE & Lehner (2017)

- Leading order tidal effects are degenerate with uncertainty in equation of state
- Merger dynamics (at high frequencies) will of course be completely different

William East

Hitting the High Notes

Pirsa: 18060045 Page 11/53

Neutron star f-mode oscillations

- Fundamental oscillation mode of neutron star, $f \sim 2$ to 3 kHz
- Encodes equation of state information

William East

Hitting the High Notes

Pirsa: 18060045 Page 12/53

Neutron star f-mode oscillations

Gold et al. (2012)

- Can be excited during inspiral in eccentric encounters (Turner 1977, WE et al. 2012, Gold et al. 2012)
- Oscillations damp due to GW emission

- (🗇) (🗗) (분) (분) - 📜 - 쒸익

William East

Hitting the High Notes

Pirsa: 18060045 Page 13/53

Primordial vs. dynamically-assembled binaries

Primordial binaries:

- Born in bound system
- Are expected to have negligible eccentricity (i.e. quasi-circular) when detected
- Expected to be primary sources for LIGO/VIRGO

Dynamically assembled binaries:

- Arise in dense regions, e.g. globular cores undergoing core collapse.
- Subset will merge with large orbital eccentricities
- Event rates less well understood — could make up some fraction of LIGO observations.

Ongoing work to understand cluster dynamics, three body interactions, etc. (see Lee et al. 2010; Samsing et al. 2013-2017; Antonini et al. 2015; Rodriguez et al. 2015, 2016)

William East

Hitting the High Notes

Pirsa: 18060045 Page 14/53

Tidal f-mode excitation in close encounter

- $M_1 = M_2 = 1.35 M_{\odot}$
- Initial Newt. orbital param: $r_p = 10M$, e = 1
- HB piecewise polytrope EOS $(M_{\rm NS}/R_{\rm NS}=0.17, M_{\rm max}=2.12M_{\odot})$

William East

Hitting the High Notes

Modelling f-mode gravitational waves

- For close enough encounters, energy in tidal excitations comparable to GW burst
- Tidal excitation energy emitted as GWs at f-mode frequency

$$\mathrm{SNR} \sim \, 30 \left(\frac{\mathcal{E}_{mode}}{\mathcal{E}_{\mathrm{GW}}} \right)^{1/2} \left(\frac{50 \; \mathrm{Mpc}}{d} \right) \left(\frac{5 \times 10^{-25} \; \mathrm{Hz}^{-1/2}}{\sqrt{\mathcal{S}_{n}}} \right) \left(\frac{2 \; \mathrm{kHz}}{f} \right)$$

- 《 🗆 》 《 🗗 》 《 🖹 》 《 🖹 》 🛛 🖹 📌 🔍 약

William East

Hitting the High Notes

Pirsa: 18060045 Page 23/53

Pirsa: 18060045 Page 24/53

Pirsa: 18060045 Page 25/53

Pirsa: 18060045 Page 26/53

Pirsa: 18060045 Page 27/53

Pirsa: 18060045 Page 28/53

Pirsa: 18060045 Page 29/53

Pirsa: 18060045 Page 30/53

Pirsa: 18060045 Page 31/53

Pirsa: 18060045 Page 32/53

Pirsa: 18060045 Page 33/53

Pirsa: 18060045 Page 34/53

Gravitational waves from hypermassive neutron stars

Important information in post-merger signal

- Was there prompt collapse to a black hole?
- Probe of hot, very perturbed, high density material
- Peak frequency maps to equation of state (see next talk by Andreas Bauswein)

Rezzolla & Takami 2016

· (🗇 > (🗗 > (분 > (분 >) 📜 - 씨오(

William East

Hitting the High Notes

Pirsa: 18060045 Page 35/53

One-arm spiral instability background

- Discovered in Newtonian simulations of polytropic stars with large differential rotation (Centrella et al. 2001); also seen in cores formed in core-collapse (Ott et al. 2005, 2007; Kuroda et al. 2014)
- Only recently uncovered in hypermassive NSs from mergers (WE, Paschalidis et. al 2015-2016)
- Found in eccentric and quasicircular mergers with comparable strength (Radice et al. 2016, Lehner et al. 2016)

Lesson: Still resolving the small scale physics (turbulence, magnetic fields, microphysics are important)

William East

Hitting the High Notes

Pirsa: 18060045 Page 36/53

Pirsa: 18060045 Page 37/53

Pirsa: 18060045 Page 38/53

Pirsa: 18060045

Pirsa: 18060045 Page 40/53

Pirsa: 18060045 Page 41/53

Pirsa: 18060045 Page 42/53

Growing m = 1 mode

ast Hitting the High Notes

William East

Pirsa: 18060045 Page 43/53

Pirsa: 18060045 Page 44/53

Pirsa: 18060045 Page 45/53

Pirsa: 18060045 Page 46/53

Pirsa: 18060045 Page 47/53

Pirsa: 18060045 Page 48/53

Pirsa: 18060045 Page 49/53

Detecting gravitational waves

$$SNR_{aLIGO} \approx 2.8 \left(\frac{7 \times 10^{-24} \text{ Hz}^{-1/2}}{\sqrt{S_n(f_{m=1})}} \right) \left(\frac{C_{21} rM}{10^{-4}} \right)$$
$$\left(\frac{1.5 \text{ kHz}}{f_{m=1}} \right)^2 \left(\frac{T_{m=1}}{100 \text{ ms}} \right)^{1/2} \left(\frac{10 \text{ Mpc}}{r} \right)$$

- Comparable SNR results in Lehner et al. 2016 and Radice et al. 2016
- Detection of merger can reduce detection threshold for post-merger GW signal
- Lower frequency than bar modes (m = 2)
- Optimistically, signal may last up to a second?

William East

Hitting the High Notes

Theoretical challenge: Understanding dynamics of NS

- Lots of progress in understanding dynamics of hypermassive NSs by many groups . . .
- ...but still lots of works to do
- Relevant microphysics: magnetic fields, hot equation of state, radiation transport, neutrinos, etc.
- Small scale (e.g. turbulent) physics is hard

- (ロ) (**回**) (き) (き) (き) (り)(

William East

Hitting the High Notes

Pirsa: 18060045 Page 51/53

Exotic scenarios

- Some alternative theories (e.g. scalar-tensor) predict differences only around matter
- Possibility of exotic compact objects (low mass BHs, boson stars, etc.)
- High frequency signal is essential for distinguishing

William East

Hitting the High Notes

Pirsa: 18060045 Page 52/53

Conclusion

- Most interesting dynamics of neutron star mergers at high frequencies in GWs
- Probe perturbations of equilibrium stars in eccentric mergers
- Uncover highly dynamical oscillations of hypermassive stars
- Room from new discoveries and surprises in this regime
- Need better theoretical understanding

Excited to hear about ideas for observing kilohertz GWs.

William East

Hitting the High Notes

Pirsa: 18060045 Page 53/53