Title: String Theory and Nonsingular Cosmol ogy
Date: Jun 08, 2018 11:00 AM
URL.: http://pirsa.org/18060006

Abstract: <p>| will argue that in the context of string theory, the Big Bang singularity of standard and inflationary cosmology is automatically
resolved. To seethis at the level of an effective field theory, ideas from "Double Field Theory" are useful .</p>
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Fig. 1a, Diagram of gravitational instability in the ‘big-bang’ model. The region of instability is

located to the right of the line My (1); the region of stability to the left. The two additional lines of

the graph demonstrate the temporal evolution of density perturbations of matter: growth until the

moment when the considered mass is smaller than the Jeans mass and oscillations thereafter. Tt is

apparent that at the moment of recombination perturbations corresponding to different masses
correspond to different phases.
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Key Realization

@ Given a scale-invariant power spectrum of adiabatic
fluctuations on "super-horizon" scales before fgq, i.€.
standing waves.

@ — "correct" power spectrum of galaxies.

@ — acoustic oscillations in CMB angular power
spectrum.
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Key Challenge

String
Cosmology
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berger

Introduction
How does one obtain such a spectrum?

@ Inflationary Cosmology is the first scenario based on
causal physics which yields such a spectrum.
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Hubble Radius vs. Horizon

String
Cosmology

R. Branden-

berger @ Horizon: Forward light cone of a point on the initial
Cauchy surface.

@ Horizon: region of causal contact.
o Hubble radius: Iy(t) = H~'(t) inverse expansion rate.

Introduction

@ Hubble radius: local concept, relevant for dynamics of
cosmological fluctuations.

@ In Standard Big Bang Cosmology: Hubble radius =
horizon.

@ In any theory which can provide a mechanism for the
origin of structure: Hubble radius # horizon.
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Criteria for a Successful Early Universe
Scenario

String
Cosmology

R. Branden-

Berger @ Horizon > Hubble radius in order for the scenario to
solve the “horizon problem” of Standard Big Bang
Cosmology.

@ Scales of cosmological interest today originate inside
the Hubble radius at early times in order for a causal
generation mechanism of fluctuations to be possible.

@ Squeezing of fluctuations on super-Hubble scales in
order to obtain the acoustic oscillations in the CMB
angular power spectrum.

@ Mechanism for producing a scale-invariant spectrum of
curvature fluctuations on super-Hubble scales.

Introduction
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Inflation as a Solution
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Introduction post

inflation /! " Hubble radius

horizon

inflation
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Matter Bounce as a Solution
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Emergent Universe
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Introduction

Emergent Universe as a Solution
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Introduction

Which paradigm arises from string theory?
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T-Duality: Key
Symmetry of
String Theory

String States

Assumption: All spatial dimensions toroidal, radius R.

String states:
@ momentum modes: E, = n/R
@ winding modes: E,, = mR
@ oscillatory modes: E independent of R
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T-Duality: Key
Symmetry of
String Theory

T-Duality

T-Duality
@ Momentum modes: E, = n/R
@ Winding modes: E,, = mR
@ Duality: R —~1/R (n,m) — (m,n)
@ Mass spectrum of string states unchanged
@ Symmetry of vertex operators

@ Symmetry at non-perturbative level — existence of
D-branes
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T-Duality: Key
Symmetry of
String Theory

Position Operators

Position operators (dual to momenta)

x>= 3 exp(ix-p)lp >
p

Dual position operators (dual to windings)

X >=")"exp(iX - w)|w >
w

IXx>=|x+2rR>, |X>= |Xx+2n

1
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T-Duality: Key
Symmetry of
String Theory

Heavy vs. Light Modes

@ A > 1. momentum modes light.

@ R < 1: winding modes light.

@ R > 1: length measured in terms of |x >.
Q

Q

R < 1: length measured in terms of |x >
R ~ 1: both |x > and |x > important.

Conclusion: At string scale densities usual effective field
theory (EFT) based on supergravity will break down.

Conclusion: If an effective field theory description is valid, it
must be an EFT in 18 spatial dimensions.
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T-Duality: Key
Symmetry of
String Theory

Physical length operator
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T-Duality: Key
Symmetry of
String Theory

Physical length
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String Gas
Cosmology

String Gas Cosmology

|ldea: make use of the new symmetries and new degrees of
freedom which string theory provides to construct a new
theory of the very early universe.

Assumption: Matter is a gas of fundamental strings.

Assumption: gs < 1.

Key points:

@ New degrees of freedom: string oscillatory modes

@ Leads to a maximal temperature for a gas of strings,
the Hagedorn temperature

@ New degrees of freedom: string winding modes

o Leads to a new symmetry: physics at large R is
equivalent to physics at small R
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Absence of a Temperature Singularity in String
Cosmology

String
bl Temperature-size relation in string gas cosmology

R. Branden-
berger

T

T-dual Phase

String Gas
Cosmology
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String Gas
Cosmology

Singularity Problem in Standard and
Inflationary Cosmology

Temperature-size relation in standard cosmology
.
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String Gas
Cosmology

Dynamics

Assume some action gives us R(t)
T

Phase

2: Bouncing Cosmology
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String Gas
Cosmology
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Dynamics

We will thus consider the following background dynamics for
the scale factor a(t):
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String Gas
Cosmology

Dynamical Decompactification

@ Begin with all 9 spatial dimensions small, initial
temperature close to Ty — winding modes about all
spatial sections are excited.

@ Expansion of any one spatial dimension requires the
annihilation of the winding modes in that dimension.

I

ﬂ

@ Decay only possible in three large spatial dimensions.
@ — dynamical explanation of why there are exactly three
large spatial dimensions.

Note: For R — 0 there is an analogous decompactification
mechanism which only allows three dual dimensions to be
large.
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String Gas
Cosmology

Moduli Stabilization in SGC

Size Moduli [S. Watson, 2004; S. Patil and R.B., 2004, 2005]

@ winding modes prevent expansion

@ momentum modes prevent contraction

o — Vex(R) has a minimum at a finite value of
R, — Rmin

@ in heterotic string theory there are enhanced symmetry
states containing both momentum and winding which
are massless at R,

O — Verr(Rmin) =0

@ — size moduli stabilized in Einstein gravity background

Shape Moduli [E. Cheung, S. Watson and R.B., 2005]

@ enhanced symmetry states
@ — harmonic oscillator potential for ¢
@ — shape moduli stabilized
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String Gas
Cosmology

Dilaton stabilization in SGC

@ The only remaining modulus is the dilaton.

@ Make use of gaugino condensation to give the dilaton a
potential with a unique minimum.

o — diltaton is stabilized.

@ Dilaton stabilization is consistent with size stabilization
[R. Danos, A. Frey and R.B., 2008].

@ Gaugino condensation induces (high scale)
supersymmetry breaking [S. Mishra, W. Xue, R.B. and
U. Yajnik, 2012].
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Structure

@ string Gas Cosmology and Structure Formation
o Review of the Theory of Cosmological Perturbations
@ Overview
o Analysis
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Perturbations

Theory of Cosmological Perturbations: Basics

Cosmological fluctuations connect early universe theories
with observations

@ Fluctuations of matter — large-scale structure

@ Fluctuations of metric — CMB anisotropies

@ N.B.: Matter and metric fluctuations are coupled

Key facts:

@ 1. Fluctuations are small today on large scales

@ — fluctuations were very small in the early universe
@ — can use linear perturbation theory

@ 2. Sub-Hubble scales: matter fluctuations dominate
@ Super-Hubble scales: metric fluctuations dominate
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Quantum Theory of Linearized Fluctuations

i Step 1: Metric including fluctuations
osmology

R. Branden-
berger

ds® = &[(1+2d)dn® — (1 — 24)dx?]
¢ = o+ 0p

Note: ¢ and d¢ related by Einstein constraint equations
Step 2: Expand the action for matter and gravity to second
order about the cosmological background:

s _— fd4 (V — v, w4 - Vz)

v a(dp + d>)

/
a2o

‘ H
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Perturbations
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Step 3: Resulting equation of motion (Fourier space)

z”
Vil + (K° — S Wk =0

Features:

@ oscillations on sub-Hubble scales
@ squeezing on super-Hubble scales v ~ z

Quantum vacuum initial conditions:

V(i) = (V2k)™
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Structure formation in inflationary cosmology
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il A
,
—"r
|’I
\J‘.
/!

N.B. Perturbations originate as quantum vacuum
fluctuations.
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Background for string gas cosmology
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Analysis

Method

o Calculate matter correlation functions in the Hagedorn
phase (neglecting the metric fluctuations)

@ For fixed k, convert the matter fluctuations to metric
fluctuations at Hubble radius crossing t = t;(k)

o Evolve the metric fluctuations for t > t;(k) using the
usual theory of cosmological perturbations
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Analysis

Extracting the Metric Fluctuations

Ansatz for the metric including cosmological perturbations
and gravitational waves:

ds? = a(n)((1 + 29)dn? — [(1 — 20)d; + hylax'ax’) .

Inserting into the perturbed Einstein equations yields

(Io(K)[%) = 1672 G k(6T (k)5 T 0(K)),

(|h(K)|?) = 1672 G2k~ T'j(k)d T'/(K)) .
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Power Spectrum of Cosmological Perturbations
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Key ingredient: For thermal fluctuations:

T2
(5102) ~ R6 Cv.

Key ingredient: For string thermodynamics in a compact
space

:hnal:ylill . Rz / gg

R ETA— T
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Extracting the Metric Fluctuations

Ansatz for the metric including cosmological perturbations
and gravitational waves:

ds? = a(n)((1 + 29)dn? — [(1 — 20)d; + hylax'ax’) .

Inserting into the perturbed Einstein equations yields

(Io(K)[%) = 1672 G k(6T (k)5 T 0(K)),
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Page 36/56



Power Spectrum of Cosmological Perturbations
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Key ingredient: For thermal fluctuations:

T2
(5102) ~ R6 Cv.

Key ingredient: For string thermodynamics in a compact
space

:hnal:ylill . Rz / gg

R ETA— T
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Analysis

Power spectrum of cosmological fluctuations

Po(k) = 8G*k™' < |dp(k)|? >
8G*k? < (6M)? >p

8G?k~* < (6p)2 >R

T 1
2__
& BT/

Key features:

@ scale-invariant like for inflation
@ slight red tilt like for inflation
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Prediction: Spectrum of Gravitational Waves
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berger 167T262k_1 < |le(k)|2 >
1672G2k~* < |Ti(R)? >

16w2G2£13(1 —T/Th)
S

Key ingredient for string thermodynamics

T

IgH4(1 - T/TH)

Ifnaliylill . < | "":"(H) |2 > A~
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Analysis

Power spectrum of cosmological fluctuations

Po(k) = 8G*k™' < |dp(k)|? >
8G*k? < (6M)? >p

8G?k~* < (6p)2 >R

T 1
2__
& BT/

Key features:

@ scale-invariant like for inflation
@ slight red tilt like for inflation
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Prediction: Spectrum of Gravitational Waves

16m2 G2k~ < | Tj(k)|? >
162Gk~ < | Tj(R)|? >

16w2G2£13(1 —T/Ty)
S

Key ingredient for string thermodynamics

T

IgH4(1 - T/TH)

<|Ti(R)? >~

Key features:

@ scale-invariant (like for inflation)
@ slight blue tilt (unlike for inflation)
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BICEP-2 Results

NH
X
=

I3

B

o
&)
—_—
-
=
=

T

B2xB2
B2xB1c
B2xKeck (preliminary)

150
Multipole
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Prediction: Running of the Spectrum of
Cosmological Perturbations

Running

_ d?InPy(k)
dlnk? lk=at

Qg =

o For Inflation: as ~ (1 — ng)?
o For String Gas Cosmology: as ~ (1 — ns)

— String Gas Cosmology predicts a parametrically larger
running.
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Noinsingular
Cosmology

@ Nonsingular String Cosmology
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Geodesic Completeness

String
Cosmology

s Recall: For each dimension of the underlying topological
ot space there are two position operators [R.B. and C. Vafa]:

@ x: dual to the momentum modes
@ X: dual to the winding modes

We measure physical length in terms of the light degrees
of freedom.

Noinsingular I(H) R for AR> 1 :

Cosmology

I(R) lR for R 1.
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Doubled Space Approach
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berger

dS? = dt? — &(t)s;dx'dx! — a~3(t)5;dx dx!
Point particle geodesic:

d ,dx/
a5 (as?)

ons ngular d d)?"r
golsmioltgngly E ( E a s )

Initial conditions: related by duality.
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Proper Time along Geodesic

String
Cosmology

el Assume a(t) as in Standard Big Bang Cosmology.

berger

Proper distance into the future from some time f to some
time t, > ty:

t
AS — a(t)y()dt + T»,

to

Proper distance into the past from some time f, to some
time t; < {p:

Noinsingular
Cosmology

to
AS = | a®)y 'y (Hdt+ Ty,
t
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Interpretation

String
C I . ) ‘
Ho:::::: @ Expansion of the scale factor in the dual spatial

“berger directions as time decreases = expansion in the

regular directions as time increases.

@ Dynamics of the dual spatial dimensions as ¢
decreases is measured as expansion when the dual
time ty = } decreases.

Proposal:

t(t) t for t>1,

Noinsingular
Cosmology

1
to(t) i for t<1.

Conclusion: Point particle geodesics can be extended in
both time directions to infinite proper time.
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Nonsingular String Cosmology

String
Cosmology

Consider Dilaton gravity

R. Branden-
berger

(6 aH)" — aK?
H— H(q's— dH)
2(55— dH) B (gés— au'-/)2 — dH?

I\.llolr;singular coupled to string gas matter.

Cosmology

md

w(a) = =S arctan (ﬁln (3

ap
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Limiting Solutions

Stri : S
ooy Large radius limit:

R. Branden-

berger p(alarge) — po(a/ao)
Small radius limit:

—(d+1)

p(asmall) — po (a/ag) "

Ansatz:

t\a
alt) ~ (-
Noinsingular ( to )

oty ot~ Aini/t),

Pirsa: 18060006 Page 50/56



Pirsa: 18060006

String
Cosmology

R. Branden-

berger

Noinsingular
Cosmology

Limiting Solutions

Hagedorn phase, w = 0:

(o, 8) = (0,2).

Note: Static in string frame.

Large a phase, w = 1/d:
2 2

(aaﬁ) = (B:E(D_ 1)) -

Note: constant dilaton.

Small a phase, w = —1/d.:

e

(aaﬁ) = (_51 B(D_ 1)) -
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Interpretation

String
Cosmology

R. Branden-

berger @ Bouncing cosmology in the string frame — nonsingular.
@ Contracting cosmology for t — 0 in the Einstein frame.

@ As t — 0 the energy of the string gas drifts to winding
modes.

@ Physical space is measured in terms of winding modes.

@ In terms of winding modes the contractionas t — 0
corresponds to expansion.

Noinsingular t—0 = lg — oo
Cosmology . . .
@ In terms of physical variables: bouncing cosmology.
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Interpretation

String
Cosmology

R. Branden-

berger @ Bouncing cosmology in the string frame — nonsingular.
@ Contracting cosmology for t — 0 in the Einstein frame.

@ As t — 0 the energy of the string gas drifts to winding
modes.

Physical space is measured in terms of winding modes.

In terms of winding modes the contractionas t — 0
corresponds to expansion.

Noinsingular t—0 = lg — oo

Cosmology

In terms of physical variables: bouncing cosmology.
Conclusion: nonsingular cosmology.
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Next Step: Double Field Theory as a
Background for String Gas Cosmology

il 15 Idea Describe the low-energy degrees of freedom with an
MM action in doubled space in which the T-duality symmetry is
berger manifest.
Candidate for dynamics in the Hagedorn phase: Double
Field Theory [W. Siegel, 1993, C. Hull and B. Zwiebach,
2009], L. Freidel et al., 2017]

S — / dxdxe29R,

Noinsingular
C o %HMNaMHKLaNHKL = %HMNBMHKLC')KHNL
4'HMN3M3Nd - 3M3N'HMN - 4'HMN3Md3Nd

40HMNond + %nMNnKLaMgA «ONEB [ Has.
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g’ —g”‘b;i
bikg" g — bikg"'by

()?,',Xi),
0 4/
5, 0

Noinsingular
Cosmology
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Conclusions

String . .
Cosmology @ Cosmology of string theory must take into account

iolshalioti the key symmetries of string theory, in particular the

T-duality symmetry.

o Standard effective field theory of supergravity will break
down in the very early universe.

@ Double Field Theory may provide a better description of
the background for string cosmology.

@ Cosmological evolution is nonsingular.

@ Our universe emerges from an early Hagedorn phase.

@ Thermal string fluctuations in the Hagedorn phase yield
an almost scale-invariant spectrum of cosmological
fluctuations.

@ Characteristic signal: blue tilt in the spectrum of
gravitational waves.

Conclusions
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