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Abstract: In thistalk | will discuss several recent advances in loop quantum cosmology and its extension to inhomogeneous models. | will focus on
spherically symmetric spacetimes and Gowdy cosmologies with local rotational symmetry in vacuum. | will discuss how to implement a quantum
Hamiltonian evolution on these quantizations. Then, | will focus on how we can extract predictions from those quantum geometries, and finally
analyze a concrete example: cosmological perturbations on Bianchi | spacetimesin LQC.
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Motivation

1/24

Singularity theorems in classical GR.

What is the nature of the spacetime close to the high curvature
regions?

Can these theories resolve all singularities?
What are the observables we can measure?

Can simple models provide predictions so that we can falsify
them or even the full theory?
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Motivation

2/24

Symmetry reduced models allow us to realize concrete calcu-
lations (FRW, Bianchi, Schwarszchild, Kerr, ...).

In quantum gravity, it is not obvious how to reduce the full
quantum theory.

The quantization of symmetry reduced models of GR can give
us hints about the physics and mathematics of the full theory.

For instance, we can study semiclassical sectors in agreement
with GR and how quantum geometry can affect the predic-
tions of the classical theory and its comparison with observa-
tions.
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Homogeneous models in LQC

¢ Quantization of a FRW spacetime with a massless scalar field |

a) Quantum dynamics (improved scheme) v*
b) Singularity resolution (discrete quantum geometry) v~

c) Semiclassical sectors and effective dynamics v*

3/24
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Homogeneous models in LQC

¢ Quantization of a FRW spacetime with a massless scalar field

a) Quantum dynamics (improved scheme) v
b) Singularity resolution (discrete quantum geometry) v

c) Semiclassical sectors and effective dynamics v

¢ Extensions:

a) FRWwithk =1 v d) Bianchil v

b) FRW with A = +1 v e) Bianchi Il and IX

¢) Radiation dominated v f) Kantowski-Sachs.
4/24
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Homogeneous models in LQC

¢ Extensions:

a) FRW withk =1 v
b) FRW with A = +1 v

¢) Radiation dominated v
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d) Bianchil v
e) Bianchi II and IX
f) Kantowski-Sachs.
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Mena Marugdn, Pawlowski, Phys.

Rev. D 80, 084038 (2009)
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Inhomogeneous models

¢ Spherically symmetric vacuum spacetimes (sojowald, Swiderski, 2004-2005)
and polarized Gowdy models @anerjce, Date, 2009).

a) Symmetry reduction of the full theory in Ashtekar-Barbero va-
riables.
b) Robust kinematical quantum description.

c) Well defined quantum Hamiltonian constraint (& la loop).

¢ Polarized Gowdy models - hybrid quantization artn-Benito, Mena-

Marugan, Garay, 2008).
a) Partial gauge fixing.

b) Robust kinematical quantum description combining loop and
Fock representation.

c) Well defined quantum constraints (a la hybrid).

d) Effective dynamics.

6/24
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Inhomogeneous models

¢ Abelian constraint: Spherically symmetric spacetimes (Gambini,
Pullin 2013; Gambini, O, Pullin 2013), (LRS) GOWdy COSHlOlOgieS (Martin-de Blas, O,
Pawlowski, 20152017) OT 1+1 spacetimes like dilatonic black holes (corichi,

O, Rastgoo, 2016)

a) classical abelianization of the Hamiltonian constraint,
Iﬁc:/dﬂNH+JWHJ::/dﬂNHmw+Rm%L

E" / /Ex ; .
H = HI’IEW = (Eq)) H = ZWKQPH? = {Hnt‘\'\.’(N)lHl‘lt:\\’ (M)} = 0.
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Inhomogeneous models

¢ Abelian constraint: Spherically symmetric spacetimes (Gambin;,
Pullin 2013; Gambini, O, Pullin 2013), (LRS) GOWdy COSH1OIOgieS (Martin-de Blas, O,
Pawlowski, 2017 OF 1+1 spacetimes like dilatonic black holes (coricni, o,

Rastgoo, 2016)
a) classical abelianization of the Hamiltonian constraint,
b) well-known kinematical Hilbert space,

= <o kj k; F1
o ° o o
4 Hj—1 Hi Hj+1

&

¥ o7a(Ax Ay =JTexp | ik /dxA [T exp (injAy(v))) -

eES V€S
—

(¢, K, il'|g, k, = O’ o0 103 ji-
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Inhomogeneous models

¢ Abelian constraint: Spherically symmetric spacetimes (Gambin;,
Pullin 2013; Gambini, O, Pullin 2013), (LRS) GOWdy Cosmologies (Martin-de Blas, O,
Pawlowski, 2017) OF 1+1 spacetimes like dilatonic black holes (coricni, o,

Rastgoo, 2016)
a) classical abelianization of the hamiltonian constraint
b) well-known kinematical Hilbert space
c) Physical Hilbert space
H\thysH = ((Tkm ”fdrff(H,)’fd:ﬁ(Hm.w)) Y kin)
and Dirac observables

O (Z) = -ﬁfﬂlklnt(m) ’

and one physical global degree of freedom (either the mass M
or a densitized shear scalar i), are known.
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Black hole spacetimes

¢ The effective spacetime metric can be computed by means
of parametrized (relational) observables. For instance, in the
spatially flat gauge ds* = ds* + (E¥*(x))d*Q, where

((1 \/Em)) w\/[fs-"unw[ Sllesa e

¢ These geometries are discrete (piecewise constant x-
functions).

¢ Close to where the singularity would be effective geometries
are regular (singularity free).

¢ Interplay between the (fluctuating) discrete geometry and
the (fluctuating) horizon (?).
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Gowdy cosmologies with local rotational symmetry

10/24

¢

¢

We also showed that it is possible to implement an improved
dynamics scheme with E¥ — V = /EE*.
On the physical Hilbert space, the quantum Hamiltonian
evolution is defined as follows

¢ Choice of phase space variable as time function T; (on v;).

¢ A family of unitary (norm preserving) transformations PTf.
between H ., and Hr.

¢ Relevant operators (observables) {O(T)} with suitable do-
mains in Hr.

phy

Finally, the evolution is defined via a family of operators
) = Up rlgr) = Pr(Pr)~*|yr).

As an example, we choose V() as time function (non mo-
notonic). Evolution split on several charts (on each vertex)

(Martin-de Blas, O, Pawlowski - 2017).
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Gowdy cosmologies with local rotational symmetry

¢ The solutions to the constraint and inner physical product
can be written as
V(& h,7) = ¥(Ehep, (@), (BY) = Z [ dhd»* k)Y ().
c(Z*)" 0
¢ We split the solutions as via ¥*(v) = 7 10(+b)[FY¥](b). This defi-
nes the unitary maps 0, = P%(P}) with
Ny o)
¥ (kh) =Ps¥(kh) = — ¥ (k, h).
| kh(v)‘

¢ The evolution on each chart, namely volume expanding and
contracting, (in the Schrodinger picture)
s hi[k} Li (1_;) ot + -
) = Z / an¥ (%, h)‘ L @ khy, (¥E¥E) =1, V7.
Jé )H’

¢ Dirac observables Oy = U1 FC)F(CIJ_ =

v

11/24
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Gowdy cosmologies with local rotational symmetry

¢ Merits:
¢ Rigorous quantum Hamiltonian (local) evolution.
¢ It is not necessary to rely on the classical theory.
¢ Limitations:

¢ The time-dependent states are not solutions to the constraint
(but are related with them via a bijection).

¢ The observables have ambiguous physical meaning close to
the turning points (there it is more convenient to switch the
time function).

¢ Not obvious application to phase space variables with mul-
tiple turning points.

¢ Prospects: Extension of this Hamiltonian evolution in the
context of black hole spacetimes.
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Quantum field theories on quantum geometries

¢ Test fields (no backreaction) on these quantum geometries
(perturbations) experience a dressed effective geometry.

/rﬁxﬁg‘“‘s - % /dfd‘x\/? [fg“"a,,gbam,b - mfr,qbz] —
[t = 1 [ dnax [~ (V=2 0ud0 ~ (/Bmi]

¢ The propagation of fields on these (inhomogeneous) quantum
geometries is not well understood.

¢ Extraction of predictions: role of discrete geometry and quan-
tum anisotropies on the CMB; Hawking radiation, spectrum
of quasi-normal modes ©- o), ...

13/24
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QFT on quantum BHs

¢ For instance, the effective Hamiltonian of a test field (with
parametrized observables in spatially flat gauge coordinates)

s‘rh sph
H } = 4’|H l'] ‘QL [dYZ P nimnln.'+ Pza ‘P:’n.ra LP:’H.'

tm

35 ('P3m‘:fl an P4(I({ = 1)) ‘P-{’mcpl'm) =t ﬂ“”P a ‘f’hw

e — .

2 (v) = (W | 2\/—E1 ) ) (x) = (1 (E\)’\/ﬁ )
o) = 0| e 1, 70 = 01| 2 |11, 700 = 1| BV
P ( ) ( ) r — (b ] /4
Pux) = (ol | L ]w> Pate) = (9l - 22| 7 |1
e ) P, ) D E'P;
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Example: Bianchi I & perturbations

¢ Homogeneity, isotropy and flatness are assumed in most of
the present models of our Universe: inflation homogenizes
and suppresses anisotropies and spatial curvature quickly.

¢ Together with quantum fluctuations of matter and geometry
(quantum cosmological perturbations) we can provide predic-
tions in very good agreement with observations.

¢ Upper bounds on anisotropies
(shear) suggest that our Universe is
isotropic at present.

¢ But this is not the end of the story

15/24
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Example: Bianchi I & perturbations

¢ Cosmological perturbation theory on Bianchi I spacetimes has
beel‘l StUdied il‘l some detail (Pereira, Pitrou, Uzan, 2007-2008)

a) rigorous formulation in terms of gauge-invariant perturbations
(Lagrangian formulation and SVT decomposition),

b) scalar and tensor perturbations are coupled dynamically if an-
isotropies are present,

c) although anisotropies do not induce dipoles, they “break” sca-
le invariance, isotropy and introduce scalar-tensor and tensor-
tensor cross-correlations.

¢ Questions not fully understood:
a) exact Fock quantization for the perturbations,

b) extension to the Planck regime where quantum gravity is rele-
vant (LQC),

c) bounds on the anisotropies (shear) since perturbations can
keep memory if they are large before (or close to) inflation.

d) Characterization of the cross-correlations.

16/24
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Bianchi I spacetimes
¢ Let us consider a Bianchi I spacetime
dst= =IN#dT* -k atdx? statda +aide.
¢ We will assume a scalar field ¢ of mass m as matter content.

¢ The EOMs, in terms of a = (a,a,a5)/3 are

3HE =« Ecj)z + V(([))] +

(p—i—BH(p—I—V(p:O,

17/24
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Bianchi I spacetimes

¢ Let us consider a Bianchi I spacetime

“_](L

content.
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Perturbations: 2nd order Hamiltonian

¢ The 2nd order Hamiltonian takes the form

" 4 /
e 1 ZH, 2 1 A * *
H? = > /‘ﬁk{”u iy~ [? —k ]U‘-’* S o (Z\f/K TTg ”..af) (0" pr + o))
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3 =4, X

!l y !
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QFT for cosmological perturbations

¢ The Fourier modes v = (§,7), with § = (v, uy, px)

and 7 the conjugate momenta, can be written as

3 a linear combination of the (orthonor-

= Zﬂiﬁ(i) + c.c., ma_D basis of complex solutions v and
i=1 (7)* with respect to the norm

Note: addends “j” preserved in-

dependently if fields uncoupled.

19/24
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Bianchi I spacetimes in LQC

¢ In LQC the effective dynamics is determined by (ashiekar, witson-Ewing,
Mena-Marugéan, Martin-Benito, ...)

; i ‘sin(fi; ¢;) sin(ji¢,) ; s .
Hoy = e [_ ( ;1' : ;2 pip2 + cyclic terms) s it e ()

where v* = pp,p;, i, = A ““—}‘[ (and similarly for p. and 5,), and

A2 = 4. /3y .
¢ The energy density, mean Hubble parameter and shear are
b()unded above (Gupt, Singh, 2012-2013)

: 8.34 : 11.57
Pmax = 0.410p1, Hmax = — ém,\- = {2‘ .
( Pl Tl |
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Bianchi I spacetimes in LQC
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Adiabatic conditions

104+

104
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1091
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!

Before the bounce the spacetime is (approximately) isotropic
and there is a well defined adiabatic regime where we assume
the oth order adiabatic vacuum state.

21/24
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Scalar power spectra
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The isotropy of the scalar and tensor power spectra at the end
of inflation is broken for large wevalengths.
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Tensor power spectra
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The isotropy of the scalar and tensor power spectra at the end
of inflation is broken for large wevalengths.

21/24

Pirsa: 18060004 Page 28/31



Correlation functions
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Cross-correlations can be large for small wavenumbers. For lar-
(0)
ge wavenumbers they behave as P p = £ ‘”’(R) cos(¢pap(k)), with

(A,B) = {R,+, x } and where PAB(fc) grow with o?(tg).
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Upper bounds in the shear

¢ Given a fixed numer of e-folds, it is possible to find
upper bounds for the shear. For k = K/, let us define
the estimator

A Pr(k,ék) — Pr(K',5k)

APr (k, K, 6k i el )
R{ ) Pr(k, k) + P (K, 6k)

Then, for ¢p = 1.083 (i.e. kyoc at £ ~ 20), and for
k =k = 21-1073(Mpc)™" (or equivalently ¢ ~ 30),

we have
0*(tg) | APr(ky, ko, 0k) | APr (k1 k5, 0k) | APr(ka, ks, 0k)
0.1 0.038 0.31 0.36
0.2 0.024 0.71 Q73
0.3 0.038 1.0 1.1
0.4 0.033 1.25 127
1.0 0.020 1.84 1.85

N
N
=~
N
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Summary

¢ Loop quantum gravity techniques applied to symmetry redu-

23 /24

ced models successfully deals with several fundamental ques-
tions: singularity resolution, semiclassical geometries, effecti-
ve description, etc.

Full quantization of inhomogeneous cosmological and black
hole models is available.

Their quantum dynamics, semiclassical sectors and effective
geometries need to be further explored.

Test quantum fields on these quantum geometries deserve ad-
ditional attention (dressed effective metric): the fundamental
discretization and fluctuations of these quantum geometries
can modify our understanding of several well-known pheno-
mena of QFTs on classical curved spacetimes. Further research
in this direction seems very promising.
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