Title: Beyond isotropic & homogeneous loop quantum cosmology: theory and predictions

Speakers: Javier Olmedo

Series: Quantum Gravity

Date: June 07, 2018 - 2:30 PM

URL: https://pirsa.org/18060004

Abstract: In this talk I will discuss several recent advances in loop quantum cosmology and its extension to inhomogeneous models. I will focus on spherically symmetric spacetimes and Gowdy cosmologies with local rotational symmetry in vacuum. I will discuss how to implement a quantum Hamiltonian evolution on these quantizations. Then, I will focus on how we can extract predictions from those quantum geometries, and finally analyze a concrete example: cosmological perturbations on Bianchi I spacetimes in LQC.

Pirsa: 18060004 Page 1/31

Beyond isotropic & homogeneous loop quantum cosmology: theory and predictions

Javier Olmedo

Penn State University

Perimeter Institute, Waterloo, 06/07

Pirsa: 18060004 Page 2/31

Motivation

- Singularity theorems in classical GR.
- ♦ What is the nature of the spacetime close to the high curvature regions?
- Can these theories resolve all singularities?
- ♦ What are the observables we can measure?
- ♦ Can simple models provide predictions so that we can falsify them or even the full theory?

1/24

Pirsa: 18060004 Page 3/31

Motivation

- ♦ Symmetry reduced models allow us to realize concrete calculations (FRW, Bianchi, Schwarszchild, Kerr, ...).
- ♦ In quantum gravity, it is not obvious how to reduce the full quantum theory.
- ♦ The quantization of symmetry reduced models of GR can give us hints about the physics and mathematics of the full theory.
- ♦ For instance, we can study semiclassical sectors in agreement with GR and how quantum geometry can affect the predictions of the classical theory and its comparison with observations.

2/24

Pirsa: 18060004 Page 4/31

Homogeneous models in LQC

- Quantization of a FRW spacetime with a massless scalar field
 - a) Quantum dynamics (improved scheme) 🗸
 - b) Singularity resolution (discrete quantum geometry) 🗸
 - c) Semiclassical sectors and effective dynamics 🗸

$$H^2 = \frac{8\pi G}{3}\rho\left(1 - \frac{\rho}{\rho_c}\right)$$

3/24

Pirsa: 18060004 Page 5/31

Homogeneous models in LQC

- Quantization of a FRW spacetime with a massless scalar field
 - a) Quantum dynamics (improved scheme) 🗸
 - b) Singularity resolution (discrete quantum geometry) 🗸
 - c) Semiclassical sectors and effective dynamics 🗸
- ♦ Extensions:
- a) FRW with k = 1

- d) Bianchi I 🗸
- b) FRW with $\Lambda = \pm 1 \checkmark$
- e) Bianchi II and IX
- c) Radiation dominated 🗸
- f) Kantowski-Sachs.

Homogeneous models in LQC

- ♦ Extensions:
- a) FRW with $k = 1 \checkmark$
- b) FRW with $\Lambda = \pm 1 \checkmark$
- c) Radiation dominated 🗸
- d) Bianchi I 🗸
- e) Bianchi II and IX
- f) Kantowski-Sachs.

- ♦ Spherically symmetric vacuum spacetimes (Bojowald, Swiderski, 2004-2005) and polarized Gowdy models (Banerjee, Date, 2007).
 - a) Symmetry reduction of the full theory in Ashtekar-Barbero variables.
 - b) Robust kinematical quantum description.
 - c) Well defined quantum Hamiltonian constraint (á la loop).
- ♦ Polarized Gowdy models hybrid quantization (Martín-Benito, Mena-Marugán, Garay, 2008).
 - a) Partial gauge fixing.
 - Robust kinematical quantum description combining loop and Fock representation.
 - c) Well defined quantum constraints (á la hybrid).
 - d) Effective dynamics.

6/24

Pirsa: 18060004 Page 8/31

- ♦ Abelian constraint: Spherically symmetric spacetimes (Gambini, Pullin 2013; Gambini, O, Pullin 2013), (LRS) Gowdy cosmologies (Martín-de Blas, O, Pawlowski, 2015-2017) or 1+1 spacetimes like dilatonic black holes (Corichi, O, Rastgoo, 2016)
 - a) classical abelianization of the Hamiltonian constraint,

$$H_T = \int dx (NH + N^r H_r) = \int dx (\bar{N} H_{\text{new}} + \bar{N}^r H_r),$$

$$H \to H_{\text{new}} := \frac{(E^x)'}{E^{\varphi}} H - 2 \frac{\sqrt{E^x}}{E^{\varphi}} K_{\varphi} H_r \Rightarrow \{H_{\text{new}}(\bar{N}), H_{\text{new}}(\bar{M})\} = 0.$$

- ♦ Abelian constraint: Spherically symmetric spacetimes (Gambini, Pullin 2013; Gambini, O, Pullin 2013), (LRS) Gowdy cosmologies (Martín-de Blas, O, Pawlowski, 2017) Or 1+1 spacetimes like dilatonic black holes (Corichi, O, Rastgoo, 2016)
 - a) classical abelianization of the Hamiltonian constraint,
 - b) well-known kinematical Hilbert space,

$$\Psi_{g,\vec{k},\vec{\mu}}(A_x,A_\varphi) = \prod_{e_j \in g} \exp\left(ik_j \int_{e_j} dx A_x(x)\right) \prod_{v_j \in g} \exp\left(i\mu_j A_\varphi(v_j)\right).$$

$$\langle g', \vec{k}', \vec{\mu}' | g, \vec{k}, \vec{\mu} \rangle = \delta_{g',g} \delta_{\vec{k}',\vec{k}} \delta_{\vec{\mu}',\vec{\mu}}.$$

- ♦ Abelian constraint: Spherically symmetric spacetimes (Gambini, Pullin 2013; Gambini, O, Pullin 2013), (LRS) Gowdy cosmologies (Martín-de Blas, O, Pawlowski, 2017) or 1+1 spacetimes like dilatonic black holes (Corichi, O, Rastgoo, 2016)
 - a) classical abelianization of the hamiltonian constraint
 - b) well-known kinematical Hilbert space
 - c) Physical Hilbert space

$$\|\Psi_{phys}\|^2 = \left(\langle \Psi_{kin}|\eta_{diff(H_r)}\eta_{diff(H_{
m new})}
ight)|\Psi_{kin}
angle$$

and Dirac observables

$$\hat{O}(z) = \ell_{\text{Pl}}^2 \hat{k}_{\text{Int}(nz)},$$

and one physical global degree of freedom (either the mass \hat{M} or a densitized shear scalar \hat{h}), are known.

Black hole spacetimes

♦ The effective spacetime metric can be computed by means of parametrized (relational) observables. For instance, in the spatially flat gauge $ds^2 = d\tilde{s}^2 + \langle \hat{E}^x(x) \rangle d^2\Omega$, where

$$d\tilde{s}^{2} = -\langle \left(1 - \frac{\hat{r}_{S}}{\sqrt{\hat{E}^{x}(x)}}\right) \rangle dt^{2} - \langle \eta \sqrt{\frac{\hat{r}_{S}}{[\hat{E}^{x}(x)]^{3/2}}} [\hat{E}^{x}(x)]' \rangle dt dx + \langle \left(\frac{[\hat{E}^{x}(x)]'}{4\hat{E}^{x}(x)}\right)^{2} \rangle dx^{2}$$

- \blacklozenge These geometries are discrete (piecewise constant x-functions).
- ♦ Close to where the singularity would be effective geometries are regular (singularity free).
- ♦ Interplay between the (fluctuating) discrete geometry and the (fluctuating) horizon (?).

Gowdy cosmologies with local rotational symmetry

- We also showed that it is possible to implement an improved dynamics scheme with $E^x \to V = \sqrt{\mathcal{E}}E^x$.
- ♦ On the physical Hilbert space, the quantum Hamiltonian evolution is defined as follows
 - Choice of phase space variable as time function T_i (on v_i).
 - A family of unitary (norm preserving) transformations \hat{P}_{T_j} between \mathcal{H}_{phy} and \mathcal{H}_T .
 - Relevant operators (observables) $\{\hat{O}(T)\}$ with suitable domains in \mathcal{H}_T .
- Finally, the evolution is defined via a family of operators $|\psi_{T'}\rangle := \hat{U}_{T',T}|\psi_T\rangle = \hat{P}_{T'}(\hat{P}_T)^{-1}|\psi_T\rangle$.
- \blacklozenge As an example, we choose $V(\theta)$ as time function (non monotonic). Evolution split on several charts (on each vertex)

(Martín-de Blas, O, Pawlowski - 2017).

10/24

Pirsa: 18060004

Gowdy cosmologies with local rotational symmetry

♦ The solutions to the constraint and inner physical product can be written as

$$\tilde{\Psi}(\vec{k},h,\vec{v}) = \tilde{\Psi}(\vec{k},h)e_{\vec{k},h}(\vec{v}), \quad \langle \Phi | \Psi \rangle = \sum_{\vec{k} \in (\mathbb{Z}^{\star})^n} \int_{0}^{h_{\star}(\vec{k})} dh \tilde{\Phi}^{\star}(\vec{k},h) \tilde{\Psi}(\vec{k},h).$$

• We split the solutions as via $\Psi^{\pm}(\nu) = \mathcal{F}^{-1}\theta(\pm b)[\mathcal{F}\Psi](b)$. This defines the unitary maps $\hat{U}^{\pm}_{\vec{v}',\vec{v}} = \hat{P}^{\pm}_{\vec{v}'}(\hat{P}^{\pm}_{\vec{v}})^{-1}$ with

$$\tilde{\Psi}_{\vec{v}}^{\pm}(\vec{k},h) = \hat{P}_{\vec{v}}^{\pm}\tilde{\Psi}(\vec{k},h) = \frac{e_{\vec{k},h}^{\pm}(\vec{v})}{|e_{\vec{k},h}^{\pm}(\vec{v})|}\tilde{\Psi}(\vec{k},h).$$

♦ The evolution on each chart, namely volume expanding and contracting, (in the Schrödinger picture)

$$|\Psi_{\vec{v}}^{\pm}\rangle = \sum_{\vec{k}\in(\mathbb{Z}^{\star})^n} \int_0^{h_{\star}(\vec{k})} dh \tilde{\Psi}(\vec{k},h) \frac{e_{\vec{k},h}^{\pm}(\vec{v})}{|e_{\vec{k},h}^{\pm}(\vec{v})|} |\vec{k},h\rangle, \quad \langle \Psi_{\vec{v}}^{\pm} | \Psi_{\vec{v}}^{\pm} \rangle = 1, \quad \forall \vec{v}.$$

Gowdy cosmologies with local rotational symmetry

- ♦ Merits:
 - ♦ Rigorous quantum Hamiltonian (local) evolution.
 - ♦ It is not necessary to rely on the classical theory.
- ♦ Limitations:
 - ♦ The time-dependent states are not solutions to the constraint (but are related with them via a bijection).
 - ♦ The observables have ambiguous physical meaning close to the turning points (there it is more convenient to switch the time function).
 - ♦ Not obvious application to phase space variables with multiple turning points.
- ♦ Prospects: Extension of this Hamiltonian evolution in the context of black hole spacetimes.

12/24

Pirsa: 18060004 Page 15/31

Quantum field theories on quantum geometries

♦ Test fields (no backreaction) on these quantum geometries (perturbations) experience a dressed effective geometry.

$$\int d^4x \mathcal{L}_{\phi}^{\text{class}} = \frac{1}{2} \int dt d^3x \sqrt{-g} \left[-g^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi - m_{\phi}^2 \phi^2 \right] \rightarrow$$

$$\int d^4x \hat{\mathcal{L}}_{\phi}^{\text{dress}} = \frac{1}{2} \int dt d^3x \left[-\langle \sqrt{-\hat{g}} \hat{g}^{\mu\nu} \rangle \partial_{\mu} \hat{\phi} \partial_{\nu} \hat{\phi} - \langle \sqrt{-\hat{g}} \rangle m_{\phi}^2 \hat{\phi}^2 \right]$$

- ♦ The propagation of fields on these (inhomogeneous) quantum geometries is not well understood.
- ♦ Extraction of predictions: role of discrete geometry and quantum anisotropies on the CMB; Hawking radiation, spectrum of quasi-normal modes (O 2018), ...

QFT on quantum BHs

♦ For instance, the effective Hamiltonian of a test field (with parametrized observables in spatially flat gauge coordinates)

$$\hat{\mathcal{H}}_{\psi}^{\mathrm{sph}} = \langle \psi | \hat{\mathcal{H}}^{\mathrm{sph}} | \psi \rangle = \int dx \sum_{\ell m} \frac{1}{2} \left(\mathcal{P}_{1} \hat{\pi}_{\ell m}^{*} \hat{\pi}_{\ell m} + \mathcal{P}_{2} \partial_{x} \hat{\phi}_{\ell m}^{*} \partial_{x} \hat{\phi}_{\ell m} \right)
+ \left(\mathcal{P}_{3} m_{\phi}^{2} + \mathcal{P}_{4} \ell (\ell + 1) \right) \hat{\phi}_{\ell m}^{*} \hat{\phi}_{\ell m} + \hat{\pi}_{\ell m}^{*} \mathcal{P}_{5} \partial_{x} \hat{\phi}_{\ell m},$$

$$\begin{split} \mathcal{P}_{1}(x) &= \langle \psi | \left[\frac{2}{(E^{x})' \sqrt{E^{x}}} \right] | \psi \rangle, \quad \mathcal{P}_{2}(x) = \langle \psi | \left[\frac{2 \sqrt{E^{x}} E^{x}}{(E^{x})'} \right] | \psi \rangle, \quad \mathcal{P}_{3}(x) = \langle \psi | \left[\frac{(E^{x})' \sqrt{E^{x}}}{2} \right] | \psi \rangle \\ \mathcal{P}_{4}(x) &= \langle \psi | \left[\frac{\widehat{(E^{x})'}}{2 \sqrt{E^{x}}} \right] | \psi \rangle, \quad \mathcal{P}_{5}(x) = \langle \psi | - 2 \eta \sqrt{2 \hat{M}} \left[\frac{\widehat{(E^{x})^{1/4}}}{(E^{x})'} \right] | \psi \rangle. \end{split}$$

$$\tilde{N}^2 = \mathcal{P}_4 \sqrt{\mathcal{P}_1 \mathcal{P}_2}, \quad \tilde{N}^x = \mathcal{P}_5, \quad \tilde{q}_{xx} = \frac{\mathcal{P}_4}{\sqrt{\mathcal{P}_1 \mathcal{P}_2}}, \quad \tilde{q}_{\theta\theta} = \sqrt{\frac{\mathcal{P}_2}{\mathcal{P}_1}} = \frac{\tilde{q}_{\phi\phi}}{\sin^2 \theta}, \quad \tilde{m}_{\phi}^2 = m_{\phi}^2 \sqrt{\frac{\mathcal{P}_1}{\mathcal{P}_2}} \frac{\mathcal{P}_3}{\mathcal{P}_4}.$$

Example: Bianchi I & perturbations

- ♦ Homogeneity, isotropy and flatness are assumed in most of the present models of our Universe: inflation homogenizes and suppresses anisotropies and spatial curvature quickly.
- ♦ Together with quantum fluctuations of matter and geometry (quantum cosmological perturbations) we can provide predictions in very good agreement with observations.
- ♦ Upper bounds on anisotropies (shear) suggest that our Universe is isotropic at present.
- But this is not the end of the story

15/24

Pirsa: 18060004 Page 18/31

Example: Bianchi I & perturbations

- ♦ Cosmological perturbation theory on Bianchi I spacetimes has been studied in some detail (Pereira, Pitrou, Uzan, 2007-2008)
 - a) rigorous formulation in terms of gauge-invariant perturbations (Lagrangian formulation and SVT decomposition),
 - scalar and tensor perturbations are coupled dynamically if anisotropies are present,
 - c) although anisotropies do not induce dipoles, they "break" scale invariance, isotropy and introduce scalar-tensor and tensortensor cross-correlations.
- ♦ Questions not fully understood:
 - a) exact Fock quantization for the perturbations,
 - b) extension to the Planck regime where quantum gravity is relevant (LQC),
 - c) bounds on the anisotropies (shear) since perturbations can keep memory if they are large before (or close to) inflation.
 - d) Characterization of the cross-correlations.

16/24

19

Pirsa: 18060004 Page 19/31

Bianchi I spacetimes

♦ Let us consider a Bianchi I spacetime

$$ds^2 = -N^2 d\tau^2 + a_1^2 dx_1^2 + a_2^2 dx_2^2 + a_3^2 dx_3^2.$$

- We will assume a scalar field ϕ of mass m as matter content.
- The EOMs, in terms of $a = (a_1 a_2 a_3)^{1/3}$ are

$$3H^{2} = \kappa \left[\frac{1}{2} \dot{\phi}^{2} + V(\phi) \right] + \frac{1}{2} \tilde{\sigma}^{2}, \quad (\tilde{\sigma}_{j}^{i})^{\cdot} = -3H\tilde{\sigma}_{j}^{i},$$
$$\ddot{\phi} + 3H\dot{\phi} + V_{\phi} = 0, \qquad \qquad \tilde{\sigma}_{ij} = \frac{1}{2} \dot{\gamma}_{ij},$$

with
$$H=\frac{\dot{a}}{a}$$
, $\tilde{\sigma}^i_j=\gamma^{ik}\tilde{\sigma}_{kj}$, $\gamma_{ij}=\frac{h_{ij}}{a^2}$.

Pirsa: 18060004 Page 21/31

Perturbations: 2nd order Hamiltonian

♦ The 2nd order Hamiltonian takes the form

$$H^{(2)} = \frac{1}{2} \int d^3 \mathbf{k} \left\{ \pi_v \, \pi_v^* - \left[\frac{z_s''}{z_s} - k^2 \right] v \, v^* - \sum_{\lambda = +, \times} \frac{1}{a^2} \left(2 \sqrt{\kappa} \, \bar{\pi}_\phi \, \sigma_\lambda \mathcal{F} \right)' \left(v^* \, \mu_\lambda + v \, \mu_\lambda^* \right) \right.$$

$$\left. + \sum_{\lambda = +, \times} \pi_{\mu_\lambda} \, \pi_{\mu_\lambda}^* - \left[\frac{z_\lambda''}{z_\lambda} - k^2 \right] \mu_\lambda \, \mu_\lambda^* + \left[2 \, \sigma_+ \, \sigma_\times - \left(2 \, a^2 \, \sigma_+ \, \sigma_\times \mathcal{F} \right)' \right] \mu_{1-\lambda} \, \mu_\lambda^* \right\},$$

$$\mathcal{F} = \frac{2\mathcal{H} + \sigma_{||}}{\frac{32\pi G}{3}a^{2}\rho + \frac{2}{3}(2\sigma_{v_{1}}^{2} + 2\sigma_{v_{2}}^{2} + \sigma_{+}^{2} + \sigma_{\times}^{2})},$$

$$\frac{z_{s}''}{z_{s}} = \frac{a''}{a} - a^{2}V_{\phi\phi} + \frac{1}{a^{2}}\left(2\kappa\bar{\pi}_{\phi}^{2}\mathcal{F}\right)',$$

$$\frac{z_{\lambda}''}{z_{\lambda}} = \frac{a''}{a} + 2\sigma_{(1-\lambda)}^{2} + \frac{1}{a^{2}}\left(a^{2}\sigma_{||}\right)' + \frac{1}{a^{2}}\left(2a^{2}\sigma_{\lambda}^{2}\mathcal{F}\right)'.$$

18/24

Pirsa: 18060004 Page 22/31

QFT for cosmological perturbations

The Fourier modes $\gamma = (\vec{q}, \vec{\pi})$, with $\vec{q} = (v, \mu_+, \mu_\times)$ and $\vec{\pi}$ the conjugate momenta, can be written as a linear combination of the (orthonor- $\vec{q} = \sum_{i=1}^{3} a_i \vec{q}^{(i)} + \text{c.c.}$, mal) basis of complex solutions $\gamma^{(i)}$ and $(\gamma^{(i)})^*$ with respect to the norm

$$\langle \gamma, \tilde{\gamma} \rangle = i \hbar \sum_{j=1}^{3} \left(q_j^{\star} \tilde{\pi}^j - (\pi^j)^{\star} \tilde{q}_j \right)$$
. Note: addends "j" preserved independently if fields uncoupled.

Quantum fields given by

$$[\hat{\vec{q}}] = \sum_{i=1}^{3} \hat{a}_i \vec{q}^{(i)} + \hat{a}_j^{\dagger} (\vec{q}^{(i)})^*, \quad [\hat{a}_i(k), \hat{a}_j^{\dagger}(k')] = \delta_{ij} \delta^{(3)}(k + k')$$

Bianchi I spacetimes in LQC

♦ In LQC the effective dynamics is determined by (Ashtekar, Wilson-Ewing, Mena-Marugán, Martín-Benito, ...)

$$\mathcal{H}_{\rm eff} = \frac{1}{8 \, \pi G \, \gamma^2 \, v} \left[- \left(\frac{\sin(\bar{\mu}_1 \, c_1)}{\bar{\mu}_1} \, \frac{\sin(\bar{\mu}_2 \, c_2)}{\bar{\mu}_2} p_1 p_2 + \text{cyclic terms} \right) + \, \bar{\pi}_{\phi}^2 \, + \, v^2 V(\phi) \right],$$

where $v^2 = p_1 p_2 p_3$, $\bar{\mu}_1 = \lambda \sqrt{\frac{|p_1|}{|p_2 p_3|}}$ (and similarly for $\bar{\mu}_2$ and $\bar{\mu}_3$), and $\lambda^2 = 4\sqrt{3} \pi \gamma \ell_{\rm Pl}^2$.

♦ The energy density, mean Hubble parameter and shear are bounded above (Gupt, Singh, 2012-2013)

$$\rho_{\text{max}} = \text{o.41}\rho_{\text{Pl}}, \quad H_{\text{max}} = \frac{8.34}{\ell_{\text{Pl}}}, \quad \sigma_{\text{max}}^2 = \frac{11.57}{\ell_{\text{Pl}}^2}.$$

Bianchi I spacetimes in LQC

20/24

Pirsa: 18060004

Adiabatic conditions

Before the bounce the spacetime is (approximately) isotropic and there is a well defined adiabatic regime where we assume the oth order adiabatic vacuum state.

21/24

Pirsa: 18060004

Scalar power spectra

The isotropy of the scalar and tensor power spectra at the end of inflation is broken for large wevalengths.

21/24

Pirsa: 18060004 Page 27/31

Tensor power spectra

The isotropy of the scalar and tensor power spectra at the end of inflation is broken for large wevalengths.

21/24

Pirsa: 18060004 Page 28/31

Correlation functions

21/24

Pirsa: 18060004 Page 29/31

Upper bounds in the shear

• Given a fixed numer of *e*-folds, it is possible to find upper bounds for the shear. For k = k', let us define the estimator

$$\Delta \mathcal{P}_{\mathcal{R}}(\mathbf{k}, \mathbf{k}', \delta \mathbf{k}) = 2 \left| \frac{\bar{\mathcal{P}}_{\mathcal{R}}(\mathbf{k}, \delta \mathbf{k}) - \bar{\mathcal{P}}_{\mathcal{R}}(\mathbf{k}', \delta \mathbf{k})}{\bar{\mathcal{P}}_{\mathcal{R}}(\mathbf{k}, \delta \mathbf{k}) + \bar{\mathcal{P}}_{\mathcal{R}}(\mathbf{k}', \delta \mathbf{k})} \right|.$$

Then, for $\phi_B = 1.083$ (i.e. k_{LQC} at $\ell \simeq 20$), and for $k = k' = 2.1 \cdot 10^{-3} (Mpc)^{-1}$ (or equivalently $\ell \simeq 30$), we have

$\sigma^2(t_B)$	$\Delta \mathcal{P}_{\mathcal{R}}(\boldsymbol{k_1}, \boldsymbol{k_2}, \delta k)$	$\Delta \mathcal{P}_{\mathcal{R}}(\boldsymbol{k}_1, \boldsymbol{k}_3, \delta k)$	$\Delta \mathcal{P}_{\mathcal{R}}(\mathbf{k}_2, \mathbf{k}_3, \delta k)$
0.1	0.038	0.31	0.36
0.2	0.024	0.71	0.73
0.3	0.038	1.0	1.1
0.4	0.033	1.25	1.27
1.0	0.020	1.84	1.85

Summary

- ♦ Loop quantum gravity techniques applied to symmetry reduced models successfully deals with several fundamental questions: singularity resolution, semiclassical geometries, effective description, etc.
- ♦ Full quantization of inhomogeneous cosmological and black hole models is available.
- ♦ Their quantum dynamics, semiclassical sectors and effective geometries need to be further explored.
- ♦ Test quantum fields on these quantum geometries deserve additional attention (dressed effective metric): the fundamental discretization and fluctuations of these quantum geometries can modify our understanding of several well-known phenomena of QFTs on classical curved spacetimes. Further research in this direction seems very promising.

23/24

Pirsa: 18060004 Page 31/31