Title: Boundary contributions to (holographic) entanglement entropy

Date: Jun 28, 2018 02:30 PM

URL: http://pirsa.org/18060002

Abstract: <p>The entanglement entropy, while being under the spotlight of theoretical physics for more than ten years now, remains very
challenging to compute, even in free quantum field theories, and a number of issues are yet to be explored.</p>

<p>One such issues concerns boundary effects on entanglement entropy, which is important both for theoretical explorations of entanglement and
for applications of entanglement entropy to lattice ssmulations, condensed matter systems, etc.. During this talk, | will show how the presence of
spacetime boundaries affects the entanglement entropy, with emphasize on universal (boundary-induced) logarithmic terms, using field theoretic,
lattice, and holographic methods. </p>
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Motivations

Boundary effects as a common thread

- In condensed matter systems (quantum impurity models, etc.)
- In gauge/gravity (conformal boundary of AdS)
- In entanglement entropy (entangling surface)

Boundaries and entanglement entropy?
- EE is sensible to boundary effects (info. about BQFT)
- In odd d, universal log terms are pure boundary effects
- Most physical systems are confined to some boundaries
- Why not?!

Focus of the talk: the entangling surface intersects the boundary
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Density operator formalism

For a pure state | V) € H of a quantum system, the density matrix is
p=1T)(¥], Trp=1,
such that (O) = Tr(Op).

Divide the quantum system into two complementary parts A and B.
Assume that the Hilbert space ‘H associated to |¢) € H factorizes

H=Has®HB
The reduced density matrix p4 for A is defined as
pa =Trpp

For a pure state |¥) € ‘H 4 ® H g, Schmidt decomposition implies that
pA and pg have same non-zero eigenvalues.
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Entanglement in quantum mechanics

Entangled state:
For a bipartite system in a pure state |¥) € H4 ® Hp, if

Trop2 = 1 = [¢) is separable,ie. |¢) = |v4) ® |¥B)
Tropz < 1 = [¢) is entangled, i.e. |¢) # [4) ® |¥B)

where 0 = { A, B}.
A measure: the entanglement entropy

- Von Neumann’s definition: S4 = —Tr4(palogpa)

- Equivalent to the replica formula: S4 = (1 — nd,) log TrA(pﬁ)‘

n=1

Some properties: S4 > 0, S4 = Sp (pure state), SSA, etc.
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Outline

Boundary contributions to entanglement entropy

- QFT results [CB,Solodukhin (2016)]
- Heat kernel technology
- Some explicit calculations
- CFT vs BCFT: conformal anomaly and log term

- Holographic calculations  [Astaneh,CB,Fursaev,Solodukhin (2017)]
- AdS/BCFT
- Logarithmic contribution
- Free field N’ = 4 supermultiplet

Summary, open questions and outlook
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Entanglement entropy in QFT

- The density matrix p is evaluated on
a spatial hypersurface (e.g. t = 0)

- An entangling surface X divides the
space into two regions

- The entanglement entropy is identi-
fied with von Neumann’s entropy:

Sun = —Tra(palnpa)

- Short-range correlations across ¥
— UV divergences — spatial cutoff ¢

General structure of entanglement entropy:

1 €

S| 1 —

e
30
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Entanglement entropy in QFT

- The density matrix p is evaluated on
a spatial hypersurface (e.g. t = 0)

- An entangling surface X divides the
space into two regions

- The entanglement entropy is identi-
fied with von Neumann’s entropy:

Sun = —Tra(palnpa)

- Short-range correlations across ¥
— UV divergences — spatial cutoff ¢

Compute the entanglement entropy via the replica trick:

S(Z) =(1-nbp)InTr4(0%)

n=1
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Replica method

Take n copies of p4 — (p4)™ and trace over d.o.f. in A:

mn
[ 11 / M D‘Pf] (e1'lpaled ) es loales) - (onlpalet)
i=1

nt" copy

i S

Zn

zn

- M, is the n-fold branched cover over the Euclidean space M
« Z(n) is the partition function on M,,

Entanglement entropy: S(X) = (1 — n0,)In Z(n)

n=1
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How to compute Z(n)?

At the one-loop level, the partition function Z(n) can be expressed as a

functional determinant of a Laplace-type operator A(Y) that describes
the field theory:

~1\2J ] _1Y2j [o'e) .
InZ(n) = —&lndet AU) — %/ ds ’IYKT(:,J)(S)
€

2 S

2

The kernel K of the heat operator e =54,

ng)(s, z,z) = (m'|e‘sam|m) , $§>0, z, € M,
is the solution of the heat equation

05 + ANKD (s,2,2') = 0

with the initial condition K (s = 0, z,2') = 6(z — 2')/ /3.
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Heat kernel technique

Relating K,.(s) on M,, to K(s) on M.
- Sommerfeld’s formula: Y att=0=z, (t,z) = (r,¢ = ¢ + 27n)
Kn(3a Ta T’v¢a ¢,) =
K(s,r, 7', ¢,¢") + 47m-/ydzcotiK(s,r,r',¢+z,¢')

2n

- Heat kernel expansion:

TrK,(s — 0) Za (n) g(P—a)/2

with  ag(n) = nag + (1 — n) agj, + O((1 — n)?)

. a§ depend on the geometry of the entangling surface %
- a, = 0 for p odd on manifold without boundary

Page 11/46



Pirsa: 18060002

Heat kernel technique

Relating K,.(s) on M,, to K(s) on M.
- Sommerfeld’s formula: Y att=0=z, (t,z) = (r,¢ = ¢ + 27n)
Kn(3a Ta T’v¢a ¢,) =
K(s,r, 7', ¢,¢") + 47m-/ydzcotiK(s,r,r',¢+z,¢')

2n

- Heat kernel expansion:

TrK,(s — 0) Za (n) g(P—a)/2

with  ag(n) = nag + (1 — n) agj, + O((1 — n)?)

. a§ depend on the geometry of the entangling surface ¥
- However, a,, # 0 for p odd on manifold with boundary!
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An example: half space

Half space: a scalar field in flat space, ¥ is a (d — 2)—plan

. The corresponding heat kernel on R? is

K(s,x,x') =

- Sommerfeld’s formula yields
nV(R?)

TrKm,(s) = (dms) /2 5

- The entanglement entropy is then

A(Z)
S(X) = Gim@272(g = 2)ed-2
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With boundary: the general setup

We work in d-dimensional flat spacetime M with boundary O.M
- Cartesian coordinates X* = (1,z,y, z;,i=1,...d-3).

- The entanglingsurface > : 7=0 and =0

- The boundary M is a collection of hyperplanes.

- ¥ intersects the boundary O M orthogonally at P = ¥ N oM

- Boundary conditions: Neumann, Dirichlet, Robin.
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With boundary: the general setup

We work in d-dimensional flat spacetime M with boundary O.M
- Cartesian coordinates X* = (1,z,y, z;,i=1,...d-3).

- The entanglingsurface > : 7=0 and =0

- The boundary M is a collection of hyperplanes.

- ¥ intersects the boundary O M orthogonally at P = ¥ N oM

- Boundary conditions: Neumann, Dirichlet, Robin.

The heat kernel on R¢ for a free massive scalar field is

Keol6, X, X') =
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With boundary: the general setup

We work in d-dimensional flat spacetime M with boundary O.M
- Cartesian coordinates X* = (1,z,y, z;,i=1,...d-3).

- The entanglingsurface > : 7=0 and =0

- The boundary M is a collection of hyperplanes.

- ¥ intersects the boundary O M orthogonally at P = ¥ N oM

- Boundary conditions: Neumann, Dirichlet, Robin.

The entropy in infinite spacetime with 3 being a codimension 2 plan is

[£52]
A(Y)
6(47r)(d_2)/26d_2 £

(_l)kmzkEZk

54(2) = kI(d — 2k — 2)

=0
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Single plane boundary

Boundary conditions at y = O:
- Neumann: ayK(N)‘ ,=0
y:

. Dirichlet: K(D)‘ =0
y:

. Robin: (9, — h)K("“)‘ =0
y:

Heat kernel for Neumann and Dirichlet:
ENO)(s,4,9) = Koo(3,4, ) £ Koo(8, —4, %)

Heat kernel for Robin:
o0

KM (s,y,4") = KN (s,y,9") — 2h eh(y+y')f doe " K(s,0)
y+y’
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Single plane boundary: Neumann/Dirichlet

In the entanglement entropy appears a contribution from P:
57PN, P) = S4(S) £ Su(P)

with boundary part

|

A(P) (—1)kmekeek

Sqa(P) =
d(P) 24(47)(d=3)/2¢d—3 1;) k!(d — 2k - 3)

Always a logarithmic term either due to S3(X) in even dimension or due
to S4(P) in odd dimension.

Si(P) =~z Inem),  Su(P) = £

24
Ss5(P) = ign) (;2 + 2m? ln(em))
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Single plane boundary: Robin

Entanglement entropy:

sm?

(h) _ oV A(P) o, €T
Sd (2, P) = Sd (E) = 24(47r)(d_3)/2 2 ds ;“(“a"_—l)/—2 F(h\/g)

where F(hy/s) = 1+ (®(hy/s) — 1)el’s ~ f/_f%\/ﬂ O(s).

New logarithmic terms in any d:

(Z,P) + i%?hlne-i— O(h?)

S0 P) = S

S3V(5,P) = 85 (5,P) - -

A(P)( 2 h

Tre + h%lne + O(h3))
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Some inequality and limits

Inequality: S > gt 5 g(P)

Limits:

g h N
oy = 5§”

lim Sd(!h) SéD) (he — 00)

h—+4o00

The h-flow interpolates between Neumann and Dirichlet phases:

OF(hv3) >0 = SM(Z,P) <0

= Monotonic decreasing from Neumann to Dirichlet.

Open question: a relation to boundary RG flow?

Page 20/46



Rectangular boundary

Boundary conditions:

« Neumann-Neumann
- Dirichlet-Dirichlet
- Mixed (Neumann-Dirichlet)

Using Cartesian coordinates:

. M factorizes as M = R? x42 Q; with Q; = (0, L;).
- The associated heat kernel for the scalar Laplacian does too:

KN(D)(S, z,2) = Z Koo(8,2Lk + 2,2") £ Koo(8,2Lk — 2,2')
keZ

K™%ed(g 2. 2') = Z(—l)k(Koo(s, 2Lk + 2,2') — Koo (s, 2Lk — 2, z'))
keZ
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EE with rectangular boundary

The entanglement entropy is found to be [CB, (2017)]

e ds o 2
P — ——J—--:l - I | . i _Li /S N
Sa(%, P) 12(47) 7 /52 gl 1l i=1 (Ll Y (e S+ m)

Neumann (Dirichlet)
Mixed

Neumann/Dirichlet
Mixed

Page 22 sur 44
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Hierarchy of UV terms

Taking the limit ¢ — 0, one finds the EE to be

AX Pa_ P
Sqa(X,P) = Sd_zﬁ + 84-3 Ej_g & PO 81?1 + s

(d)

Jos Ine + s9

where A(X) = L1Ly -+ Ly_o is the area of ¥ and

@, E)eT
log = 6 x 92(d—2)

Po

The terms P,, read
op
pl(d—-2-p)

where the sum extends over all permutations of {1,--- ,d — 2}.

Pd—2—’P ZBCH "'BO'pLO'pH ”'Lo'd—z!
o
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The boundary terms P,

The coefficients P,, have a simple interpretation in the case where the
combination of BC is pure Neumann or Dirichlet (L; = L):

P‘n - 2d—2—n d—2 L?
mn

— P, isthe “n—area” of X (a (d — 2)-square), defined at ¥ N oM

Exampleind = 3: [see also Fursaev,Solodukhin (2016)]
- Y is aline of length L
- Po = 2 — 2 intersections with M (for only 1 boundary: Pg = 1)

Example ind = 4: [see also Fursaev (2006)]
« Y is a square of sides L
- 4 edges (1-faces) — P = 4L is the perimeter of X
- 4 vertices (0—faces) — Py = 4 is the number of vertices
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Rectangular boundary

Boundary conditions:

« Neumann-Neumann
- Dirichlet-Dirichlet
- Mixed (Neumann-Dirichlet)

Using Cartesian coordinates:

. M factorizes as M = R? x42 Q; with Q; = (0, L;).
- The associated heat kernel for the scalar Laplacian does too:

KN(D)(S, z,2) = Z Koo(8,2Lk + 2,2") £ Koo(8,2Lk — 2,2')
keZ

K™%ed(g 2. 2') = Z(—l)k(Koo(s, 2Lk + 2,2') — Koo (s, 2Lk — 2, z'))
keZ
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The boundary terms P,

The coefficients P,, have a simple interpretation in the case where the
combination of BC is pure Neumann or Dirichlet (L; = L):

P‘n - 2d—2—n d—2 L?
mn

— P, isthe “n—area” of X (a (d — 2)-square), defined at ¥ N oM

Exampleind = 3: [see also Fursaev,Solodukhin (2016)]
- Y is aline of length L
- Po = 2 — 2 intersections with M (for only 1 boundary: Pg = 1)

Example ind = 4: [see also Fursaev (2006)]
« Y is a square of sides L
- 4 edges (1-faces) — P = 4L is the perimeter of X
- 4 vertices (0—faces) — Py = 4 is the number of vertices
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Conformal anomalies: CFT vs BCFT

For a spacetime without boundary:

(T FY= = agEy+ ) bil;
i

E 4 = Euler density
§ (o=t i I; = Weyl invariants
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Conformal anomalies: CFT vs BCFT

For a spacetime without boundary:

(T FY= = agEy+ ) bil;
i

E 4 = Euler density
§ (o=t i I; = Weyl invariants

For a spacetime with boundary:

" (Tu"’)d=2n = &dEd‘|‘Z bili + dom, Z Cj f! E:i = boundary
s :

% __ Euler dens.

o (T #)a=2n+1 _ ds L I; = boundary
(T OoM. ((lde ' Ej:c,l',) ’ Weyl inv.

[Dowker,Schofield, (1990)] [Moss,Poletti, (1994)]
[Fursaev (2015)] [Solodukhin (2016)]
(Herzog,Huang, Jensen (2016)] (Herzog,Huang (2017)]
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Universal logarithmic term in the EE

For a generic CFT4 on a curved spacetime, there appears a universal
logarithmic term in the entanglement entropy:

A(D)

d
Sd(z) — ’Yed—Q +.--+3§0310g6+...

sl(g'; is expressed in terms of the heat coefficient a4(n), which is related
to the integrated conformal anomaly | Md(T,;”’) = Naq:

sgg; = n(nad—nanad(n))‘

n=1

| @n-o [ @

n=1

Page 27 sur 44
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Conformal anomalies: CFT vs BCFT

For a spacetime without boundary:

(T FY= = agEy+ ) bil;
i

E 4 = Euler density
§ (o=t i I; = Weyl invariants

For a spacetime with boundary:

" (Tu"’)d=2n = &dEd‘|‘Z bili + dom, Z Cj f! E:i = boundary
s :

% __ Euler dens.

o (T #)a=2n+1 _ ds L I; = boundary
(T OoM. ((lde ' Ej:c,l',) ’ Weyl inv.

[Dowker,Schofield, (1990)] [Moss,Poletti, (1994)]
[Fursaev (2015)] [Solodukhin (2016)]
(Herzog,Huang, Jensen (2016)] (Herzog,Huang (2017)]
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Universal logarithmic term in the EE

For a generic CFT4 on a curved spacetime, there appears a universal
logarithmic term in the entanglement entropy:

A(D)

d
Sd(z) — ’Yed—Q +.--+3§0310g6+...

sl(g'; is expressed in terms of the heat coefficient a4(n), which is related
to the integrated conformal anomaly | Md(T,;”’) = Naq:

sgg; = n(nad—nanad(n))‘

n=1

| @n-o [ @

n=1
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Universal logarithmic term in the EE

For a generic CFT4 on a curved spacetime, there appears a universal
logarithmic term in the entanglement entropy:

A(X) (d)

Sd(z) = ’Yed—Q +.--+3£0g10g6+...

sl(g'; is expressed in terms of the heat coefficient a4(n), which is related
to the integrated conformal anomaly | Md(T,;”’) = Naq:

sgg; = n(nad—nanad(n))‘

n=1

| @n-o [ @

n=1

=> 8109 Vanishes for even dimensional CFTs.
= S10g does not necessarily vanish for BCFTs for any d!
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Logarithmic term in BCFTj

The anomaly in d = 3 is a pure boundary term:

a A q 29
T)=— / R+ — Trk
_/Ma( ) 3847 Jop, 2567 Jo g

In flat space with planar boundaries and an entangling surface that
intersects these boundaries, the entanglement entropy is

S(%) =a%—s;ogln%+--—

In the case where > | M, the logarithmic term reads

a

- Proportional to the charge a
- Proportional to the number of intersection(s) n, between ¥ and OM

[Fursaev,Solodukhin (2016); CB,Solodukhin (2016)]
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Holographic entanglement entropy

Holographic formula (RT 06)

B Area(7y4)

o4 4G N

* 74 minimal co-dim 2 surface :

Oypa=0A=X
v4 and A homologous
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What is the holographic dual to a BCFT?

Holographic picture:

- The bulk B is AdS;,; and has a conformal boundary M

- M has a boundary by itself, oM

- OM is extended into the bulk, forming a surface (brane) S
- Then 0B = M U S such that OM = 0S8
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What is the holographic dual to a BCFT?

Takayanagi’s prescription: (Takayanagi (2011)]

- The gravitational action for holographic BCFT is

1
IT__lﬁwG/B‘@( ~20) —87rG/ ‘/}T’szc,f‘/” )

- Varying the action with respect to v;;, the shape of S is determined by

Kz'j—"ﬁjK = T"ij (fOI’ = const, Tz'j = '\/,,.;jT)

- In this picture, the brane S is dynamical in the sense that it backreacts
with the bulk spacetime. (though for o.M flat/ball, no backreaction)

= For arbitrary .M, we need perturbation theory
— Technically difficult to find solutions in general
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What is the holographic dual to a BCFT?

Restricted Takayanagi’s prescription:
[Astaneh,Solodukhin (2017); Chu,Miao,Guo (2017)]

- In more general situations, one can restrict the previous tensorial

equations to a single scalar equation imposed on K of S,
d
K= _(ﬁT’ (T =(d—1)tanhm)
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What is the holographic dual to a BCFT?

Restricted Takayanagi’s prescription:
[Astaneh,Solodukhin (2017); Chu,Miao,Guo (2017)]

- In more general situations, one can restrict the previous tensorial
equations to a single scalar equation imposed on K of S,

K= —(%T, (T =(d—1)tanhm)

Minimal surface prescription: [Astaneh,Solodukhin (2017)]

- S is described by the embedding functions z# = z#(y;). The
gravitational action is modified by adding a boundary volume term

Imin = = lﬁﬂG/fR 2 SWG/\/_K_SWG/\F/\

- Varying the action with respect to z# yields the minimality condition

K=0 on §
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Holographic entanglement entropy

Holographic entanglement entropy:

« OM is extended into the AdS5 bulk as &

- H is the minimal surface anchored on X:
OH=0H|,UZ

- Holographic formula:

A(H
Suse(5,P) = 502
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Holographic entanglement entropy

Holographic entanglement entropy:

« OM is extended into the AdS5 bulk as &

- H is the minimal surface anchored on X:
OH=0H|,UZ

- Holographic formula:

A(H

Suse(5,P) = 502

The BCFT4:
- Mis flat
« OM is cylindrical

. X intersects O M orthogonally at P

Analog study for corner contribution in AdS4/BCFTs [Seminara,Sisti,Tonni (2017),(2018)]

Pirsa: 18060002 Page 40/46



Logarithmic contribution in the HEE

With the minimal surface prescription, K =0 (i.e. T'=m = 0).

3 ; N2 . . i
S}ggEE}(Esp)z S—w([,/;;RE+2_/?;kpj| +'/ETI‘ICZ-2—2/;)R:MVU”U )1116

kp: extrinsic curvature of P
kuv, (ki) traceless part of extrinsic curvature tensors of M, X

v*: unit vector tangent to P
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Logarithmic contribution in the HEE

With the minimal surface prescription, K =0 (i.e. T'=m = 0).

3 ; N2 . . i
S}ggEE}(Esp)z S—w([,/;;RE+2_/?;kpj| +'/ETI‘ICZ-2—2/;)R:MVU”U )1116

kp: extrinsic curvature of P
kuv, (ki) traceless part of extrinsic curvature tensors of M, X

v*: unit vector tangent to P
- The presence of boundaries breaks supersymmetry
- Some part of it can still be preserved with appropriate BC

- A question:

For which boundary conditions are we computing the EE
using the holographic minimal surface prescription?

=> The answer is in the next slide..

Page 42/46



Pirsa: 18060002

Free field N' = 4 supermultiplet

For the N' =4, SU(N) SYM at weak coupling with BC which preserve
1/2 of supersymmetry:

5o S P) = _1( ng+2fk /”ﬁfcz /Eyv“v)

- Agrees in the large N limit with the holographic calculation for the
minimal surface prescription!

- Consistent with the results for the boundary conformal anomaly
[Astaneh,Solodukhin (2017)]
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Summary

Boundary effects in entanglement entropy:

- New terms defined at P and dependent on boundary conditions
- Monotonicity of h-flow between Neumann and Dirichlet phases

- For Neumann and Dirichlet BC: log term proportional to # of vertices
of ¥ (in d = 3 to the # of intersection(s) between ¥ and 9.M) as well
as boundary charges

Entanglement entropy in AdS/BCFT correspondence:

- Boundary terms can be computed holographically
- Minimal surface prescription < 1/2 SUSY preserving BC
- boundary terms in integrated conformal anomaly
- boundary terms in the entanglement entropy
— Calculations at weak/strong coupling match for N > 1
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Open questions and outlook

- Interpretation of the ‘tension’ T" (or m) of the brane in the BCFT side?

(a) The minimal surface prescription reproduces weak coupling
results for BCFT,4 with 1/2 susy = boundary charges do not
receive quantum corrections. Understand this better.

(b) For restricted Takayanagi’s prescription (1" # 0), there is
T'-dependence in the holographic anomaly and HEE:

— Does T corresponds to different BC in the BCFT side?
- What is the “right” prescription for AAS/BCFT? (if there is one)

- Study non-orthogonal intersection between
¥ and OM:
In d = 3, the log term is expected to capture
the angle dependence and thus should carry
interesting info about the BCFT3.

- Numerical calculations on the lattice
(work in progress...)
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Thank you!
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