Title: Phases of Gravitational Collapse in AdS

Date: May 23, 2018 11:00 AM

URL: http://pirsa.org/18050063

Abstract: Generically, a small amount of matter introduced to anti-de Sitter spacetime leads to formation of a black hole; however, the high degree of symmetry of AdS means that some initial distributions of matter (possibly also technically generic) oscillate indefinitely. Whether a given initial profile leads to a horizon at arbitrarily small amplitudes is of great interest for a number of reasons, not least because horizon formation corresponds holographically to thermalization in CFT. We will present an overview of approaches the question and show a phase diagram of the stability behavior of AdS in the presence of a scalar field, including an analysis of nonperturbative phases at the border of perturbative stability and instability.

Pirsa: 18050063 Page 1/84

A Process Theoretic Reconstruction of Quantum Theory

John H. Selby, Carlo Maria Scandolo & Bob Coecke arXiv:1802.00367

Pirsa: 18050063 Page 2/84

What is a reconstruction?

Introduction

Pirsa: 18050063

∟ Introduction

What is a reconstruction?

Set of postulates $\{P_i\}$ along with a proof that

$$P_0 \wedge \cdots \wedge P_n \iff \mathsf{Quantum\ Theory}$$

Pirsa: 18050063 Page 4/84

Why reconstruct quantum theory?

└ Introduction

Pirsa: 18050063 Page 5/84

Why reconstruct quantum theory?

Introduction

- Dissatisfaction with standard postulates
 - c.f. special relativity

Pirsa: 18050063 Page 6/84

└ Introduction

Why reconstruct quantum theory?

- Dissatisfaction with standard postulates
 - c.f. special relativity
 - ► SR: counter-intuitive but 'relatable' axioms

Pirsa: 18050063 Page 7/84

Introduction

Why reconstruct quantum theory?

- Dissatisfaction with standard postulates
 - c.f. special relativity
 - ▶ SR: counter-intuitive but 'relatable' axioms

 \sim vs. \sim

QT: axioms are too abstract to be counter-intuitive

Pirsa: 18050063 Page 8/84

— Introduction

Why reconstruct quantum theory?

- Dissatisfaction with standard postulates
 - c.f. special relativity
 - ► SR: counter-intuitive but 'relatable' axioms

 \sim vs. \sim

- QT: axioms are too abstract to be counter-intuitive
- Provides a new foundation for the theory

Pirsa: 18050063 Page 9/84

- Introduction

Why reconstruct quantum theory?

- Dissatisfaction with standard postulates
 - c.f. special relativity
 - ▶ SR: counter-intuitive but 'relatable' axioms

 \sim vs. \sim

- QT: axioms are too abstract to be counter-intuitive
- Provides a new foundation for the theory
- ightharpoonup Not a new idea: can be traced back to von Neumann ~ 1935

Pirsa: 18050063 Page 10/84

— Introduction

Why reconstruct quantum theory?

- Dissatisfaction with standard postulates
 - c.f. special relativity
 - SR: counter-intuitive but 'relatable' axioms

 \sim vs. \sim

- QT: axioms are too abstract to be counter-intuitive
- Provides a new foundation for the theory
- ightharpoonup Not a new idea: can be traced back to von Neumann ~ 1935
- ► Restarted by Lucien Hardy 2001 "Quantum theory from five reasonable axioms" (arXiv:quant-ph/0101012).

Pirsa: 18050063 Page 11/84

We want our postulates to be "better" ...

└ Introduction

Pirsa: 18050063

 \sqsubseteq Introduction

We want our postulates to be "better"...

- Conceptually appealing
- Conceptually consistent
 - operational
 - informatic
 - ► logic-based
 - **.**..

Pirsa: 18050063 Page 13/84

We want our postulates to be "better"...

- Conceptually appealing
- Conceptually consistent
 - operational
 - informatic
 - logic-based
 - **.**..

but still to be...

► Mathematically precise

Pirsa: 18050063 Page 14/84

We want our postulates to be "better" ...

- Conceptually appealing
- Conceptually consistent
 - operational
 - informatic
 - logic-based
 - **.**..

but still to be...

- Mathematically precise
- Simple and as easy to use as standard postulates

Pirsa: 18050063 Page 15/84

What we do differently?

Introduction

Pirsa: 18050063 Page 16/84

 \sqsubseteq Introduction

What we do differently?

We work in the framework of

Process Theories

Pirsa: 18050063 Page 17/84

Pirsa: 18050063 Page 18/84

The reconstruction

Conclusion

Pirsa: 18050063 Page 19/84

Reconstruction

The development of process theories

 $\mathsf{Linear\ algebra} \to \mathsf{Category\ theory} \to \mathsf{Diagrams} \to \mathsf{Process\ theories}$

Pirsa: 18050063 Page 20/84

Reconstruction
Process theories

The development of process theories

Linear algebra \to Category theory \to Diagrams \to Process theories e.g. entanglement swapping

Pirsa: 18050063 Page 21/84

The development of process theories

Linear algebra \to Category theory \to Diagrams \to Process theories e.g. entanglement swapping

Pirsa: 18050063 Page 22/84

John Selby

The development of process theories

Linear algebra \to Category theory \to Diagrams \to Process theories e.g. entanglement swapping

Proof of Theorem 9.4 (entanglement swapping). The top trapezoid is the statement of the Theorem. We have a diagram of the form below for each $j \in \{1, 2, 3, 4\}$. To simplify the notation of the types we set (a^*, b, c^*, d) for $Q_a^* \otimes Q_b \otimes Q_c^* \otimes Q_d$ etc. We ignore the scalars – which cancel out against each other – in this proof.

Pirsa: 18050063 Page 23/84

The development of process theories

Linear algebra \to Category theory \to Diagrams \to Process theories e.g. entanglement swapping

Pirsa: 18050063 Page 24/84

The development of process theories

Linear algebra \to Category theory \to Diagrams \to Process theories e.g. entanglement swapping

- Conceptually appealing
- Convenient notation
- Automation

Pirsa: 18050063 Page 25/84

The development of process theories

Linear algebra \to Category theory \to Diagrams \to Process theories e.g. entanglement swapping

- Conceptually appealing
- Convenient notation
- Automation
- Wide applicability

Pirsa: 18050063 Page 26/84

Conceptual shift

Physics is about...

...states and their evolution.

Pirsa: 18050063 Page 27/84

Conceptual shift

Physics is about...

...states and their evolution.

 \sim vs. \sim

...processes and their composition.

Pirsa: 18050063 Page 28/84

Processes

A process theory is defined by a collection of processes, e.g.

Pirsa: 18050063 Page 29/84

Processes

A process theory is defined by a collection of processes, e.g.

Pirsa: 18050063 Page 30/84

Processes

A process theory is defined by a collection of processes, e.g.

Pirsa: 18050063 Page 31/84

Processes

A process theory is defined by a collection of processes, e.g.

These could represent...

- Physical processes
- Mathematical representations of physical processes
- Operational description of a piece of lab equipment
- Chemical processes
- Words
- Cognitive processes
- Data processing
- Abstract mathematical transformations

Pirsa: 18050063 Page 32/84

Reconstruction

John Selby

Composition

These can be composed to form diagrams, e.g.

Pirsa: 18050063 Page 33/84

Constraints

This composition isn't completely free...

Pirsa: 18050063 Page 34/84

Constraints

This composition isn't completely free...

Pirsa: 18050063 Page 35/84

Constraints

This composition isn't completely free...

Pirsa: 18050063 Page 36/84

Constraints

This composition isn't completely free...

Pirsa: 18050063 Page 37/84

Diagrammatic rule

Only connectivity matters, e.g.

Pirsa: 18050063

Special processes

Pirsa: 18050063 Page 39/84

Special processes

Pirsa: 18050063 Page 40/84

Symmetries and dualities

Choi-Jamiołkowski isomorphism a.k.a. bending wires

Is this an isomorphism?

Pirsa: 18050063 Page 41/84

The development of process theories

Linear algebra \to Category theory \to Diagrams \to Process theories e.g. entanglement swapping

Proof of Theorem 9.4 (entanglement swapping). The top trapezoid is the statement of the Theorem. We have a diagram of the form below for each $j \in \{1, 2, 3, 4\}$. To simplify the notation of the types we set (a^*, b, c^*, d) for $Q_a^* \otimes Q_b \otimes Q_c^* \otimes Q_d$ etc. We ignore the scalars – which cancel out against each other – in this proof.

Pirsa: 18050063 Page 42/84

The development of process theories

 $\mbox{Linear algebra} \rightarrow \mbox{Category theory} \rightarrow \mbox{Diagrams} \rightarrow \mbox{Process theories} \\ \mbox{e.g. entanglement swapping}$

Pirsa: 18050063 Page 43/84

The development of process theories

Linear algebra \to Category theory \to Diagrams \to Process theories e.g. entanglement swapping

- Conceptually appealing
- Convenient notation
- Automation
- Wide applicability

Pirsa: 18050063 Page 44/84

Conceptual shift

Physics is about...

...states and their evolution.

 \sim vs. \sim

...processes and their composition.

novel framework for exploring potential physical theories

Pirsa: 18050063 Page 45/84

Processes

A process theory is defined by a collection of processes, e.g.

Pirsa: 18050063 Page 46/84

Processes

A process theory is defined by a collection of processes, e.g.

Pirsa: 18050063 Page 47/84

Reconstruction

Processes

A process theory is defined by a collection of processes, e.g.

These could represent...

- Physical processes
- Mathematical representations of physical processes
- Operational description of a piece of lab equipment
- Chemical processes
- Words
- Cognitive processes
- Data processing
- Abstract mathematical transformations

Pirsa: 18050063 Page 48/84

Composition

These can be composed to form diagrams, e.g.

Such a diagram must correspond to another process in the theory.

Pirsa: 18050063 Page 49/84

Constraints

This composition isn't completely free...

Pirsa: 18050063 Page 50/84

Diagrammatic rule

Only connectivity matters, e.g.

Pirsa: 18050063

Special processes

Pirsa: 18050063 Page 52/84

John Selby

Reconstruction

Examples from quantum foundations

Theory	Processes
QT	CP maps between $\mathcal{B}(\mathcal{H})$
ProbCT	Stochastic maps between sets
C*-Alg	CP maps between C*-algebras
PossCT	Relations between sets
Spek	Subtheory of PossCT

All of these process theories have something in common...

Pirsa: 18050063 Page 53/84

Symmetries and dualities

with an intuitive diagrammatic representation!

Pirsa: 18050063 Page 54/84

Symmetries and dualities The adjoint a.k.a. the dagger

Pirsa: 18050063 Page 55/84

Pirsa: 18050063 Page 56/84

Symmetries and dualities

Choi-Jamiołkowski isomorphism a.k.a. bending wires

Is this an isomorphism? We just need that...

such that, for example,

$$\begin{array}{c|c}
 & B \\
\hline
f & & \\
\hline
IA
\end{array}$$

Pirsa: 18050063 Page 57/84

Symmetries and dualities Transpose from Choi

We can define a transpose as...

$$f$$
 := f

The transpose is idempotent...

Pirsa: 18050063 Page 58/84

Symmetries and dualities

Conjugation from transpose and dagger

We can define generalised conjugation as...

i.e. as the composition of transpose and dagger.

Hence, our example process theories have $Z_2 \times Z_2$ symmetry:

Pirsa: 18050063 Page 59/84

Calculation 1: Teleportation

Pirsa: 18050063 Page 60/84

Calculation 2: Entanglement sharing

Pirsa: 18050063 Page 61/84

John Selby

Calculation 2: Entanglement sharing

Pirsa: 18050063 Page 62/84

Calculation 3: Existence of correlated states

Assume that there are no correlated states

$$\frac{\downarrow}{s} = \frac{\downarrow}{s_1} \frac{\downarrow}{s_2}$$

then, in particular, the cup separates:

so we have:

Pirsa: 18050063

Calculation 4: Orthogonality of clonable states

Suppose we have an isometry Δ which clones the states ψ_i , i.e.

Then...

Hence...

$$\frac{\sqrt{\psi_j}}{|\psi_j|} \in \{0,1\}$$

Pirsa: 18050063

Summary so far

- Basic introduction to process theories
- Examples of process theories
- Diagrammatic representation of important structures
- Important results with simple diagrammatic proofs
- Captured some of the important structure of quantum theory

This poses the question:

what else do we need to add to recover all of quantum theory?

Pirsa: 18050063 Page 66/84

Pirsa: 18050063 Page 67/84

Postulate 1:

The theory is a process theory.

Pirsa: 18050063 Page 68/84

Postulate 2:

The theory has a probabilistic classical interface.

Pirsa: 18050063 Page 69/84

Postulate 2a:

Classical probability theory is a subtheory,

Pirsa: 18050063 Page 70/84

Postulate 2a:

- Classical probability theory is a subtheory,
- labeled by thin grey lines,
- such that

is a stochastic map from an n to an m-level classical system.

Pirsa: 18050063 Page 71/84

Reconstruction

Postulate 2b:

Classical control, i.e. how we control the world,

For all
$$\left\{\begin{array}{c} |B| \\ f_i \\ |A| \end{array}\right\}_{i=1}^n$$
 there exists $\left[\begin{array}{c} B \\ G \\ n \end{array}\right]$ such that

Pirsa: 18050063

Postulate 2c:

- ► Tomography, i.e. how we learn about the world,
- ▶ For all pairs of systems (A, B) there exists a 'test' τ_{AB} such that

Pirsa: 18050063 Page 73/84

Consequences of the classical interface

- ightharpoonup Processes A oup B live in convex sets
- Processes act linearly
- Unique discarding effect, denoted

$$\frac{-}{A}$$

Essentially we have "causal generalised probabilistic theories" 1

Pirsa: 18050063 Page 74/84

¹Up to minor technicalities.

Pirsa: 18050063

Pirsa: 18050063 Page 76/84

The reconstruction

Postulate 3:

The theory has the fundamental diagrammatic symmetries.

Pirsa: 18050063 Page 77/84

Postulate 3:

- a dagger,
- bending wires,

however, we need something more to ensure that the † corresponds to the 'right' dagger, namely...

Pirsa: 18050063 Page 78/84

Reconstruction

Postulate 3':

Sharpening the dagger,

$$S$$
 is a test for S

that is, if the states are 'testable' then

and if n is 'maximal' then the test is a 'complete' measurement.

Reconstruction

Postulate 4:

► All processes have dagger-symmetric purifications:

$$\begin{array}{ccc}
 & B & = \\
 & \overline{A} & \\
 & F & \\
 & A & = \\
\end{array}$$

Pirsa: 18050063 Page 80/84

Reconstruction

Postulate 4:

► All processes have dagger-symmetric purifications:

$$\begin{array}{ccc}
 & B & = & \\
 & f & = & F \\
 & A & = & A
\end{array}$$

which moreover are essentially unique.

Pirsa: 18050063 Page 81/84

Consequences of the postulates

- \triangleright Processes $A \rightarrow B$ live in convex cones which are
 - homogeneous
 - strongly self dual
 - i.e. systems correspond to Euclidean Jordan Algebras
- the only EJAs that compose 'correctly' are C*-algebras, therefore...

Processes are CP-maps between finite dimensional C*-algebras a.k.a.

the process-theoretic description of quantum theory!

Pirsa: 18050063 Page 82/84

Conclusion

Summary

Given

- the process theory framework,
- a finite local probabilistic classical interface,
- diagrammatic symmetries where, in particular,
- the dagger is sharp, and
- that processes have dagger-symmetric purifications,

we have reconstructed the process theoretic description of quantum theory.

Pirsa: 18050063 Page 83/84

Conclusion

Future work

- Can we go beyond finite dimensional quantum theory?
 - e.g. following the use of non-standard analysis of Stefano Gogioso & Fabrizio Genovese (arXiv:1703.09594)
- Can we avoid invoking a classical interface?
 - e.g. following the categorical reconstruction of Sean Tull (arXiv:1804.02265)

Pirsa: 18050063 Page 84/84