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Abstract: <p><span style="font-size:10.5pt;font-family:& quot;Calibri& quot;,sans-serif;

mso-fareast-font-family:& quot; Times New Roman& quot;;mso-ansi-language: EN-US; mso-fareast-language:
EN-US;mso-bidi-language:AR-SA">Ultralight bosons exist in various proposed extensions to the Standard Model, which can form condensates
around rapidly rotating black holes through a process called superradiance. These boson clouds have many interesting observational consequences,
such as the continuous emission of monochromatic gravitational waves. & nbsp;In thistalk, | will describe the dynamics of the system when it is part
of a binary black hole. | will show that the presence of a binary companion greatly enriches the evolution of the boson clouds, most remarkably
through the existence of resonant transitions between growing and decaying modes of the clouds. Finaly, | will sketch some phenomenological
consequences, both for the gravitational waves emitted by the clouds and the finite-size effects imprinted in the waveforms of the binary
signal .</span></p>
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Era of Gravitational Waves

It is clear that future GW observations will transform astrophysics.
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But, what can we learn about physics beyond the Standard Model?
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New Light Particles

An interesting class of new physics consists of particles that are light
and weakly-coupled to the Standard Model.

QCD axion
Spin-zero:  String axions
Fuzzy dark matter
Examples:

Dark radiation
Massive gravity

Higher spin:

Small masses are technically natural if protected by symmetries.

Weak couplings imply that they could escape detection from colliders.

Essig et. al. [1311.0029]
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Superradiance

Ultralight boson condensate can be created around a rotating black
hole, if their Compton wavelength ). is of the order of the size of the
black hole.
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Zeldovich (1972)
Starobinsky (1973)
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Superradiance

Stellar Super
Mass BH Massive BH

Milky Way

® ¢
l } = } } » Size [km]
1 10° 1010 101 102
Bosons probed through Sum of neutrinos
black hole superradiance masses
| | L ey

“)-.El} l[}—l[) l

Pirsa: 18050062 Page 7/45



Cloud in Isolation

The cloud is a source of continuous, monochromatic GW emission.

Arvanitaki, Dubovsky [1004.3558]
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Cloud in a Binary

Focus of this talk: a binary companion introduces new scales and
new dynamics.
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Companion perturbs the cloud, affecting GW signal from the cloud.

Cloud perturbs the companion, affecting GW signal from the binary.
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Outline

|. Cloud in isolation

ll. Cloud in a binary

lIl. New phenomenology

Black hole superradiance
Properties of the cloud

Quadrupole coupling
Resonance effect

Signal from the cloud
Signal from the binary
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l. Cloud in Isolation
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Black Hole Superradiance

g . W
Wave amplification occurs when < Oy

T
going -\,\

Inc
wave

|

Outgoing
wave

where w and m are the frequency and azimuthal number of the wave,
and {2y is the angular velocity of the black hole horizon.

Zeldovich (1972)
Starobinsky (1973)
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Black Hole Superradiance

A reflecting mirror surrounding the BH creates a black hole bomb:

Amplified
wave *\’.\

Reflected
wave

»
Superradiance occurs until — = (1j;.
gy

Press, Teukolsky (1972)
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Black Hole Superradiance

Massive fields naturally create this reflecting mirror.

Effective
Potential Centrifugal
A Barrier
Potential
Event Well
Horizon

Mass
Barrier
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Scalar Field in Kerr Background

Scalar field of mass y around a Kerr background:
- ab 2 /
(9"°V oV — p?) U(t,r) =0

Far field limit in Boyer-Lindquist coordinates:

2 2M , 4aMsin®6 .
ds“=— 11— dt® — dtdo

r r

Sources / 2\ _ ‘ \ Spin acts like
(145 o

gravitational oL dr?® + r? ((’192 + sin® 9(_-{(';')3) a constant

potential r magnetic field

where M and a are the BH mass and spin, respectively.
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The Gravitational Atom

Define the non-relativistic field v :

1 ) it
U(t,r) = —== [ #p(t,T) + e TP (t, 1)]

The equation of motion of v is the Schrédinger equation with a
Coulomb-like central potential:

9 I _, ' 1
z ;IL bt I‘) _ [Vu “] Y(t, I‘) + O ())
ot | |

where « is the ‘coupling constant’

sravitational radius

a=Mp =

Compton wavelength
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The Gravitational Atom

0 w B I —» «
f.a-tr;;(f_‘r) — [Qﬂv o ,l (,-'.(f-,I')

As for the hydrogen atom, each eigenstate is characterised by
three ‘quantum numbers’
- Principal
{:  Orbital
m :  Azimuthal

The characteristic Bohr radius of the cloud is

. 2
Te n
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M 2
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Energy Spectrum
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Baumann, HSC, Porto [1804.03208]
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Quasi-Stationary States

———- Unlike the hydrogen atom, these
n=3 ZZZ EE=5= | arenot stationary states:
== -——- I|I }m Wnem — Wnem + "'Fu!"m
where the instability rate is
=] ===- e 'Xl(mSZHw o) 0
n = nem -~ J[ nem ) :
(=10 { =1 { =2

Detweiler (1980)
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Quasi-Stationary States

Dominant
occupied mode
n=2a9 -l S===
ol — +1
=9 S ——
n==2 ____ll'}m
n =1 ----
(=10 { =] { =2

When superradiance saturates,
only the 2p-orbital is occupied:

Infm) = |211)
Since
Lott o ~ (s — wonr) @
211 X Vi H — W211)«
which depends sensitively on «,

the growth timescale can range
from minutes to billions of years.
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Radial Profile

Scalar field
radial function

A Superradiant growth of
the |211) mode only

/_\ occurs when v < 0.5
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Stability of the Cloud

Real scalar fields emit continuous GW signal.

= ~

MA\?
@ I_)gw' X ( i ) (}_14

~ %

which is also extremely sensitive to «v, but suppressed compared to ' .

Complex scalar fields do not have such a signature, due to its time-
independent and axisymmetric configuration.

Arvanitaki, Dubovsky [1004.3558]|
Yoshino, Kodama [1312.2326]
Brito, Cardoso, Pani [1411.0686]
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Il. Cloud in a Binary

Baumann, HSC, Porto [1804.03208]
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Multipole Expansion

The gravitational perturbation by the companion can be organised by a
multipole expansion.

The Newtonian potential in the freely-falling frame of the cloud is

M, 4 r\° _ r\°
V, = — 1 — Yo, (0,0)Y, (O, ], O
- [ o (P) 2m. (6, @)¥am. (O Be) + (P”

Monopole Quadrupole Higher order
multipoles

where

{r,0, ¢} are the coordinates of the cloud, and

{R.,0,,d,} are the coordinates of the companion.
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Time Dependence

Time dependence arises from oscillating quadrupole:

2
F4

M. [ r |
‘,_.-’* D) — * - }';k (—)* { ‘(l)_; i X € 11 P (1)
Z R, (1) (R}k([)) om. (Ol ), P (1)) ox

|m. | <2

Since the BH rotates in a preferred azimuthal direction, there are two
classes of orbital orientations:

Oscillating quadrupole
\ \ periodically drives the
// T _/'/ T \ gravitational atom

P, (1) -t
co-rotating

P, (1) O

counter-rotating
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Rabi Oscillations

In the hydrogen atom:

T : Oscillating electric field
AE o .
| with frequency [

When the frequency of the oscillating external field matches the energy
difference between the two energy levels,

f=AE

resonant transitions occur.
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Rabi Oscillations

In the gravitational atom:

T : Oscillating gravitational
AE :
l quadrupole with frequency

m“‘.-’

When the orbital frequency of the inspiral matches the energy
difference between the two energy levels,

m, | =AFE

resonant transitions occur. Unlike the hydrogen atom, the eigenstates
are only quasi-stationary, and the cloud can transition to a decaying
mode.
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Level Mixings

. Level mixings through the
gl . quadrupole obey certain
( i selection rules.

h

=«

Allowed
transitions

n =]
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Orientation of Orbits

The orientation of the orbit is also crucial:

Determined by
selection rules

(g| Vi [211) o e~ 1M P () o FimaS2t

n=3  =eess=a

™
S

Co-rotating orbits
> (hyperfine resonance)

If the inspiral orbit is counter-rotating, resonance transition upwards.
If the inspiral orbit is co-rotating, resonance transition downwards.
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Hyperfine and Bohr Resonances

Scalar field
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Hyperfine and Bohr Resonances

As the orbit shrinks due to GW emission, the binary scans through the

resonances.
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Resonance Depletion

The mass of the cloud decays roughly as

Timescale of
orbital shrinking

|

ot

~ A0 A =D [ de et
P I

Occupation density

Decay rate of decaying mode

where A is an estimator of the amount of depletion. Resonance can
attenuate, A ~ 1, or completely deplete the cloud, .4 > 1.
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Resonance Depletion

Two parameters control the amount of depletion:

M.,
M

a=Mp and q =

- - TTTTTTT - r ™TTT"TTT - - -
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Resonance Depletion

System spends more time in hyperfine resonance than Bohr resonance.

ot
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Level Mixings

Level mixings through the

n=3 s=e- . quadrupole obey certain
( i selection rules.
— | :
n=2 SEEET
-]
Allowed
transitions
n =1
(=0 (=1 ¢ =2

Pirsa: 18050062 Page 35/45



lll. New Phenomenology

h(ﬂ
~ p.

Baumann, HSC, Porto [1804.03208]
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lll. New Phenomenology

M(t) ~ e~ 241

Time dependence of the cloud gets imprinted on GW observables:

|
! '

Signal from the Cloud Signal from the Binary
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Signal from the Cloud

Resonance depletion of the cloud creates a time-dependent change in
the continuous GW signal.

M.(t)\°
Pg\-v(f-) X ( A[( )) ol
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Signal from the Cloud

Resonance depletion of the cloud creates a time-dependent change in
the continuous GW signal.

M.(t)\°
Py (t) ( j\[( )) alt
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Signal from the Binary

Finite-size effects of the cloud leave imprints on the phase of the

binary waveform:
/ .

Spin-induced Tidal
quadrupole deformability

Motivates precision gravity and highly accurate waveform models.

Resonant depletion of the cloud also creates a time-dependent change
in the finite-size effects on the waveform.

Cutler et. al. [9208005]
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Spin-Induced Quadrupole

Spinning motion of the cloud induces a quadrupole in the polar
direction.

Energy

.2
77~ sin“ 0
density

Imprints on the phase of waveforms at 2PN order.

Poisson [9709032]
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Tidal Deformability

Tidal Love number quantifies the quadrupolar response of the cloud
to the tidal force created by the companion.

4_@:_, o

Imprints on the phase of waveforms at 5PN order.

Flanagan, Hinderer [0709.1915]
Damour, Nagar [0906.0096]
Binnington, Poisson [0906.1366]
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Resonance Frequency

Resonance depletion occurs at specific GW frequency from the binary.

PTAs LISA Deci- Ground-
Hertz based
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Summary and Outlook

Presence of an orbiting companion induces resonant transitions of
the cloud to a decaying mode.

The new phenomenologies provide independent probes of the
properties of the cloud, such as the mass of the scalar field.

Can we also infer other properties, such as the spins and self-
interactions of the ultralight boson? Work in progress
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Thank You Very Much!
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