Title: Probing Ultralight Bosons with Binary Black Holes

Date: May 08, 2018 01:00 PM

URL: http://pirsa.org/18050062

Abstract: <span style="font-size:10.5pt;font-family:"Calibri",sans-serif;"

mso-fareast-font-family:"Times New Roman";mso-ansi-language:EN-US;mso-fareast-language:

EN-US;mso-bidi-language:AR-SA">Ultralight bosons exist in various proposed extensions to the Standard Model, which can form condensates around rapidly rotating black holes through a process called superradiance. These boson clouds have many interesting observational consequences, such as the continuous emission of monochromatic gravitational waves. In this talk, I will describe the dynamics of the system when it is part of a binary black hole. I will show that the presence of a binary companion greatly enriches the evolution of the boson clouds, most remarkably through the existence of resonant transitions between growing and decaying modes of the clouds. Finally, I will sketch some phenomenological consequences, both for the gravitational waves emitted by the clouds and the finite-size effects imprinted in the waveforms of the binary signal.

Pirsa: 18050062 Page 1/45

Probing Ultralight Bosons with Binary Black Holes

Horng Sheng Chia

University of Amsterdam

Work with **Daniel Baumann** and **Rafael Porto [1804.03208]**Perimeter Institute, May 2018

Pirsa: 18050062 Page 2/45

Probing Ultralight Bosons with Binary Black Holes

Horng Sheng Chia

University of Amsterdam

Work with **Daniel Baumann** and **Rafael Porto [1804.03208]**Perimeter Institute, May 2018

Pirsa: 18050062 Page 3/45

Era of Gravitational Waves

It is clear that future GW observations will transform astrophysics.

But, what can we learn about physics beyond the Standard Model?

Pirsa: 18050062 Page 4/45

New Light Particles

An interesting class of new physics consists of particles that are light and weakly-coupled to the Standard Model.

> QCD axion String axions Fuzzy dark matter
>
> Higher spin: Dark radiation
>
> Massive gravity

Massive gravity

Small masses are **technically natural** if protected by symmetries.

Weak couplings imply that they could **escape detection** from colliders.

Essig et. al. [1311.0029]

Pirsa: 18050062 Page 5/45

Superradiance

Ultralight boson condensate can be created around a **rotating black hole**, if their Compton wavelength λ_c is of the order of the size of the black hole.

$$\lambda_c = \frac{\hbar}{\mu c} \gtrsim \frac{GM}{c^2}$$

Gravitational Atom

Zeldovich (1972) Starobinsky (1973)

Pirsa: 18050062 Page 6/45

Superradiance

Pirsa: 18050062 Page 7/45

Cloud in Isolation

The cloud is a source of **continuous**, **monochromatic** GW emission.

Arvanitaki, Dubovsky [1004.3558]

Pirsa: 18050062 Page 8/45

Cloud in a Binary

Focus of this talk: a binary companion introduces **new scales** and **new dynamics**.

Companion perturbs the cloud, affecting GW signal from the cloud.

Cloud perturbs the companion, affecting GW signal from the binary.

Pirsa: 18050062 Page 9/45

Outline

I. Cloud in isolation

Black hole superradiance
Properties of the cloud

II. Cloud in a binary

Quadrupole coupling Resonance effect

III. New phenomenology

Signal from the cloud
Signal from the binary

Pirsa: 18050062 Page 10/45

I. Cloud in Isolation

Pirsa: 18050062 Page 11/45

Black Hole Superradiance

Wave amplification occurs when $\ \frac{\omega}{m} < \Omega_H$

Ingoing wave

where ω and m are the frequency and azimuthal number of the wave, and Ω_H is the angular velocity of the black hole horizon.

Zeldovich (1972) Starobinsky (1973)

Black Hole Superradiance

A reflecting mirror surrounding the BH creates a **black hole bomb**:

Superradiance occurs until $\frac{\omega}{m}=\Omega_{H}$.

Press, Teukolsky (1972)

Black Hole Superradiance

Massive fields naturally create this reflecting mirror.

Pirsa: 18050062 Page 14/45

Scalar Field in Kerr Background

Scalar field of mass μ around a Kerr background:

$$\left(g^{ab}\nabla_a\nabla_b - \mu^2\right)\Psi(t, \mathbf{r}) = 0$$

Far field limit in Boyer-Lindquist coordinates:

$$ds^2 = -\left(1 - \frac{2M}{r}\right)dt^2 - \frac{4aM\sin^2\theta}{r}dtd\phi$$
 Sources gravitational potential
$$+\left(1 + \frac{2M}{r}\right)dr^2 + r^2\left(d\theta^2 + \sin^2\theta d\phi^2\right)$$
 Spin acts like a constant magnetic field

where M and a are the BH mass and spin, respectively.

Pirsa: 18050062 Page 15/45

The Gravitational Atom

Define the non-relativistic field ψ :

$$\Psi(t, \mathbf{r}) = \frac{1}{\sqrt{2\mu}} \left[e^{-i\mu t} \psi(t, \mathbf{r}) + e^{+i\mu t} \psi^*(t, \mathbf{r}) \right]$$

The equation of motion of ψ is the Schrödinger equation with a Coulomb-like central potential:

$$i\frac{\partial}{\partial t}\psi(t,\mathbf{r}) = \left[-\frac{1}{2\mu}\nabla^2 - \frac{\alpha}{r}\right]\psi(t,\mathbf{r}) + \mathcal{O}\left(\frac{1}{r^2}\right)$$

where α is the 'coupling constant'

$$\alpha \equiv M\mu = \frac{\text{Gravitational radius}}{\text{Compton wavelength}}$$

Pirsa: 18050062

The Gravitational Atom

$$i\frac{\partial}{\partial t}\psi(t,\mathbf{r}) = \left[-\frac{1}{2\mu}\nabla^2 - \frac{\alpha}{r}\right]\psi(t,\mathbf{r})$$

As for the hydrogen atom, each eigenstate is characterised by three 'quantum numbers'

n: Principal

 ℓ : Orbital

m: Azimuthal

The characteristic Bohr radius of the cloud is

$$\frac{r_c}{M} \simeq \frac{n^2}{\alpha^2}$$

Energy Spectrum

$$n = 3$$

$$n = 2$$

$$= \begin{cases} 1 \\ 0 \\ -1 \end{cases} \} m$$

$$n = 1$$

$$\ell = 0$$

$$\ell = 1$$

$$\ell = 2$$

$$\omega_{n\ell m}^{(0)} = \mu \left(1 - \frac{\alpha^2}{2n^2} \right) \longrightarrow \text{Bohr energy}$$

$$\omega_{n\ell m}^{(1)} = \mu \left(-\frac{\alpha^4}{8n^4} + \frac{(2\ell - 3n + 1)\alpha^4}{n^4(\ell + 1/2)} \right)$$

Relativistic Fine structure kinetic energy splitting

$$\omega_{n\ell m}^{(2)} = \mu \left(+ \frac{2 \left(a/M \right) m \alpha^5}{n^3 \ell (\ell + 1/2) (\ell + 1)} \right)$$
 Hyperfine splitting

Baumann, HSC, Porto [1804.03208]

Quasi-Stationary States

Unlike the hydrogen atom, these are not stationary states:

$$\omega_{n\ell m} \to \omega_{n\ell m} + i\Gamma_{n\ell m}$$

where the instability rate is

$$\Gamma_{n\ell m} \propto \frac{1}{M} \left(m\Omega_H - \omega_{n\ell m} \right) \alpha^{4\ell+5}$$

Detweiler (1980)

Quasi-Stationary States

Dominant occupied mode

$$n=1$$
 $\ell=0$ $\ell=1$ $\ell=2$

When superradiance saturates, only the **2p-orbital** is occupied:

$$|n\ell m\rangle = |211\rangle$$

Since

$$\Gamma_{211} \propto \frac{1}{M} \left(\Omega_H - \omega_{211} \right) \alpha^9$$

which depends sensitively on α , the growth timescale can range from minutes to billions of years.

Radial Profile

Pirsa: 18050062 Page 21/45

Stability of the Cloud

Real scalar fields emit continuous GW signal.

$$P_{\rm gw} \propto \left(\frac{M_c}{M}\right)^2 \alpha^{14}$$

which is also extremely sensitive to α , but suppressed compared to Γ_{211} .

Complex scalar fields do not have such a signature, due to its time-independent and axisymmetric configuration.

Arvanitaki, Dubovsky [1004.3558] Yoshino, Kodama [1312.2326] Brito, Cardoso, Pani [1411.0686]

II. Cloud in a Binary

Baumann, HSC, Porto [1804.03208]

Pirsa: 18050062 Page 23/45

Multipole Expansion

The gravitational perturbation by the companion can be organised by a multipole expansion.

The Newtonian potential in the freely-falling frame of the cloud is

$$V_* = -\frac{M_*}{R_*} \left[1 + \sum_{|m_*| \leq 2} \frac{4\pi}{5} \left(\frac{r}{R_*} \right)^2 Y_{2m_*}(\theta, \phi) Y_{2m_*}^* \left(\Theta_*, \Phi_* \right) + \mathcal{O} \left(\frac{r}{R_*} \right)^3 \right]$$
 Monopole Quadrupole Higher order multipoles

where

 $\{r,\theta,\phi\}$ are the coordinates of the cloud, and $\{R_*,\Theta_*,\Phi_*\}$ are the coordinates of the companion.

Pirsa: 18050062 Page 24/45

Time Dependence

Time dependence arises from **oscillating quadrupole**:

$$V_* \supset \sum_{|m_*| \le 2} -\frac{M_*}{R_*(t)} \left(\frac{r}{R_*(t)}\right)^2 Y_{2m_*}^* \left(\Theta_*(t), \Phi_*(t)\right) \propto e^{-im_*\Phi_*(t)}$$

Since the BH rotates in a preferred azimuthal direction, there are two classes of orbital orientations:

Pirsa: 18050062 Page 25/45

Rabi Oscillations

In the hydrogen atom:

When the frequency of the oscillating external field matches the energy difference between the two energy levels,

$$f = \Delta E$$

resonant transitions occur.

Rabi Oscillations

In the gravitational atom:

When the **orbital frequency** of the inspiral matches the energy difference between the two energy levels,

$$|m_*|\Omega = \Delta E$$

resonant transitions occur. Unlike the hydrogen atom, the eigenstates are only quasi-stationary, and the cloud can transition to a **decaying** mode.

Pirsa: 18050062 Page 27/45

Level Mixings

Level mixings through the quadrupole obey certain selection rules.

Pirsa: 18050062 Page 28/45

Orientation of Orbits

The **orientation** of the orbit is also crucial:

If the inspiral orbit is **counter-rotating**, resonance transition **upwards**. If the inspiral orbit is **co-rotating**, resonance transition **downwards**.

Pirsa: 18050062 Page 29/45

Hyperfine and Bohr Resonances

Pirsa: 18050062 Page 30/45

Hyperfine and Bohr Resonances

As the orbit shrinks due to GW emission, the binary scans through the resonances.

Pirsa: 18050062 Page 31/45

Resonance Depletion

The mass of the cloud decays roughly as

$$\frac{M_c(t)}{M_c(0)} \sim e^{-2\mathcal{A}(t)} \,, \qquad \mathcal{A}(t) \equiv |\Gamma_d| \int^t dt' \; |c_d(t')|^2$$

$$\frac{1}{2} \int^t \int^t dt' \; |c_d(t')|^2 \,$$
 Decay rate Occupation density of decaying mode

where \mathcal{A} is an estimator of the amount of depletion. Resonance can attenuate, $\mathcal{A}\sim 1$, or completely deplete the cloud, $\mathcal{A}\gg 1$.

Pirsa: 18050062 Page 32/45

Resonance Depletion

Two parameters control the amount of depletion:

$$\alpha \equiv M \mu \ \ {\rm and} \ \ q \equiv \frac{M_*}{M}$$

Resonance Depletion

System spends more time in hyperfine resonance than Bohr resonance.

$$\mathcal{A}(t) \equiv \left| \Gamma_d \right| \int^t dt' \left| c_d(t') \right|^2$$

Pirsa: 18050062 Page 34/45

Level Mixings

Level mixings through the quadrupole obey certain selection rules.

Pirsa: 18050062 Page 35/45

III. New Phenomenology

Baumann, HSC, Porto [1804.03208]

Pirsa: 18050062 Page 36/45

III. New Phenomenology

$$M_c(t) \sim e^{-2\mathcal{A}(t)}$$

Time dependence of the cloud gets imprinted on GW observables:

Signal from the Cloud

Signal from the Binary

Signal from the Cloud

Resonance depletion of the cloud creates a **time-dependent** change in the continuous GW signal.

$$P_{\rm gw}(t) \propto \left(\frac{M_c(t)}{M}\right)^2 lpha^{14}$$

Pirsa: 18050062

Signal from the Cloud

Resonance depletion of the cloud creates a **time-dependent** change in the continuous GW signal.

$$P_{\rm gw}(t) \propto \left(\frac{M_c(t)}{M}\right)^2 lpha^{14}$$

Pirsa: 18050062

Signal from the Binary

Finite-size effects of the cloud leave imprints on the **phase** of the binary waveform:

Motivates precision gravity and highly accurate waveform models.

Resonant depletion of the cloud also creates a **time-dependent** change in the finite-size effects on the waveform.

Cutler et. al. [9208005]

Pirsa: 18050062 Page 40/45

Spin-Induced Quadrupole

Spinning motion of the cloud induces a quadrupole in the **polar** direction.

Imprints on the phase of waveforms at 2PN order.

Poisson [9709032]

Pirsa: 18050062 Page 41/45

Tidal Deformability

Tidal Love number quantifies the **quadrupolar response** of the cloud to the tidal force created by the companion.

Imprints on the phase of waveforms at **5PN** order.

Flanagan, Hinderer [0709.1915] Damour, Nagar [0906.0096] Binnington, Poisson [0906.1366]

Pirsa: 18050062 Page 42/45

Resonance Frequency

Resonance depletion occurs at specific GW frequency from the binary.

Pirsa: 18050062 Page 43/45

Summary and Outlook

Presence of an orbiting companion induces resonant transitions of the cloud to a decaying mode.

The new phenomenologies provide independent probes of the properties of the cloud, such as the mass of the scalar field.

Can we also infer **other properties**, such as the spins and self-interactions of the ultralight boson? Work in progress

Pirsa: 18050062 Page 44/45

Thank You Very Much!

Pirsa: 18050062 Page 45/45