Title: Asymptotic performance of port-based teleportation
Date: May 04, 2018 11:00 AM
URL: http://pirsa.org/18050051
Abstract: < p >Port-based teleportation (PBT) is a variant of the well-known task of quantum teleportation in which Alice and Bob share multiple entangled states called "ports". While in the standard teleportation protocol using a single entangled state the receiver Bob has to apply a non-trivial correction unitary, in PBT he merely has to pick up the right quantum system at a port specified by the classical message he received from Alice. PBT has applications in instantaneous non-local computation and can be used to attack position-based quantum cryptography. Since perfect PBT protocols are impossible, there is a trade-off between error and entanglement consumption (or the number of ports), which can be analyzed using representation theory of the symmetric and unitary groups. In particular, without loss of generality the resource state can be assumed to have a â€œpurified" Schur-Weyl duality symmetry. I will give an introduction to the task of PBT and its symmetries, and show how the asymptotics of existing formulas for the optimal performance for a given number of ports can be derived using a connection between representation theory and the Gaussian unitary ensemble.</p>
<p>Joint work with M. Christandl, C. Majenz, G. Smith, F. Speelman \& M. Walter</p>

Asymptotic performance of port-based teleportation

Felix Leditzky
(JILA \& CTQM, University of Colorado Boulder)
Joint work with
M. Christandl, C. Majenz, G. Smith, F. Speelman, M. Walter (to appear soon on arXiv)
Perimeter Institute, Waterloo
4 May 2018
CTQM

Standard teleportation protocol

Standard teleportation protocol

Standard teleportation protocol

Port-based teleportation

Port-based teleportation

Port-based teleportation

Why is PBT interesting?

- Since partial trace commutes with $U^{\otimes N}$, PBT is unitarily covariant (details later).
- PBT enables instantaneous non-local quantum computation (INQC).
- INQC can be used to break position-based cryptography.

Caveat

Unitary covariance leads to the fact that perfect PBT is impossible with finite resources.
[Ishizaka and Hiroshima 2008]

Variants of PBT

- Hence, need to allow for error in protocol, leading to deterministic and probabilistic PBT.
- Deterministic PBT: Protocol always yields final state that approximates target state.
- Probabilistic PBT: Protocol yields exact target state with certain success probability.
- Goal of this talk: Understand symmetries of PBT and determine asymptotic performance of standard protocols.

Outline

1 Operational setting \& bounds on protocols

2 Symmetries \& representation theory

3 Main results: Asymptotics of standard PBT protocols

4 Proof methods

5 Concluding remarks

Operational setting

- Protocol: Alice implements a collective measurement on $A_{0} A_{1} \ldots A_{N}$ using a POVM $E=\left\{E^{(i)}\right\}_{i=1}^{N}$.
- Alice sends measurement outcome to Bob.
- Bob selects the right port that holds an (approximate) copy of target state and discards the rest.
- Selecting B_{i} corresponds to the quantum operation $\operatorname{Tr}_{B_{i}}$.
- The pair $(|\varphi\rangle, E)$ determines the PBT protocol.

Deterministic PBT

- In deterministic PBT the protocol always yields a final state as an approximation to the target state.
- Hence, PBT protocol is supposed to simulate perfect d-dimensional channel.
- Figure of merit: entanglement fidelity of PBT protocol \wedge to identity channel id: $\mathbb{C}^{d} \rightarrow \mathbb{C}^{d}$:

$$
\begin{aligned}
& \quad F_{d}=F(\Lambda, \mathrm{id})=\left\langle\Phi_{A^{\prime} A}^{+}\right|(\mathrm{id} \otimes \Lambda)\left(\Phi_{A^{\prime} A}^{+}\right)\left|\Phi_{A^{\prime} A}^{+}\right\rangle . \\
& \left|\Phi^{+}\right\rangle_{A^{\prime} A}=\frac{1}{\sqrt{d}} \sum_{x}|x\rangle|x\rangle \text { is a max. entangled state. }
\end{aligned}
$$

- Alternative: diamond norm distance to identity channel.

Deterministic PBT and state discrimination

- Deterministic PBT \qquad
state discrimination of the uniformly drawn states
$\omega_{A^{N} B}^{(i)}=\operatorname{Tr}_{B_{i c}} \varphi_{A^{N} B^{N}}$.
[Ishizaka and Hiroshima 2009]
- Success probability q of discriminating between $\omega^{(i)}$:

$$
q=\frac{d^{2}}{N} F_{d}
$$

- State discrimination: pretty good measurement as POVM.
- Further protocol simplification: N maximally entangled states $\left|\Phi^{+}\right\rangle_{A_{i} B_{i}}=\frac{1}{\sqrt{d}} \sum_{x}|x\rangle_{A_{i}}|x\rangle_{B_{i}}$ as ports.

Probabilistic PBT

- Probabilistic PBT yields the exact target state with success probability p_{d} and aborts otherwise.
- Extended POVM $E_{\text {prob }}=\left\{E^{(i)}\right\}_{i=0}^{N}$, where $E^{(0)}$ corresponds to abortion of the protocol.
- Probabilistic PBT is a special case of deterministic PBT.
- Again: consider special case where $|\varphi\rangle_{A^{N} B^{N}}=\left|\Phi^{+}\right\rangle_{A B}^{\otimes N}$.

Existing results: optimal performance of PBT

- Det. PBT with PGM as POVM and EPR pairs as ports:

$$
F_{d}^{\mathrm{PGM}, \mathrm{EPR}} \geq 1-\frac{d^{2}-1}{N}
$$

[Ishizaka and Hiroshima 2008; Beigi and König 2011]

- Converse bound for arbitrary POVM and resource state:

$$
F_{d}^{*} \leq 1-\frac{1}{4(d-1) N^{2}}+O\left(N^{-3}\right) . \quad[\text { Ishizaka 2015] }
$$

- Closed form for $d=2$:
[Ishizaka and Hiroshima 2009]

$$
\begin{aligned}
F_{2}^{P G M} & =F_{2}^{P G M, E P R}=1-\frac{3}{4 N}+o\left(N^{-1}\right) \\
p_{2}^{\mathrm{EPR}} & \sim 1-\left(\frac{8}{\pi N}\right)^{-1 / 2}+o\left(N^{-1 / 2}\right) .
\end{aligned}
$$

Existing results: optimal performance of PBT

- PBT has a lot of inherent symmetries
\longrightarrow use representation theory (RT)!
- [Studziński et al. 2017] and [Mozrzymas et al. 2017]: exact expressions for F_{d} and p_{d} in terms of RT quantities, hard to calculate.
$>$ To state these: understand symmetries and RT of PBT.
- Our main results: Determine the asymptotics of these expressions for $F_{d}^{P G M, E P R}$ and $p_{d}^{\text {EPR }}$ to first order.

Symmetries

- Permutation symmetry:

Every port B_{i} is equally good for teleportation
$\longrightarrow S_{N}$-symmetry of $\rho_{B^{N}}=\operatorname{Tr}_{A^{N}} \varphi$.

- Similar symmetry for POVM elements
$\longrightarrow S_{N}$-symmetry of $E^{(i)}$.
- Unitary invariance:

The protocol works equally well for all input states
$\longrightarrow U_{d}$-symmetry of $\rho_{B^{N}}$.

Symmetries

Proposition: Symmetries of PBT

Every PBT protocol can be symmetrized to one with entanglement fidelity no worse than the original one, and:

- Resource state is a purification of a symmetric Werner state, i.e., invariant under $U^{\otimes N} \otimes \bar{U}^{\otimes N}$ and S_{N}.
- POVM elements form an orbit under the S_{N}-action, and are each invariant under $\bar{U}_{A_{0}} \otimes U_{A}^{\otimes N}$.
- Effective channel $\mathbb{C}^{d} \rightarrow \mathbb{C}^{d}$ is covariant w.r.t. the unitary group.
"Folklore" results, proofs in our paper and C. Majenz's PhD thesis.

Schur-Weyl duality

- Resource state invariant under both $U_{d^{-}}$and S_{N}-action \longrightarrow structure determined by Schur-Weyl duality.
- S_{N}-action: $\left|\psi_{1}\right\rangle \otimes \ldots \otimes\left|\psi_{N}\right\rangle \xrightarrow{\pi}\left|\psi_{\pi^{-1}(1)}\right\rangle \otimes \ldots \otimes\left|\psi_{\pi^{-1}(N)}\right\rangle$
- U_{d}-action: $\left|\psi_{1}\right\rangle \otimes \ldots \otimes\left|\psi_{N}\right\rangle \xrightarrow{U} U\left|\psi_{1}\right\rangle \otimes \ldots \otimes U\left|\psi_{N}\right\rangle$
- Schur-Weyl decomposition:

$$
\left(\mathbb{C}^{d}\right)^{\otimes N} \cong \bigoplus_{\lambda \vdash_{d} N}[\lambda] \otimes V_{\lambda}
$$

- Irreducible representations:
$\triangleright[\lambda]$ is an irrep of S_{N} with $\operatorname{dim}[\lambda]=d_{\lambda}$.
$\triangleright V_{\lambda}$ is an irrep of U_{d} with $\operatorname{dim} V_{\lambda}=m_{\lambda}$.

Exact expressions for F_{d} and p_{d} using RT

Exact expressions for deterministic and probabilistic PBT
[Studziński et al. 2017; Mozrzymas et al. 2017]
$>F_{d}^{\mathrm{PGM}, \mathrm{EPR}}=\frac{1}{d^{N-2}} \sum_{\alpha \vdash_{d} N-1}\left(\sum_{\mu=\alpha+\square} \sqrt{d_{\mu} m_{\mu}}\right)^{2}$,
where $\mu=\alpha+\square$ denotes a Young diagram $\mu \vdash_{d} N$ obtained from $\alpha \vdash_{d} N-1$ by adding a single box (!).
$>p_{d}^{\mathrm{EPR}}=\frac{1}{d^{N}} \sum_{\alpha \vdash_{d} N-1} m_{\alpha}^{2} \frac{d_{\mu^{*}}}{m_{\mu^{*}}}$,
where μ^{*} is the Young diagram obtained from $\alpha \vdash_{d} N-1$ by adding a single box such that $N \frac{m_{\mu} d_{\alpha}}{m_{\alpha} d_{\mu}}$ is maximal.

Exact expressions for F_{d} and p_{d} using RT

Exact expressions for deterministic and probabilistic PBT
[Studziński et al. 2017; Mozrzymas et al. 2017]
$>F_{d}^{\mathrm{PGM}, \mathrm{EPR}}=\frac{1}{d^{N-2}} \sum_{\alpha \vdash_{d} N-1}\left(\sum_{\mu=\alpha+\square} \sqrt{d_{\mu} m_{\mu}}\right)^{2}$,
where $\mu=\alpha+\square$ denotes a Young diagram $\mu \vdash_{d} N$ obtained from $\alpha \vdash_{d} N-1$ by adding a single box (!).
$>p_{d}^{\mathrm{EPR}}=\frac{1}{d^{N}} \sum_{\alpha \vdash_{d} N-1} m_{\alpha}^{2} \frac{d_{\mu^{*}}}{m_{\mu^{*}}}$,
where μ^{*} is the Young diagram obtained from $\alpha \vdash_{d} N-1$ by adding a single box such that $N \frac{m_{\mu} d_{\alpha}}{m_{\alpha} d_{\mu}}$ is maximal.

Main result 1: deterministic PBT

For deterministic PBT using PGM and EPR, we prove:

$$
F_{d}^{\mathrm{PGM}, \mathrm{EPR}}=1-\frac{d^{2}-1}{4 N}+o\left(N^{-1}\right)
$$

- Recovers qubit result $F_{2}^{P G M, E P R}=1-\frac{3}{4 N}+o\left(N^{-1}\right)$.
- Shows that $F_{d}^{\text {PGM,EPR }} \geq 1-\frac{d^{2}-1}{N}$ is not tight. (previously known from numerics)

Main result 2: probabilistic PBT

For probabilistic PBT using EPR, we prove:

$$
p_{d}^{E P R}=1-\sqrt{\frac{d}{N-1}} \mathbb{E}\left[\lambda_{\max }(\mathbf{G})\right]+o\left(N^{-1}\right),
$$

where \mathbf{G} is a Hermitian, traceless random $d \times d$ matrix with independent Gaussian RVs as entries.

- For qubits (i.e., \mathbf{G} is a 2×2 matrix), one can prove

$$
\mathbb{E}\left[\lambda_{\max }(\mathbf{G})\right]=2 \pi^{-1 / 2}
$$

- Hence, our result asymptotically recovers the qubit result

$$
p_{2}^{\mathrm{EPR}} \sim 1-\sqrt{\frac{8}{\pi N}}+o\left(N^{-1 / 2}\right) .
$$

Table of Contents

1 Operational setting \& bounds on protocols

2 Symmetries \& representation theory

3 Main results: Asymptotics of standard PBT protocols

4 Proof methods

5 Concluding remarks

Spectrum estimation \& random matrix theory

- Recall the decomposition of $\left(\mathbb{C}^{d}\right)^{\otimes N}$ obtained from Schur-Weyl duality,

$$
\left(\mathbb{C}^{d}\right)^{\otimes N} \cong \underset{\lambda \vdash_{d} N}{ }[\lambda] \otimes V_{\lambda}
$$

- Consider the projective measurement $\left\{P_{\lambda}\right\}_{\lambda \vdash_{d} N}$, where P_{λ} projects onto $[\lambda] \otimes V_{\lambda}$.

Spectrum estimation

Let \mathbf{Y}_{N} denote the outcome of the measurement $\left\{P_{\lambda}\right\}_{\lambda \vdash_{d} N}$ applied to $\rho^{\otimes N}$ where ρ is a state. Then, as $N \rightarrow \infty$,

$$
\frac{1}{N} \mathbf{Y}_{N} \xrightarrow{D} \operatorname{spec}(\rho) .
$$

Spectrum estimation \& random matrix theory

- For $\rho=\frac{1}{d} \mathbb{1}$ the corresponding outcome probability distribution $p_{d, N}$ of the measurement $\left\{P_{\lambda}\right\}_{\lambda \vdash_{d} N}$ is called Schur-Weyl distribution:

$$
p_{d, N}=d_{\lambda} m_{\lambda} / d^{N} .
$$

- Spectrum estimation: $\frac{1}{N} \mathbf{Y}_{N} \xrightarrow{D}(1 / d, \ldots, 1 / d)$
- A "typical" Young diagram w.r.t. $p_{d, N}$ has

$$
\lambda_{1} \approx \frac{N}{d}+2 \sqrt{N} \quad \lambda_{d} \approx \frac{N}{d}-2 \sqrt{N},
$$

and the remaining λ_{i} 's interpolate between these.

Spectrum estimation \& random matrix theory

- To make this exact, define the centered and normalized RV

$$
\mathbf{A}_{N}=\frac{\lambda_{N}-(N / d, \ldots, N / d)}{\sqrt{N / d}}
$$

where $\lambda_{N} \sim p_{d, N}$ takes values in the set of Young diagrams.

- Let \mathbf{M} be a Hermitian random matrix whose entries are independent Gaussian RVs
(df: $\exp \left(-\frac{1}{2} \operatorname{Tr} \mathbf{H}^{2}\right)$ where \mathbf{H} is a Hermitian matrix-valued RV.)
- Define $\mathbf{M}_{0}=\mathbf{M}-\frac{\operatorname{Tr}(\mathbf{M})}{d} \mathbb{1}$, called the traceless Gaussian unitary ensemble $\operatorname{GUE}_{0}(d)$.

Spectrum estimation \& random matrix theory

Fluctuations of Schur-Weyl distribution [Johansson 2001]

For the centered and normalized $R V A_{N}$,

$$
\mathbf{A}_{N} \xrightarrow{D} \operatorname{spec}(\mathbf{G}),
$$

where $\mathbf{G} \sim \operatorname{GUE}_{0}(d)$ is drawn from the traceless Gaussian unitary ensemble.

- A strengthening of Johansson's result allows us to determine asymptotics of the RT-formulae by [Studziński et al. 2017] and [Mozrzymas et al. 2017].

Proof idea: probabilistic PBT

- Recall formula: $p_{d}^{\text {EPR }}=\frac{1}{d^{N}} \sum_{\alpha \vdash_{d} N-1} m_{\alpha}^{2} \frac{d_{\mu^{*}}}{m_{\mu^{*}}}$,
where μ^{*} is the Young diagram obtained from $\alpha \vdash_{d} N-1$ by adding a single box such that $N \frac{m_{\mu} d_{\alpha}}{m_{\alpha} d_{\mu}}$ is maximal.
- First step: Prove that

$$
\frac{m_{\mu} d_{\alpha}}{m_{\alpha} d_{\mu}}=\frac{\alpha_{i}-i+d+1}{N}
$$

\longrightarrow maximized by choosing $i=1$.

- Second step: Rewrite $p_{d}^{\text {EPR }}=\frac{N}{d} \mathbb{E}_{\alpha}\left[\left(\alpha_{1}+d\right)^{-1}\right]$.
- Show result by proving uniform integrability of A_{i}^{k}. (such that $\mathbb{E}_{\alpha}\left[A_{1}^{k}\right] \xrightarrow{N \rightarrow \infty} \mathbb{E}\left[\lambda_{\max }(\mathbf{G})^{k}\right]$)

Proof idea: deterministic PBT

- Recall: $F_{d}^{\text {PGM, EPR }}=\frac{1}{d^{N-2}} \sum_{\alpha \vdash_{d} N-1}\left(\sum_{\mu=\alpha+\square} \sqrt{d_{\mu} m_{\mu}}\right)^{2}$, where $\mu=\alpha+\square$ denotes a Young diagram $\mu \vdash_{d} N$ obtained from $\alpha \vdash_{d} N-1$ by adding a single box.
Rewrite: $F_{d}^{\text {PGM, } \mathrm{EPR}} \propto \mathbb{E}_{\alpha}\left[\left(\sum_{\mu=\alpha+\square} f\left(\alpha_{i}^{-1}, \mu_{i}^{-1}\right)\right)^{2}\right]$.
- Remember: Typical Young diagrams have echelon form, where you can add a box to every row.
- Contribution of atypical YD is negligible in the expectation value $\mathbb{E}_{\alpha}[\cdot]$, and hence $\mu=\alpha+\square \longrightarrow \mu=\alpha+e_{i}$.

Summary

- We discussed port-based teleportation (PBT) and its two variants:
\triangleright deterministic PBT with entanglement fidelity F_{d};
\triangleright probabilistic PBT with success probability p_{d}.
- PBT protocols have a number of inherent symmetries that give rise to closed representation-theoretic formulas for F_{d} and p_{d}.
- Using a connection between Young diagrams and Gaussian unitary ensembles, we were able to determine the asymptotics of some of these formulae.

Converse bound

- We also show the following general converse on PBT:

Main result 3: Converse bound

For an arbitrary PBT protocol,

$$
F_{d} \leq \begin{cases}\frac{\sqrt{N}}{d} & \text { if } N \leq d^{2} / 2 \\ 1-\frac{d^{2}-1}{16 N^{2}} & \text { else. }\end{cases}
$$

- Tighter for $d>2$ than converse bound

$$
F_{d} \leq 1-\frac{1}{4(d-1) N^{2}}+O\left(N^{-3}\right) \text { from [Ishizaka 2015]. }
$$

Converse bounds: comparison

Open problems

- [Mozrzymas et al. 2017] derive the following closed expression of F_{d}^{*} in the fully optimized case:

$$
F_{d}^{*}=d^{-N-2} \max _{c_{\mu}} \sum_{\alpha \vdash_{d} N-1}\left(\sum_{\mu=\alpha+\square} \sqrt{c_{\mu} d_{\mu} m_{\mu}}\right)^{2}
$$

where the optimization is over all sets of nonnegative coefficients $\left\{c_{\mu}\right\}$ such that

$$
\sum_{\mu \vdash_{d} N} \frac{c_{\mu} d_{\mu} m_{\mu}}{d^{N}}=1
$$

- Open problem: Determine asymptotics of F_{d}^{*} using (extension of) our methods (or in another way)!

References

```
Beigi, S. and R. König (2011). New Journal of Physics 13.9, p.093036. arXiv: 1101.1065 [quant-ph].
Buhrman, H. et al. (2014). SIAM Journal on Computing 43.1, pp. 150-178. arXiv: 1009.2490 [quant-ph].
Ishizaka, S. (2015). arXiv preprint. arXiv: 1506.01555 [quant-ph].
Ishizaka, S. and T. Hiroshima (2008). Physical Review Letters 101.24, p. 240501. arXiv: 0807.4568 [quant-ph].
- (2009). Physical Review A 79.4, p. 042306. arXiv: 0901.2975 [quant-ph]
Johansson, K. (2001). Annals of Mathematics 153.1, pp. 259-296. arXiv: math/9906120 [math.C0]
Keyl, M. and R. F. Werner (2005). World Scientific, pp. 458-467. arXiv: quant-ph/0102027.
Mozrzymas, M. et al. (2017). arXiv preprint. arXiv: 1707.08456 [quant-ph].
Studziński, M. et al. (2017). Scientific Reports 7, p. 10871. arXiv: 1612.09260 [quant-ph].
```

Thank you very much for your attention!

