Title: Conclusions and Outlook

Date: May 11, 2018 02:30 PM

URL: http://pirsa.org/18050037

Abstract:

Pirsa: 18050037 Page 1/35

Looking for new fundamental physics with gravitational waves and black holes

Sergei Dubovsky CCPP (NYU)

Pirsa: 18050037 Page 2/35

Pirsa: 18050037 Page 3/35

Pirsa: 18050037 Page 4/35

The Dawn of Precision Black Hole Physics

- ▶ Totally exciting astronomy/astrophysics
- Can we also do "new fundamental" physics with these data?

Pirsa: 18050037 Page 5/35

New Fundamental Physics

(for the purpose of this talk): impossible to decide true or false for an infinitely smart theorist equipped with an infinitely powerful computer

- ◆Shouldn't be possible to derive from known physics
- ◆Should be consistent with known physics
- ◆Should be consistent with known math
- ◆Should be consistent with known common sense

Pirsa: 18050037 Page 6/35

Three "Frontiers" (at least)

- ◆(High Energy) Precision Frontier: look for "high" energy modifications of gravity
- ◆(Low Energy) Precision Frontier: look for IR modifications of gravity
- ◆Energy Frontier: look for new particles at the "collider" energy scale

10 orders of magnitude in energy in our case!

Pirsa: 18050037 Page 7/35

"High Energy" modifications of gravity

recent detailed study by Endlich, Gorbenko, Huang, Senatore, 1704.01590

$$S_{gr} \simeq M_{Pl}^2 \int \sqrt{g} (R + \frac{R^4}{\Lambda^6} + \dots)$$

Better to call high curvature rather than high energy

$$\Lambda^{-1} \sim 10 \text{ km}$$

- **◆**Consistent and familiar framework
- ◆Only high frequency detectors (LIGO,...) have a shot
- ◆Need to be *really* lucky
- ◆Interesting theoretical challenge to construct a UV model

Pirsa: 18050037 Page 8/35

"Low Energy" modifications of gravity: graviton mass

- SD, hep-th/0409124 SD, Tinyakov, Tkachev, hep-th/0411158 SD, Tinyakov, Zaldarriaga, 0706.0288
- **◆**Gravitational waves are massive
- ◆Scalar and vector perturbations are the same as in GR
- ◆Flat cosmological solutions are the same as in GR
- ◆LIGO bound on the graviton mass is meaningful
- ◆Need to be lucky
- Interesting theoretical challenge to construct a UV model

...and signals may propagate instantaneously...

Pirsa: 18050037 Page 9/35

"collider regime:"

Penrose Process

Penrose'69; Zeldovich'71; Misner'72; Starobinsky'73

Pirsa: 18050037 Page 10/35

Penrose Process

Penrose'69; Zeldovich'71; Misner'72; Starobinsky'73

Extracts angular momentum and mass from a spinning black hole

Pirsa: 18050037 Page 11/35

Superradiance for a massive boson

Press & Teukolsky'72 Damour et al.'76; Gaina et al.'78; Detweiler'80; Zouros & Eardley'79;

Particle Compton Wavelength comparable to the size of the Black Hole

Pirsa: 18050037 Page 12/35

Gravitational Atom in the Sky

Arvanitaki, Dimopoulos, SD, Kaloper, March-Russel 0904.4720 Arvanitaki, SD 1004.3558

Far from the Black Hole: Newtonian Potential

$$\alpha_{EM} = \frac{e^2}{4\pi} \longrightarrow \alpha = G_{\rm N} M_{\rm BH} \mu_a = R_g \mu_a$$

$$E_{\text{binding}} = -\frac{\alpha_{EM}^2 m_e}{2n^2} \longrightarrow E_{\text{binding}} = -\frac{\alpha^2 \mu_a}{2n^2}$$

fermions \longrightarrow bosons

Occupation number

 $1 \longrightarrow 10^{75}$

Spin Gap for the QCD Axion

Pirsa: 18050037 Page 14/35

Combined Exclusion Plot

Arvanitaki, Baryakhtar, Huang 1411.2263

Pirsa: 18050037 Page 15/35

Standard Model Landscape

Arkani-Hamed, SD, Nicolis, Villadoro hep-th/0703067

What are the vacua in the Standard Model?

Radion Potential

 $AdS_3 \times S_1$ vacuum with

 $2\pi R_0 \approx 20\mu \text{m}$ $l_{AdS} \approx 3.7 \cdot 10^{27} \text{cm}$

Trichamoeba sp.
typical habitant of the SM Landscape

Pirsa: 18050037 Page 16/35

Many More Vacua

Extremal Reissner-Nordstrom black holes connect between flat and $AdS_2 \times S_2$ vacua

$$ds^{2} = (1 - \frac{r_{h}}{r})^{2}dt^{2} - \frac{dr^{2}}{(1 - \frac{r_{h}}{r})^{2}} - r^{2}d\Omega_{2}^{2}$$

Pirsa: 18050037 Page 17/35

Particles in $AdS_3 \times S_1$ vacuum

- **◆**All of the Standard Model
- ◆Radion (a cousin of graviton) with

$$m_R \sim \frac{R_0^{-2}}{M_{Pl}} \sim 10^{-40} \text{GeV}$$

◆Axion (a cousin of photon/Aharonov-Bohm flux) with

$$m_a \sim e R_0^{-2} e^{-2\pi R_0 m_e} \sim e^{-10^8}$$

$$f_a^2 \sim \frac{1}{2\pi R_0 e^2}$$

Exponentially light axion comes from power-like small f_a

Pirsa: 18050037 Page 18/35

String Lanscape:

Plenitude (~ 10⁵⁰⁰ ') of vacua

Ultimate Unification of Fundamental Physics and Geography

Pirsa: 18050037 Page 19/35

Pirsa: 18050037

In both cases no reasons to apply Occam's razor

Pirsa: 18050037 Page 21/35

Axions in String Theory

Exactly the same story! Starting from a higher dimensional theory, and very small and very complicated internal compact manifold

$$\mu_a \propto e^{-\frac{M_{Pl}}{f_a}}$$

suggests

$$\frac{M_{Pl}}{f_a} \sim 100$$

the same factor is suggested by gauge coupling unification

Pirsa: 18050037 Page 22/35

Combined Exclusion Plot

Arvanitaki, Baryakhtar, Huang 1411.2263

Pirsa: 18050037 Page 23/35

Planckian QCD axion

- ♦ This is what we mostly talked about. l=1, small α regime
- **♦**Spindown and annihilations signals
- ◆Suggests no new physics up to Planck scale. Somewhat surprising theoretically, but maybe not crazy given how much new physics we saw at the LHC.

Pirsa: 18050037 Page 24/35

Expected Events from Annihilations

Arvanitaki, Baryakhtar, Dimopoulos, SD, Lasenby 1604.03958

Large uncertainties coming from tails of BH mass distribution

Pessimistic: flat spin distribution and 0.1 BH/century

Realistic: 30% above spin of 0.8 and 0.4 BH/century

Optimistic: 90% above spin of 0.9 and 0.9 BH/century

Pirsa: 18050037 Page 25/35

Pirsa: 18050037 Page 26/35

GUT QCD axion

- \bullet Running out of BHs. l>1, large α regime
- ◆Spindown and annihilations signals are too small
- **♦**Most conservative from theory viewpoint
- ◆Need to think how to go for high frequencies

Arvanitaki, Geraci 1207.5320

- ◆Need to understand axion non-linearities. Bosenova burst?
- ◆Need to look for possible ways to transmit GW power into lower frequencies:
- ♦6g-5g transitions?
- ✦ Resonances in binary systems?

Baumann, Sheng Chia, Porto 1804.03208

Pirsa: 18050037 Page 27/35

Transition Events Estimates

• Lower number of observable sources due to signal duration

Pirsa: 18050037 Page 28/35

GUT QCD axion

- \bullet Running out of BHs. l>1, large α regime
- ◆Spindown and annihilations signals are too small
- **♦**Most conservative from theory viewpoint
- ◆Need to think how to go for high frequencies

Arvanitaki, Geraci 1207.5320

- ◆Need to understand axion non-linearities. Bosenova burst?
- ◆Need to look for possible ways to transmit GW power into lower frequencies:
- ♦6g-5g transitions?
- ✦ Resonances in binary systems?

Baumann, Sheng Chia, Porto 1804.03208

Pirsa: 18050037 Page 29/35

Transition Events Estimates

• Lower number of observable sources due to signal duration

Pirsa: 18050037 Page 30/35

Remaining 10 orders of magnitude in masses:

Many ways to be inventive!

Some of it was covered in Richard Brito talk

Pirsa: 18050037 Page 31/35

Effects on BH accretion rate

Arvanitaki, SD 1004.3558

Axion spins BH down and accelerates the accretion rate

Pirsa: 18050037 Page 32/35

Axion Monodromy

SD, Gorbenko, 1012.2893

Figure 1: Extrema of the axion potential at N=3 for equal quark masses (left), and for mass ratios 1:1.2:1.4 (right).

Pirsa: 18050037 Page 33/35

Figure 2: A total energy release as a function of a characteristic temperature of a fireball for different values of parameters α and l. Two red axes on top represent a corresponding black hole mass and time scale for $\alpha = 0.5$, l = 1. For the blue line a black hole mass is 5 times larger than the value on the red axis and a time scale is 5 times longer. For the green line a black hole is 5 times lighter and a time scale is $\sim 5^{1/3}$ times longer.

Pirsa: 18050037 Page 34/35

Conclusions

- ◆Thank you Mina, Masha, William and Robert!
- ◆Thank you everybody!
- ◆We need to repeat this!
- ◆Hopefully one of the next times we will be talking also about mass/spin determinations of axions

Pirsa: 18050037 Page 35/35