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1. The Kerr black hole

“The most shattering experience has been the realization
that [Kerr’s| solution of Einstein’s equations of general

relativity provides the absolutely exact representation of
untold numbers of massive black holes that populate the

universe.” S. Chandrasekhar (1975).
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The Kerr spacetime

< Cross section of a Kerr BH
| Penrose-Carter diagram
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ergoregion

a=(0.8M
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Black hole mechanics

e 1973 Four Laws of Black Hole Mechanics (GR)
Q@ First Law:
_— K 2
‘-H JA[ — ) ,‘4 g! a(]
c“d SWGd + Qd.

© Sccond Law: dA > ()

(NB. k is surface gravity and €2 is angular frequency of horizon).

Bardeen, Carter & Hawking (1973)

“It can be seen that x/87 is analogous to temperature in the same

way that A is analogous to entropy. It should however be emphasized
that /87 and A are distinct from the temperature and entropy of

the black hole.”
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Entropy

e 1976 Hawking radiation (GR + QFT)

e Black holes radiate like a black body with a temperature
and entropy

T K h g ‘1 A:b(‘:‘
H=— : O =" TR
21 kye 4 Gh

@ The entropy in the Universe is dominated by black holes!
Object | Entropy (in JK ')
The Sun ~ 10%

BH(Sol) ~ 107
BH(Sag A*) | ~ 10°7 .

e GW150914: merger of two black holes: 36 + 29 — 62 + 3.
This created an entropy 1.7 - 10%2 times of that in our Sun.
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BH superradiance

@ Penrose process: A process in which a black hole releases
energy, angular momentum and/or charge by increasing its
horizon area:

e Particle-splitting in the ergoregion
e Tidal heating
e The Blandford-Znajek effect

e Black hole superradiance

Rotational superradiance: A stimulated or spontaneous
radiation-enhancement mechanism by which energy &
angular momentum is extracted from a system:
e Zeldovich’s conducting cylinder
e Black hole superradiance
e The Nottingham draining bathtub experiment
[Torres et al.;, Nature Phys. 13, 833 (2017)|
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BH superradiance

A rotating BH can be ‘stimulated’ to shed mass and angular
momentum by a bosonic field.

A perturbation v has a reflection coefficient R > 1 iff
w(w—ms) <0

where ¢ ~ exp(—iwt + im¢) and Q = a/(2Mr,) is the
angular frequency of event horizon.

Why? 2nd law: dA > ()

Recall first law: dM = &dA + QdJ

K dA dJ 1
gm =1 - SZ(H\] = ; X W (UJ - IHSZ)

@ Since dA is positive, dM must depend on sign of w(w — m$2).

Sam Dolan (Sheffield) Superradiant instabilities 8th May 2018 19 / 60

Pirsa: 18050028 Page 8/40



Example: Absorption by a Kerr black hole

Consider a monochromatic wave
incident on a Kerr black hole in
aCUUulI.

Parameter: Mw = f\i
T

The absorption cross section o,
can be calculated from ODEs.
o0

47
T abs (U)) — C,u'l'g

too 41 )
Z Z |S51mw(’}')|a simew-

(:‘5| rn=—I

@ Low-frequency co-rotating modes
undergo superradiance

Tabs Can be negative
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cross sections (v = 0) for EM & GW waves
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Superradiant instabilities

The effective potential

Ergo-region iarrier  © Potential Well

Exponential

: growth region
“Mirror”
atr-1/p

-
=
Q
o
=)
e

Black Hole Horizon ’ .

Arvanitaki, Dimopoulos, Dubovsky et al.,
“String Axiverse”, Phys. Rev. D 81, 123530 (2010) arXiv:0905.4720
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Toy model

Potential
Barrier

'Mirror'

Travelling wave Standing wave

w = w — ms, Q=a/2Mr,
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Toy model

Potential
Barrier

'Mirror'

Travelling wave Standing wave

w = w — ms, Q=a/2Mr,
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Bound states of scalar field

@ A scalar field ® satisfying (O® — *® = (0 which is regular on H* and as
r — oo has a discrete spectrum of complex frequencies

w=w+ 1w
labelled by azimuthal m and total [ ang. mom., and overtone n.

In limit o« = Mp < [, there is a hydrogenic spectrum with fine
structure corrections:
o (20 — 3n + 1)a 2am /M o®
14172 i+ )i+ T
wheren =n+1+1.

The fine and hyperfine structure terms were recently found by
Baumann, Chia & Porto, arXiv: 1804.03208.

For Schwarzschild BH, all states decay v < 0.

For Kerr BH, states satisfying the superradiant condition, 0 < w < mf2
will grow, v > 0. The co-rotating dipole mode [ = m = 1 is dominant
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Bound states of scalar field

The bound state spectrum (w/zt) is determined by two dimensionless
parameters

GMpu horizon radius
~

0<a, = — < Mup = .
- ’ l he Compton wavelength

For superradiance, we need g < mf), and © < 1/2M.

The instability is significant for M ~ 1, but exponentially-suppressed
for large M .

For a pion 7V + astrophysical BH, My ~ 10" (1)

The instability is only significant for primordial black holes .. .or
ultra-light bosonic fields such as axions.
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Growth of bound states: Key results

e Zouros & Eardley (1979):
My ~ 10 T 184Mr My > 1.

e Detweiler (1980):

1 t
My ~ —E(A-Tﬂ,)"’ (n—Q)ry, Mpu<1, =1
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Growth of bound states: Key results

e Zouros & Eardley (1979):
My ~ ](]77(¢=*1-3==1A-1;;,? Miu > 1.

e Detweiler (1980):

1 {
My ~ —ﬁ(ﬂsf'ﬂ)'] (n—Q)ry, Mp<l1, =1

e Numerical results for intermediate regime M pu ~ 1 found by
Furuhashi et al. (2004), Cardoso et al. (2005), Dolan (2007)
and others.

e Minimum e-folding time 7,in = 1/Viax,

_ . . M

Tonin =~ 5.81 x 10° G]\-f/(.'“ ~ 29 sec X (

for a = 0.997M and My ~ 0.45.
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Unstable Bound States: My > 0
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What is the profile of the bound states?
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How do BH parameters evolve?

(in the linear regime)

Evolution of black hole under superradiant instability

T T I I

Horizon area
gle /2n

~— stable

-

unstable
1 1

0.6 0.4 0.2
J/M?
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The Dirac field
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Bound states of the Dirac field

@ The Dirac field also has a bound state spectrum [Lasenby et al., Phys.
Rev. D 72, 105014 (2005)]

@ [t is also hydrogenic with fine & hyperfine structure [Dolan & Dempsey;,
CQG, 32 (2015) 184001]

o’ at 715 3n 3n Bimam/Ma 6
' + = = +

om2 A\ 8 2i+1 2+1

n ™
& ’)!)

e
cf. the scalar field spectrum:

W ~1— a” B ﬁ 1 (20 = 3n+1) 2am /M a” n
- n3(l+1/2)(1+1)

8T U 1/2)

fuc? 2n?2  nd

@ But all modes decay, so there is no instability

@ There is no (classical) superradiance for fermionic fields.
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Absence of Dirac superradiance

@ The Dirac current J* = WA*W is conserved: V,J* = 0.
@ The radial component of the current takes the form

p

J —
)

([BL () =[R2 (1)) (IS1(0)]* + [S2(0)]7)

and the spinor that is regular on the future horizon H* has the form

R, ’ BVA e -
(R.z) - ( 1 )”‘p(’w’*)» Py

implying that J” < 0 on r4. Hence there is a flux into the black hole.

@ Q. But what happened to the zeroth law dA > 07

@ A. The Dirac field violates the weak energy principle which asserts
that —7T.,,t%" > 0 for any timelike vector .
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Decay times for Dirac fields on Schwarzschild

A=-1, Oth
A=-1, 1st
A=+1, Oth
A=+1, 1st
A=-2, Oth
A=-2, 1st
0.0001
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AT
r L
i ’(/"'
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1e-10 £ (Mp)®
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M

Power-law scaling
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Instabilities: Proca field
(Massive vector boson)

e.g. ‘The string photiverse’:
spin-1 non-trivial gauge field configurations
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Bound states of the Proca field

@ The Proca field states have three spin polarizations: S = +1, 0 and —1.

@ Under spatial inversion, S = +1 and S = —1 are even-parity, and S = 0
is odd-parity.
@ In 2012, Joao Rosa & I looked at the Schwarzschild case a = 0, finding:

e The odd-parity S = 0 mode satisfies a 2nd-order radial
equation

* ot [+t
(d,i T Or2 o /(r) [“ +

*

e The even-parity S = £1 modes satisfy a pair of coupled
2nd-order ODEs.

* ] r]1}](\ (1(‘("%19\; '.%Lt‘(\ h(';_rL](\h as
i y YN l[.
Im(w/p) o< (Mp) 1+2S+5
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Bound states of the Proca field

There has been interest in calculating the growth rates for the Proca field
(massive vector boson) for several years. Highlights include:

@ “Superradiant instabilities in astrophysical systems”, Witek, Cardoso,

Ishibashi & Sperhake, Phys. Rev. D 87, 043513 (2013).

“Black-Hole Bombs and Photon-Mass Bounds”, Pani, Cardoso,
Gualtieri, Berti & Ishibashi Phys. Rev. Lett. 109, 131102 (2012).

“Superradiant Instability and Back-reaction of Massive Vector Fields
around Kerr Black Holes”, East & F. Pretorius, Phys. Rev. Lett. 119,
041101 (2017)

“A modern approach to superradiance”, Endlich & Penco, JHEP 2017:
52 (2017).

“Black Hole Superradiance Signatures of Ultralight Vectors”,
Baryakhtar, Lasenby & Teo, Phys. Rev. D 96, 035019 (2017).
“Massive Vector Fields in Kerr-NUT-(A)dS Spacetimes: Separability
and Quasinormal Modes”, Frolov, Krtous, Kubiznak & Santos,

arXiv:1804.00030.
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Bound states of the Proca field

@ Baryakhtar, Lasenby & Teo (2017) found an analytic approximation for
the growth rate:
Im(w) ~ (Mp)@ 22 (mQ — w)
@ East (2017) obtained numerical data for the growth rate from
time-domain simulations. This is Fig. 2 from BLT |

Mun(Mg)

0.1 102
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= 0070
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Separability of the Proca field

Frolov, Krtous, Kubiznak & Santos have shown something remarkable:
the equations governing the even-parity (S = £1) modes of the Proca
field are separable!

With the ansatz AY = BV, ¥ for the vector field, and a multiplicative
separability ansatz for &, FKKS find that

d | dR K2 2—q.0 qu° :
A I — Ri(r = 0
dr [ d?‘] * ( A * qr V v? ) r)

sin 6 df

df

1 d [m] )fzsl B [ K3 N 2—qpo  qop”

] SO = 0

.9 )
sin“ 0 qo V Ve
where

K, =am — (a”+r°)w, Kyp=m —awsin”0,

DD 2 9 2 2
¢ =1+ v°re, qo =1 —vacos“l, o =w+ av’(m — aw).

Here v is the separation constant (impose regularity on S(f) at poles)

In the limit @ — 0, S = Y},,(0) and w/v — p?/v? = —1(l + 1)
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The ‘Killing tower’

e A tower of ‘Killing objects’ are generated from the primary
tensor hyp,

The Hodge dual of the primary tensor is the Killing-Yano
tensor f = *h, whose derivative is totally antisymmetric:
. . ] d
vrr,)(h(! = v[u.jbr'] = §Eﬂ'h("(f€([_)
The two-forms f and h generate the Killing tensor K, and
the conformal Killing tensor (),

[{”h — fr’r{!fb(: = V(”_ [{h(:) — 0
- 1. C] i : {
(t.-)ub ,t'.-”_ h-b{, = V(quf-) - g('ul_ihr')dgzt.)

A cnmmtied TG n e vart ey o €4 Joa ¢b
The second Killing vector is Sy = b1

See Frolov, Krtous and Kubiznak, Living Reviews in
Relativity. 20:6 (2017).
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Conserved quantities for rays

2, 2 2 L v2 2 .
o+ Yy =Xi+Y =K/E Carter constant

Yosinvg = =Y sinv; = L./FE Azimuthal ang. mom.
0 0 1 1 P g
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Rays and conserved quantities

%

Y1

a
v

+— DBefore After —

A i ‘ ;
Z = —— (fup + thap) v"k" = exp (icv).
VR
Z is constant along the ray. The phase a is the precession angle for v,
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Separability

Field Massless (0 = 0) Massive (1 # 0)

Scalar s = v Carter 68 v' Brill et al '72
P = /1.2(1)

Spinor § = ; v Unruh 73 v' Chandrasekhar 76
iD=

Electromagnetic s v’ Teukolsky 72
dFF =0 =0F

Proca S Frolov, Krtous,
OA® = p2 A%, Kubiznak & Santos 2018

VA =0 even-parity v', odd-parity 77

Gravitational s = . # 7
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Separability of the Proca field

@ Frolov, Krtous, Kubiznak & Santos have shown something remarkable:
the equations governing the even-parity (S = £1) modes of the Proca
field are separable!

@ With the ansatz A* = BV, ¥ for the vector field, and a multiplicative
separability ansatz for W, FKKS find that

d | dR K2 2—q.0 qu° ,
A x R Ll R(r = 0
dr [ f‘h'] * ( A * qr V v? ) r)

sin 6 df

df

.9
sin” 0 qo Vv v*

1 d [m] )fzsl B [ K3 N 2—qpo  qop”

5 ] S5() = 0
where
K, =am — (¢ +r°)w, Kyp=m —awsin”0,
DD 2 9 2 2
¢r = 1+ v°re, qo =1 —vacos“l, o =w+ av’(m — aw).
@ Here v is the separation constant (impose regularity on S(#) at poles)

@ In the limit @ — 0, S =Y},,(0) and w/v — p?/v* = —=l(l + 1)
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Growth rates: Proca field

Fig. 1 from FKKS (arXiv:1804.00030) showing the growth rate for the

even-parity | = m = 1 modes with S = —1 (blue) and S = +1 (green).
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Scalar field evolution with ‘mirror’

The field as a function of time, at r = 10M

1 L

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
t/M

Sam Dolan (Sheffield) Superradiant instabilities 8th May 2018 48 / 60

Pirsa: 18050028 Page 36/40



Evolution of massive scalar field
‘Early’ times: t < 10 M

Time-domain evolution of massive scalar field on Kerr: 'early’ phase
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Evolution of massive scalar field
‘Late’ times: t < 4 x 10°M

Time-domain evolution of massive scalar field on Kerr: 'late’ phase
5
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Evolution of massive scalar field

Fourier analysis: recovering the bound state spectrum
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Final thoughts

Superradiant instabilities are now well characterised in the
linearized regime.

The Proca instability is up to 10? faster than the scalar
instability. (Massive s = 2 particles would be faster still).

New: the Proca field separates on the Kerr spacetime!

Superradiant instabilities can generate “hairy’ black holes
[H&R; Pretorius & East], gravitational wave sirens, axion

annihilations or explosive phenomena (Bosenovas).

Using BH surveys & gravitational-wave detectors to search
for fundamental ultra-light bosons is a viable prospect, in an
era in which next-generation particle accelerators may be
prohibitively expensive.

Sam Dolan (Sheffield) Superradiant instabilities 8th May 2018 60 / 60

Pirsa: 18050028 Page 40/40



