Title: Effective line-elements in loop quantum gravity

Date: May 10, 2018 02:30 PM

URL: http://pirsa.org/18050008

Abstract: Canonical quantization schemes often suggest modifications to classical dynamics, such as in an effective Friedmann equation. However, although often ignored, they also necessarily imply new effects for quantum space-time leading to new (quantum) symmetries. The invariant line-element, corresponding to new geometrical structures emerging in the presence of holonomy modifications in loop quantum gravity, shall be consistently derived in this talk. We shall use black-hole models to illustrate new features of this quantum space-time, going beyond standard Riemannian manifolds.

Pirsa: 18050008 Page 1/24

Effective line elements in loop quantum gravity

Suddhasattwa Brahma

Asia Pacific Center for Theoretical Physics

M. Bojowald, S.B. & D.-h. Yeom, 1803.01119
M. Bojowald, S.B., U. Büyükçam & F. D'Ambrosio, 1610.08355
M. Bojowald & S.B., 1610.08840, forthcoming
S.B., 1411.3661

May 10, 2018

Motivation

- \rightarrow Canonical quantization techniques often leads to new effects in quantum gravity \Rightarrow both in the dynamics and the structure of space-time.
- → First effects: Classical dynamical equations are modified due to background-independent quantizations.
- → Example: The effective Friedmann equation in LQC

$$H^2 = \frac{8\pi G}{3} \rho \left(1 - \frac{\rho}{\rho_c} \right)$$

Remarkable deviations from classical dynamics \Rightarrow Singularity resolution due to holonomy modifications \Rightarrow originates from nontrivial regularizations in the LQG Hamiltonian constraint.

What effects do the same quantum correction have on the structure of space-time? (Different motivation: Deformed symmetries of quantum spacetimes)

Physical consequence ⇒ Derivation of consistent line elements?

2/21

0

Canonical gravity

- In the Lagrangian formulation, space and time are treated equally and on the same footing.
- In the Hamiltonian formulation, split space and time by using an arbitrary (time) function to foliate globally hyperbolic spacetime.
- $ds^2 = g_{\mu\nu} dx^{\mu} dx^{\nu} \Rightarrow ADM \text{ metric:}$ $ds^2 = -N^2 dt^2 + q_{ab} (dx^a + N^a dt) (dx^b + N^b dt).$
- One-to-one correspondence between $g_{\mu\nu}$ and (q_{ab}, N, N^a) but roles of different components space-time line element crucially different.

Suddhasattwa Brahma

Effective line elements in LQG

GR as a constrained system

Hamiltonian for GR:

$$H_{\mathrm{grav}}^{\mathrm{tot}} = \int \mathrm{d}^3 x \left(N C_{\mathrm{grav}} + N^a D_a^{\mathrm{grav}} \right)$$

where $C_{\text{grav}} \& D_a^{\text{grav}}$ are the 'Hamiltonian' and (spatial) 'diffeomorphism' constraints respectively. No absolute time.

- ⇒ These 'first-class' constraints play a dual role:
 - Constraints generate the EOMs for the system, for a given choice of the Lagrange multipliers ⇒ EOMs derived in some choice of 'time' (gauge).

 . □
 - Same constraints also generate gauge transformations, which do not change the physical solutions ⇒ freedom in choice of 'time'.
 - Form of both sets of equation very similar but meaning very different.
- \rightarrow LQG-modified constraints \Rightarrow Crucial to understand interplay between evolution and gauge.
- → Consistent interplay between EOMs and GTs rely on the off-shell algebra of the (modified) constraints.

Suddhasattwa Brahma

Effective line elements in LQG

1/2

Pirsa: 18050008 Page 5/24

Dirac algebra

Hypersurface deformation algebra (HDA) of classical space-time (generalization of local Poincaré algebra):

with (lapse) N: function on space, (shift) w: vector field and q: metric on spatial slice.

- Invariance under HDA implies general covariance. [Dirac, 1951]
 - Second-order field equations invariant under HDA must equal GR. [Hojman, Kukař & Teitelboim, 1974-76]

→ Modified constraints, including LQG corrections, still form a closed algebra avoiding gauge anomalies. But deformations appear.

Suddhasattwa Brahma

Effective line elements in LQG

E /21

Dirac algebra

→ Hypersurface deformation algebra (HDA) of classical space-time (generalization of local Poincaré algebra):

$$\begin{aligned}
\{D(w_1^a), D(w_2^b)\} &= D(\mathcal{L}_{w_1} w_2^a) \\
\{H(N), D(w^a)\} &= -H(\mathcal{L}_w N) \\
\{H(N_1), H(N_2)\} &= D(q^{ab}(N_1 \partial_b N_2 - N_2 \partial_b N_1))
\end{aligned}$$

with (lapse) N: function on space, (shift) w: vector field and q: metric on spatial slice.

- Invariance under HDA implies general covariance. [Dirac, 1951]
- Second-order field equations invariant under HDA must equal GR. [Hojman, Kukař & Teitelboim, 1974-76]

→ Modified constraints, including LQG corrections, still form a closed algebra avoiding gauge anomalies. But deformations appear.

Suddhasattwa Brahma

Effective line elements in LQG

5/2

Pirsa: 18050008 Page 7/24

Gauge transformations and the HDA

- The phase space is given by the spatial metric (q_{ab}) and its conjugate momenta (π^{ab}) . The algebra of classical constraints calculated on this phase space.
- Gauge transformations represent coordinate freedom: space-time Lie derivative of any (phase-space) function, $f(q_{ab}, \pi^{ab})$, given by $\mathcal{L}_{(\epsilon^0/N, \epsilon^i \epsilon^0 N^i/N)} f = \{f, H[\epsilon^0] + D[\epsilon^i]\}$ if constraints are satisfied (time direction $t^a = Nn^a + N^a$).
- EOMs: $\dot{f} := \{f, H[N] + D[N^a]\} \& \text{GTs}: \delta_{\epsilon} f := \{f, H[\epsilon^0] + D[\epsilon^i]\}.$
- Commutation property: Evolution of gauge-transformed initial data = Gauge transformation of evolved initial data.
- Since a commutation relation is involved ⇒ Interplay between evolution and gauge relies on Dirac algebra.
- → This is what happens classically. For the LQG scenario, the constraints are modified and, as a result, the HDA gets deformed.

Suddhasattwa Brahma

4 D F 4 D F 4 E F 4 E F 9 Q C

Effective line elements in LQG

A small puzzle?

(17)

- GTs, generated by $H[\epsilon^0] + D[\epsilon^i]$, act on q_{ab} and π^{ab} but not on (N, N^a) .
- However, a generic coordinate transformation can clearly change both q_{ab} as well as g_{0a} components of the metric $\mathrm{d}s^2 = -N^2\mathrm{d}t^2 + q_{ab}\left(\mathrm{d}x^a + N^a\mathrm{d}t\right)\left(\mathrm{d}x^b + N^b\mathrm{d}t\right) \Rightarrow \mathrm{Role}$ of (N, N^a) crucially different from q_{ab} .

There are two ways to resolve this puzzle:

- Consider the extended phase space with p_N and p_{N^3} (primary constraints not solved). [J. M. Pons, D. C. Salisbury, and L. C. Shepley, 1997]
- Require canonical EOMs are gauge-covariant ⇒ This approach explicitly shows the important role played by the Dirac algebra.
- → Once the classical case is demonstrated, extend results for the LQG-deformed HDA.

イロト 4回ト 4至ト 4至ト を めなく

Suddhasattwa Brahma

Effective line elements in LQG

Transformation of the Lapse and Shift

 \rightarrow Canonical EOMs, in a particluar gauge, must transform consistently with the GTs of the canonical variables \Rightarrow Possible only if $N^A := (N, N^i)$ transform properly!

- Evolution of any phase space variable: $\dot{q} = \{q, C[N^A]\}.$
- Coordinate transform $\tilde{q} = q + \delta_{\epsilon^A} q$ with $\delta_{\epsilon^A} q = \{q, C[\epsilon^A]\}$.
- Transformed q satisfy the same EOMs $\dot{\tilde{q}} = \{\tilde{q}, C[\tilde{N}^A]\}$, if there is a nontrivial transformation $\tilde{N}^A = N^A + \delta_{\epsilon^B} N^A$.
- Using the constraint algebra (HDA) and equating the LHS and RHS of the above equation, possible to calculate $\delta_{\epsilon B} N^A$.

 \rightarrow Given $\{C_A, C_B\} = F_{AB}^D C_D$, we get $\delta_{\epsilon} N^A = \dot{\epsilon}^A + N^B \epsilon^C F_{BC}^A$. Explicitly,

$$\delta_{\epsilon} N = \dot{\epsilon}^{0} + \epsilon^{i} \partial_{i} N - N^{i} \partial_{i} \epsilon^{0} \tag{1}$$

$$\delta_{\epsilon} N^{i} = \dot{\epsilon}^{i} + \epsilon^{j} \partial_{j} N^{i} - N^{j} \partial_{j} \epsilon^{i} - \mathbf{q}^{ij} (N \partial_{j} \epsilon^{0} - \epsilon^{0} \partial_{j} N)$$
 (2)

crucially depend on the HDA (above, we use the classical HDA).

4 D > 4 D > 4 E > 4 E > 2 9 Q

Suddhasattwa Brahma

Effective line elements in LQG

9/2

Pirsa: 18050008 Page 11/24

The Big Picture

Say, we have some (infinitesimal) coordinate transformation $t' \to t + \xi^0 \& x' \to x^a + \xi^a$.

The spatial metric transforms as $\tilde{q}_{ab} = \{q_{ab}, H + D\}$.

For the line element $ds^2 = -\tilde{N}^2 dt'^2 + \tilde{q}_{ab} \left(dx'^a + \tilde{N}^a dt' \right) \left(dx'^b + \tilde{N}^b dt' \right)$ to be meaningful, i.e. invariant (co-ordinate independent), the lapse \tilde{N} and shift \tilde{N}^a must transform in an appropriate manner, which depends on the HDA, as demonstrated.

In the presence of LQG (holonomy) modifications, the HDA is deformed. What is the corresponding invariant line-element for such LQG-modified (effective) space-times?

4 D F 4 D F 4 E F 4 E F 90

Suddhasattwa Brahma

Effective line elements in LQG

Spherically symmetric gravity

- Ashtekar-Barbero variables: $\{K_{\phi}(x), E^{\phi}(y)\} = G\delta(x, y) = \frac{1}{2}\{K_{x}(x), E^{x}(y)\}.$
- Line-element: $ds^2 = -N^2 dt^2 + q_{xx} (dx + N^x dt)^2 + q_{\varphi\varphi} d\Omega^2$ with $q_{xx} = (E^{\phi})^2 / E^x$, $q_{\varphi\varphi} = E^x$.
- Spherically symmetric coordinate transformation $t' = t + \xi^0$, $x' = x + \xi^x$, with $(\xi^0, \xi^x) = (\epsilon^0/N, \epsilon^x (N^x/N)\epsilon^0)$.
- Insert transformed coordinates $(x^a + \xi^a)$ in the line element directly to collect coefficients of dx^2 , $dt^2 \& dx dt$. E.g., $dt' = d(t + \epsilon^0/N) = dt + (\epsilon^0/N)^{\bullet} dt + (\epsilon^0/N)' dx$.

From this one can evaluate δq_{xx} and δN^x directly, using which, one can also get δN .

- $\delta N = \dot{\epsilon}^0 + N' \epsilon^{\times} N^{\times} (\epsilon^0)'$

The only structure function for this system: $\{H[N_1], H[N_2]\} = D[\mathbf{q}^{xx}(N_1N_2' - N_2N_1')].$

tive line elements in LOC

10/21

Suddhasattwa Brahma

Effective line elements in LQG

Holonomy modifications

- Regularize the constraint via holonomies of extrinsic curvatures $K_{\phi} \to f(K_{\phi})$ (Keep (bounded) function arbitrary for our purposes to allow for quantization ambiguities).
- The constraint algebra is closed, but deformed (only [H, H]).

$$[H[N_1], H[N_2]] = D \left[\beta q^{ab} \left(N_1 N_2' - N_2 N_1' \right) \right];$$

 $\beta = d^2 f / dK_{\phi}^2 \Rightarrow \beta \rightarrow 1 \text{ classical limit}$

- Typically, $f(K_{\phi}) = \sin^2(\delta K_{\phi})/\delta^2 \Rightarrow \beta = \cos(2\delta K_{\phi})$.
- Given (deformed) HDA, derivation follows the classical case to get $\delta N^{x} = \dot{\epsilon}^{x} + \epsilon^{x} (N^{x})' N^{x} (\epsilon^{x})' \beta q^{xx} (N(\epsilon^{0})' \epsilon^{0} N')$.
- But transformation of the lapse keeps the same form (since no structure functions are involved).
- Since the term in δN^{\times} relevant to derive δN is multiplied by β , to get required cancellations, we need coordinate transformations not of the classical line element, but of an effective line element $ds^2 = -\beta N^2 dt^2 + q_{xx} (dx + N^{\times} dt)^2 + q_{\varphi\varphi} d\Omega^2$

Suddhasattwa Brahma Effective line elements in LQG

Pirsa: 18050008 Page 14/24

Recap

 \rightarrow For the classical HDA, coordinate transformations $t' = t + \xi^0$, $x' = x + \xi^x$ imply that the spatial metric transforms as $\{q_{xx}, H[\epsilon^0] + D[\epsilon^x]\}$ and the invariant line element is coordinate independent only when lapse and shift transform in a specific way.

When corrections are introduced in the LQG-regularized constraints, the HDA is deformed. Consequently, the line element which remains invariant under coordinate transformations has to be modified by a factor. Transformation of $(\delta q_{xx}, \delta N^x, \delta N)$ consistent only with this effective line element.

 \rightarrow We see how space-time structures are strongly affected by the same \circ corrections which alter dynamics in LQG.

Holonomy modifications not only imply corrections to the spatial metric by modified equations of motion generated by the Hamiltonian constraint, they also require a new factor of β of N^2 in the time-time component of the space-time line element. Signature change for $\beta < 0$ is an immediate consequence.

イロトイタトイミトイミト ま りくご

Suddhasattwa Brahma

Effective line elements in LQG

12/2

Pirsa: 18050008 Page 15/24

Implications for other physical scenarios

→ Effective line elements shall involve correction to the lapse in LQG models wherever one gets a deformed algebra of a similar form.

$$[D(w_1^a), D(w_2^b)] = D(\mathcal{L}_{w_1} w_2^a)$$
• LQC with perturbations [A. Barrau, T. Cailleteau, L. Linsefors & J. Grain, 2012; M. Bojowald & Mielczarek, 2015]
• CGHS and Schwarzschild Black hole

[M. Bojowald & S.B., 2016]

- $[H(N_1), H(N_2)] =$ $D\left(\beta q^{ab}\left(N_1\partial_bN_2-N_2\partial_bN_1\right)\right)$
- 2—dimensional dilaton gravity M. Bojowald & S.B., 2016]
- → Holonomy modifications necessarily lead to signature changing deformations.
- \rightarrow 'Signature change' resolves classical singularity \Rightarrow New model of quantum spacetime with no Riemannian structure.
- → Fluctuations and higher moments of the quantum state, related to higher curvature corrections, cannot undo these deformations from LQG [M. Bojowald & S.B., 2014].

Suddhasattwa Brahma

Effective line elements in LQG

Pirsa: 18050008 Page 16/24

'Fuzzy' Euclidean regime - I

0

 \rightarrow Why fuzzy?

$$H[N] = -\frac{1}{2G} \int dx N \left(\frac{f_1(K_{\varphi})E^{\varphi}}{\sqrt{E^{x}}} + 2\sqrt{E^{x}}K_{x}f_2(K_{\varphi}) - \frac{1}{2}E^{\varphi}V(E^{x}) - \frac{((E^{x})')^2}{4E^{\varphi}\sqrt{E^{x}}} + \frac{\sqrt{E^{x}}(E^{x})'(E^{\varphi})'}{(E^{\varphi})^2} - \frac{\sqrt{E^{x}}(E^{x})''}{E^{\varphi}} \right)$$

- Spherically symmetry: $V(E^{\times}) = -2/\sqrt{E^{\times}}$
- Other choices of V for CGHS model, Gowdy model etc.
- Standard choice for holonomy modification function $f_1(K_{\varphi}) = \sin^2(\delta K_{\varphi})/\delta^2$, $(f_2 = \dot{f_1}/2 \text{ necessarily})$
- The maximum is obtained for $\delta K_{\varphi} = \pi/2$. Expanding around this point, we write $\delta K_{\varphi} = \pi/2 + \delta k_{\rm E}$ with small $\delta k_{\rm E}$.

The curvature-dependent part of the Hamiltonian constraint

$$\frac{E^{\varphi}}{\sqrt{E^{\times}}}f_1(K_{\varphi}) + 2\sqrt{E^{\times}}f_2(K_{\varphi})K_{\chi} = -\left(\frac{E^{\varphi}}{\sqrt{E^{\times}}}k_{\mathrm{E}}^2 + 2\sqrt{E^{\times}}k_{\mathrm{E}}K_{\chi}\right) + \frac{E^{\varphi}}{\delta^2\sqrt{E^{\times}}} + \cdots$$

4 D > 4 D > 4 E > 4 E > 4

Suddhasattwa Brahma

Effective line elements in LQG

Page 17/24

'Fuzzy' Euclidean regime - II

[M. Bojowald & S.B., forthcoming]

- The sign of the curvature term has changed, as it should for a Euclidean gravity model.
- Moreover, there is a new contribution depending only on the triad variables, which can be combined with the original dilaton potential $V(E^{\times})$ from the Lorentzian phase if it is changed by adding $\delta V(E^{\times}) = -2/(\delta^2 \sqrt{E^{\times}})$.
- For $\delta = 1$, this shift happens to be identical with the dilaton potential of spherically symmetric gravity. Holonomy-modified model, which is spherically symmetric gravity in the Lorentzian phase, has twice the spherically symmetric potential in the Euclidean phase. It is therefore different from spherically symmetric Euclidean gravity.
- Holonomy-modified CGHS model in the Lorentzian phase is equal to spherically symmetric gravity with a cosmological constant in the Euclidean phase.
- The new term makes a huge contribution to the potential as it is inversely proportional to the 'area-gap'.
- Similar results available for LQC models where the new perturbative contributions are consistent with a cosmological-constant term $\Lambda \sim 1/\ell_{Pl}^2$ added to the full Hamiltonian density.

Suddhasattwa Brahma

Effective line elements in LQG

HDA as a Lie algebroid

- \rightarrow Lie algebroid: $(A, [., .]_A, \rho)$ with $\rho : \Gamma(A) \rightarrow \Gamma(TB)$, such that ρ satisfies a homomorphism of Lie algebras and a Leibnitz identity.
- \rightarrow Hypersurface deformation brackets form a Lie algebroid \rightarrow Phase space (q_{ab}, K^{ab}) forms base manifold \rightarrow Lagrangian multipliers (N, N^a) forms $(4 \times \infty)$ —dimensional fibers. [C. Blohmann, M.Fernandez & A. Weinstein, 2010]
- \rightarrow Deriving HDA: "g-Gaussian" vector fields $\Rightarrow n^{\mu}\mathcal{L}_{\nu}g_{\mu\nu} = 0$, preserving Gaussian form of the metric $ds^2 = -\epsilon dt^2 + q_{ab}dx^adx^b$.
- → Lie algebroid morphisms can change the deformation function $\beta(q_{ab}, K^{ab})$:[M. Bojowald, S.B., U. Büyükçam & F. D'Ambrosio, 2016]
 - $q_{ab} \mapsto |\beta|^{-1} q_{ab}$ generated by base transformations.
 - $N \mapsto \sqrt{|\beta|^{-1}}N$ generated by fiber maps (same as a non-standard normal for β spatially constant).
 - \rightarrow No algebroid morphisms can remove $\operatorname{sgn}(\beta) \Rightarrow$ No Riemannian structure when β changes sign.

Suddhasattwa Brahma

Effective line elements in LQG

16/21

Pirsa: 18050008 Page 19/24

Specific solutions: Black holes

$$\dot{E}^{x} = 2N\sqrt{E^{x}} f_{2}(K_{\phi}) + N^{x}(E^{x})'$$

$$\dot{E}^{\phi} = N\sqrt{E^{x}}K_{x}\frac{\mathrm{d}f_{2}(K_{\phi})}{\mathrm{d}K_{\phi}} + \frac{NE^{\phi}}{2\sqrt{E^{x}}}\frac{\mathrm{d}f_{1}(K_{\phi})}{\mathrm{d}K_{\phi}} + (N^{x}E^{\phi})'$$

- EOMs are set of coupled, non-linear, PDEs \Rightarrow Important class of solutions easier to derive are stationary ones. LHS of \dot{E}^{\times} eqn must be zero, as must be the shift vector \Rightarrow Looking for one of the zeros of $f_2(K_{\phi}) \Rightarrow K_{\phi} = 0, \pi/(2\delta), \dots$
- "Stationary" has to be generalized to imply a solution with a "Killing vector transversal to the hypersurfaces in a (3+1)-decomposition.
- Fixed K_{ϕ} can correspond to a gauge condition on the entire spacetime region (outside the Schwarzschild horizon) OR a unique spatial slice within a homogeneous gauge (inside the horizon).
- More alternating Lorentzian and Euclidean solutions ⇒ concentrate on the first Euclidean regime.

Suddhasattwa Brahma

Effective line elements in LQG

17/2

Outside the horizon: Classical Schwarzschild

- \rightarrow Gauge conditions: $E^{x} = x^{2}$, $K_{\phi} = 0$
- \rightarrow Solutions are given by

$$E^{\phi} = \frac{x}{\sqrt{1 - \frac{2M}{x}}}$$

$$N = \sqrt{1 - \frac{2M}{x}}$$

$$\beta = 1$$

→ The effective line element is the classical one

Suddhasattwa Brahma

$$ds^{2} = -\left(1 - \frac{2M}{x}\right)dt^{2} + \frac{1}{1 - 2M/x}dx^{2} + x^{2}d\Omega^{2}$$

Effective line elements in LQG

18/2

1

Holonomy modified interior

- $(x \leftrightarrow t)$ exchanges role inside the horizon but metric depends on x.
- $K_{\phi} = 0$ not available as a gauge choice if metric depends on 'time' coordinate. $E^{\times} = x^2$ is also not a good gauge choice.
- Classically, $E^{\phi}(t) = t\sqrt{\frac{2M}{t} 1}$, $K_{\phi}(t) = \sqrt{\frac{2M}{t} 1}$, $N(t) = 1/\sqrt{\frac{2M}{t} 1}$, $E^{\times}(t) = t^2$.
- \rightarrow Suitable gauge choices: $N = \sqrt{E^{\times}}$, $N^{\times} = 0$, an anisotropic version of conformal time

$$E^{\phi} = M \sin\left(\sqrt{1 + \delta^{2}} \eta\right)$$

$$E^{\phi} = M \sin(\eta)$$

$$E^{x} = 4M^{2} \cos(\eta/2)$$

$$K_{\phi} = -\tan(\eta/2)$$

$$K_{\phi} = \frac{1}{8M} \sec^{4}(\eta/2)$$

$$K_{\chi} = \frac{1}{8M} \sec^{4}(\eta/2)$$

$$E^{\chi} = M \sin\left(\sqrt{1 + \delta^{2}} \eta\right)$$

$$\left[1 + 2\delta^{2} + \cos\left(\sqrt{1 + \delta^{2}} \eta\right)\right]^{2}$$

$$\left[1 + 2\delta^{2} + \cos\left(\sqrt{1 + \delta^{2}} \eta\right)\right]$$

$$\left[-\frac{\delta}{\sqrt{1 + \delta^{2}}} \tan\left(\sqrt{1 + \delta^{2}} \eta/2\right)\right]$$

$$K_{\chi} = \left[\cdots\right]$$

Suddhasattwa Brahma

Effective line elements in LQG

Effective line element in deep quantum regime

 \rightarrow Can calculate β inside the horizon

$$eta(\eta) = rac{1 - \left(rac{\delta^2}{1 + \delta^2}
ight) an\left(-\sqrt{1 + \delta^2}\eta/2
ight)}{1 + \left(rac{\delta^2}{1 + \delta^2}
ight) an\left(-\sqrt{1 + \delta^2}\eta/2
ight)} \ eta = -1 \Rightarrow \eta = -rac{\pi}{\sqrt{1 + \delta^2}} (\delta K_\phi = \pi/2)$$

- \rightarrow "After" time $\frac{\delta}{\sqrt{1+\delta^2}}\tan(\cdots) = 1$, η can be treated as a fourth spatial coordinate but not as time.
- $\rightarrow K_{\phi}$ increases in the homogeneous interior and ultimately reaches $\beta = 0$. Formally, assume that K_{ϕ} keeps increasing in the direction normal to Σ . At this point, we switch to a 2-dimensional boundary value problem \Rightarrow Not clear what appropriate b.c. should be!
- \rightarrow Gauge conditions: $E^{\times} = x^2$, $\delta K_{\phi} = \pi/2$
- \rightarrow The effective line element is the classical one

$$ds^{2} = \left(1 - \frac{2M}{x}\right)d\tau^{2} + \frac{\overline{\delta}}{1 - 2M/x}dx^{2} + x^{2}d\Omega^{2}$$

with
$$\bar{\delta} = (1 + 1/\delta^2)^{-1}$$
.

Essalus linealessas in LOC

20/2

Suddhasattwa Brahma

Effective line elements in LQG

Summary

→ Conclusions:

- Introducing QG corrections gives rise to new space-time structures, going beyond corrections to the classical dynamics.
- Only consistent effective line element is Euclidean when holonomy effects are strong ⇒ only boundary-value problems well posed in this region.
- Important to understand the role of quantum symmetries ⇒
 Deformation of general covariance. NCG: Deformations generic
 to different approaches? [M. Bojowald, S.B., U. Büyükçam & M. Ronco, 2017]

→ Looking ahead:

- Similar line-elements needs to be derived for early-universe cosmology ⇒ Cannot interpret 'signature-change' as instabilities of matter ot metric perturbations on an otherwise Lorentzian manifold.
- Implications for the initial state? Smooth 'no-boundary' state compatible with dynamical signature-change? [M. Bojowald & S.B., forthcoming]

(미) (레) (코) (코) · 코

21/21

Suddhasattwa Brahma

Effective line elements in LQG

Pirsa: 18050008 Page 24/24