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Abstract: <p>Canonical quantization schemes often suggest modifications to classical dynamics, such as in an effective Friedmann equation.
However, although often ignored, they also necessarily imply new effects for quantum space-time leading to new (quantum) symmetries. The
invariant line-element, corresponding to& nbsp; new geometrical structures emerging in the presence of holonomy modifications in loop quantum

gravity, shall be consistently derived in thistalk. We shall use black-hole models to illustrate new features of this quantum space-time, going beyond
standard Riemannian manifolds.</p>

Pirsa: 18050008 Page 1/24



Effective line elements in

loop quantum gravity

Suddhasattwa Brahma

Asia Pacific Center for Theoretical Physics

M. Bojowald, S.B. & D.-h. Yeom, 1803.01119
M. Bojowald, S.B., U. Biiyiikcam & F. D’Ambrosio, 1610.08355
M. Bojowald & S.B., 1610.08840, forthcoming
S5.B., 1411.3661

May 10, 2018

30C

Pirsa: 18050008 Page 2/24



Motivation

» Canonical quantization techniques often leads to new effects in
quantum gravity =+ both in the dynamics and the structure of
space-time,

— First effects: Classical dynamical equations are modified due to
background-independent quantizations.

— Example: The effective Friedmann equation in LQC

2 8?TG /)
H = pll——
3 e
Remarkable deviations from classical dynamics = Singularity
resolution due to holonomy modifications = originates from
nontrivial regularizations in the LQG Hamiltonian constraint.

What effects do the same quantum correction have on the
structure of space-time? (Different motivation: Deformed
syminetries of quantum spacetimes)

Physical consequence = Derivation of consistent line elements?
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Canonical gravity

@ In the Lagrangian formulation, space and time are treated
equally and on the same footing.

[n the Hamiltonian formulation, split space and time by using an
arbitrary (time) function to foliate globally hyperbolic spacetime.
~ i ; .
ds® = g, dx*dx” = ADM metric:
2y p) 2 i
ds? = —N2d¢? + q.p (dx® + N?dt) (dx? + N*dt).
One-to-one correspondence between gy, and (qap, N, N?) but
roles of different components space-time line element crucially
different. )
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GR as a constrained system
Hamiltonian for GR:

ot . e grav
Hist = / X (NCyray + N2 DE)

‘diffeomorphism’ constraints respectively. No absolute time.

where Cyrav & DE™® are the ‘Hamiltonian’ and (spatial)

> These ‘first-class’ constraints play a dual role:

@ Constraints generate the EOMs for the system, for a given choice
of the Lagrange multipliers = EOMs derived in some choice of
‘time’ (gauge). M
@ Same constraints also generate gauge transformations, which do

not change the physical solutions = freedom in choice of ‘time’.
@ Form of both sets of equation very similar but meaning very
different.

— LQG-modified constraints = Crucial to understand interplay

between evolution and gauge.

» Consistent interplay between EOMs and GT's rely on the off-shell
algebra of the (modified) constraints.
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Dirac algebra

» Hypersurface deformation algebra (HDA) of classical space-time
(generalization of local Poinearé algebra):

1D(wy), }

{H(N) ")}

{ H(Nl) N>)}

B(L
—H (L
(9°

D ( 11’)[:,N2 — Nwr)le))

with (lapse) N: function on space, (shift) w: vector field and g:
metric on spatial slice.

@ Invariance under HDA implies

oeneral covariance. [Dirae, 1951

@ Sccond-order field equations
invariant under HDA must equal

T : Al : i
G H: [Hojman, Kukai & Teitelboim, 1974-76]

» Modified constraints, including LQG corrections, still form a closed
algebra avoiding gauge anomalies. But deformations appear.
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Dirac algebra

— Hypersurface deformation algebra (HDA) of classical space-time

(generalization of local Poincaré algebra):

{D(w}),D(w?)} = D(Luyws3)
{H(N),D(w?)} = —H(LwN)
{H(Ny),H(N2)Y = D (q™ (NyOpNo — NadpNy))

with (lapse) N: function on space, (shift)

metric on spatial slice.

vector field and g:

@ Invariance under HDA implies

ceneral covariance. [Dirae, 1951]

@ Second-order field equations N
invariant under HDA must equal

\ll B . - R s - e
(l[\. [Hojman, Kukaf & Teitelboim, 1974-76]

» Modified constraints, including LQG corrections, still form a closed

algebra avoiding gauge anomalies. But deformations appear.
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Gauge transformations and the HDA

The phase space is given by the spatial metric (g,p) and its
conjugate momenta (72?). The algebra of classical constraints
calculated on this phase space.

Gauge transformations represent coordinate freedom: space-time
Lie derivative of any (phase-space) function, f(q.p, 7??), given by
Loy ei—coniny = 1f, H[e%] + D[e']} if constraints are satisfied
(time direction t? = Nn? + N?).

EOMs: f := {f, H[N] + D[N?]} & GTs: d.f := {f, H[¢°] + D[€']}.

Commutation property: Evolution of gauge-transformed initial
data Gauge transformation of evolved initial data.

Since a commutation relation is involved = Interplay between
evolution and gauge relies on Dirac algebra.

» This is what happens classically. For the LQG scenario, the
constraints are modified and, as a result, the HDA gets deformed.

Suddhasattwa Brahma Effective line elements in LQG

Pirsa: 18050008 Page 8/24



AL "‘\ﬁq;)

; o
A small puzzle? %%

o GTs, generated by H[e®] + D[€'], act on g,p and 720 but not on
(N,

@ However, a generic coordinate transformation can clearly change
hoth qap as well as gp, components of the metric
2 el : :
ds ——N-dr T (dx® + Neédt) ((be + N”(It) = Role of
(N, N?) crucially different from q.p.
There are two ways to resolve this puzzle: ”
@ Consider the extended phase space with py and pys (primary
constraints not solved). [1. M. Pons, D. C. Salisbury, and L. C. Shepley, 1997]

@ Require canonical EOMs are gauge-covariant = This approach

—

explicitly shows the important role played by the Dirac algebra.

» Once the classical case is demonstrated. extend results for the
LQG-deformed HDA.
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Transformation of the Lapse and Shift

» Canonical EOMs, in a particluar gauge, must transform
consistently with the GT's of the canonical variables = Possible only
if N4 := (N, N') transform properly!

@ Evolution of any phase space variable: ¢ = {q, C[NA]}.
o Coordinate transform § = g + .4q with 5,49 = {q, C[¢1]}.

@ Transformed g satisfy the same EOMs g = {§, C[NA]}, if there is
a nontrivial transformation N4 = NA + 5 s NA.

@ Using the constraint algebra (HDA) and equating the LHS and
RHS of the above equation, possible to calculate 8,5 NA.

— Given {Ca, Cg} = FA)H Cp, we get 6. NA = éA + NB ("F’?(/-. Explicitly,

SN = O +egN—- N3 @
I f—'j('_)ij — Nj('.)j(-'j = qfif-(ch_)jf'D - (--D(f)jN) (2)

crucially depend on the HDA (above, we use the classical HDA).
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The Big Picture

Say, we have some (infinitesimal) coordinate transformation
H—=t+ &% & x' = x? + &2

The spatial metric transforms as §,, = {q.», H + D}.

For the line element : )
ds? = —N3dt? + Gab ((ix’” o Nallf.f) ( Ix'? & /\/btlf.’) to be meaningful,

i.e. invariant (co-ordinate independent), the lapse N and shift N2
must transform in an appropriate manner, which depends on the
HDA. as demonstrated.

[n the presence of LQG (holonomy) modifications, the HDA is
deformed. What is the corresponding invariant line-element for

such LQG-modified (effective) space-times?
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Spherically symmetric gravity

@ Ashtekar-Barbero variables:
{Ks(x), E?(y)} = Gd(x, y) = 3{Kx(x), EX(y)}.

@ Line-element: ds® = —N2dt?® + g, (dx + /\/"’((lt‘)'2 + c;f.k’.;,.j.;clfl2 with
Qo = (E2) B> o 2

@ Spherically symmetric coordinate transformation
t'=t+£°, x' = x+ &, with (£€°,&) = (®/N, e — (N*/N)e°).

@ Insert transformed coordinates (x? 4+ £7) in the line element
directly to collect coefficients of dx?, dt? & dxdt. E.g.,
di''=dlt -+ 'NY = dit T’ N ds + (e [N} 'dx. 9

From this one can evaluate dg and ON* directly, using which, one
can also get o/,

® 0Gxx = {que, H[e"] + D[]}

o BN = & (WY — M) = (N2 — )

@ IN =¢é% + N — N""‘(ro)’

The only structure function for this system:
(HIN:], HINo]} = D [q™ (NyNs — Na])].
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Holonomy modifications

@ Regularize the constraint via holonomies of extrinsic curvatures
K, — f(K;) (Keep (bounded) function arbitrary for our
purposes to allow for quantization ambiguities).

The constraint algebra is closed, but deformed (only [H, H]).
[HIN], HIN2]] = D [3q° (NyNg — No )]
} = dzf/dKf, = [ — 1 classical limit

Typically, f(K,) = sin®(0K,;)/6? = B = cos(20Ky).

— & F - ¥ & i ¥ I
Given (deformed) HDA, derivation follows the classical case to

{;'(‘t {.;Nx —k 4 f’x(Nx)’ =, N,-\’(F,-\()f o ;qxx (N(FO)I — lp,ONr)‘

But transformation of the lapse keeps the same form (since no
structure functions are involved).

Since the term in dN* relevant to derive o/ is multiplied by 3, to
get required cancellations, we need coordinate transformations
not of the classical line element, but of an effective line element

ds? = —BN2dt? + gy (dx + N*dt)* + q,,dD?
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Recap

— For the classical HDA, coordinate transformations

t o=t ."::D , x' = x + & imply that the spatial metric transforms as

{qux. H[e’] + D[¢*]} and the invariant line element is coordinate independent
only when lapse and shift transform in a specific way.

» When corrections are introduced in the LQG-regularized constraints, the
HDA is deformed. Consequently, the line element which remains invariant
under coordinate transformations has to be modified by a tactor.
Transformation of (dg., SN*, dN) consistent only with this effective line
element.

» We see how space-time structures are strongly affected by the same O
corrections which alter dynamics in LQG.

Holonomy modifications not only imply corrections to the spatial
metric by modified equations of motion generated by the Hamiltonian
constraint, they also require a new factor of 4 of N? in the time-time
component of the space-time line element. Signature change tor 3 < 0
Is an immediate consequence.
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Implications for other physical scenarios *

— Effective line elements shall involve correction to the lapse in LQG
models wherever one gets a deformed algebra of a similar form.

@ LQC with perturbations [a. Barrau, T.

[D(wf). D(wy)] = D (Lw,w3)

Cailleteau, L. Linsefors & J. Grain, 2012;: M.

Bojowald & Mielczarek, 2015]

_ e
[H(N), D(w?)] = —H (LwN) CGHS and Schwarzschild Black hole

(M.

[’u:ju\\-.’!](] & S.B., '.Hlllﬂ

[H(Ny), H(NL)] = .
D( -)'qab(Nuf)sz - Ngé)le)) @ 2—dimensional dilaton gravity .

Bojowald & S.B., 2016]

» Holonomy modifications necessarily lead to signature changing
deformations.

— ‘Signature change’ resolves classical singularity = New model of
quantum spacetime with no Riemannian structure.
» Fluctuations and higher moments of the quantum state, related to

higher curvature corrections, cannot undo these deformations from
L(z(_: [M. Bojowald & S.B., 2014].
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‘Fuzzy’ Euclidean regime - 1

» Why fuzzy?

HIN] = 2G/ )XEQ+2@K1‘( )%E"V(E"‘)
_((EY))
4E°/EX

Spherically symmetry: V(E*) = —2/v E*
Other choices of V for CGHS model, Gowdy model etc.

Standard choice for holonomy modification function

A(Ky,) = sin®(6K,) /62, (B = fi/2 necessarily)

The maximum is obtained for K, = m/2. Expanding around this
point, we write 0K, = /2 + dkg with small dkg.

The curvature-dependent part of the Hamiltonian constraint

E¥ ' E"
S K ONERE = 2 4 2v/Fr kK ) o
v/ EX | ) Ex E g)j\,‘;bﬁ\
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‘Fuzzy

" Euclidean regime - 11

[M. Bojowald & S.B., forthcoming]

o

Q

1'he sign of the curvature term has changed, as it should for a
Euclidean gravity model.

Moreover, there is a new contribution depending only on the triad
variables, which can be combined with the original dilaton potential
V(E™) from the Lorentzian phase if it is changed by adding

v X - -3 2

OV(E) 2/(6*VEX).

For & = 1, this shift happens to be identical with the dilaton potential
of spherically symmetric gravity. Holonomy-modified model, which is

spherically symmetric gravity in the Lorentzian phase, has twice the
spherically symmetric potential in the Euclidean phase. It is therefdre

different from spherically symmetric Euclidean gravity.
Holonomy-modified CGHS model in the Lorentzian phase is equal to
spherically symmetric gravity with a cosmological constant in the
Euclidean phase.

1T'he new term makes a huge contribution to the potential as it is
inversely proportional to the ‘area-gap’.

Similar results available for LQC models where the new perturbative
contributions are consistent with a cosmological-constant term

A ~ 1/¢%; added to the full Hamiltonian density.
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HDA as a Lie algebroid
» Lie algebroid: (A, [.,.]a,p) with p: [(A) = [(TB), such that p

satisfies a homomorphism of Lie algebras and a Leibnitz identity.

» Hypersurface deformation brackets form a Lie algebroid — Phase
space (gap. K?) forms base manifold — Lagrangian multipliers
(N, N?) forms (4 X oo)—dimensional fibers. [©. Blohmann, M.Fernandez & A.

Weinstein, 2010]

» Deriving HDA: “g-Gaussian” vector fields = n*L,g,, =0,
v 2 i i o . ) ) ;
preserving Gaussian form of the metric ds? = —edt? + qapdx?dx®.

» Lie algebroid morphisms can change the deformation function
B(qab, K"’h):m-l. Bojowald, S.B., U. Biiyiikgam & F. D’Ambrosio, 2016]

@ q.p — |37t qap generated by base transformations.

@ N /|3|7tN generated by fiber maps (same as a non-standard
normal for [ spatially constant).

» No algebroid morphisms can remove sgn(/3) = No Riemannian
structure when 4 changes sign.
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Specific solutions: Black holes

EX 2NV E* K(Ky) + NX(E*)

o df(Ky) — NE? df(K,) x by
E NV EXK, 0K +2 = + (NXE?)

@ EOMs are set of coupled, non-linear, PDEs = Important class of
solutions easier to derive are stationary ones. LHS of E* eqn
must be zero, as must be the shift vector = Looking for one of

the zeros of f,(K,) = K, = 0,7/(24),

(4 o) ut 13 * * - . ‘LJ
Stationary” has to be generalized to imply a solution with a

Killing vector transversal to the hypersurfaces in a

(3 + 1)-decomposition.

Fixed K, can correspond to a gauge condition on the entire
spacetime region (outside the Schwarzschild horizon) OR :
unique spatial slice within a homogeneous gange (inside I‘}m
horizon).

More alternating Lorentzian and Euclidean solutions

concentrate on the first Euclidean regime.
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Outside the horizon: Classical Schwarzschild

- il Pl
— Gauge conditions: EX = x<, K, =0
» Solutions are given by

E r_f._l

» The etfective line element 18 the classical one

Y A A
dss = — (1 — T) dt< + ﬁ(lx‘ -+ Xz(lQ"
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19 T
<7

Holonomy modified interior "*3

Apgiy

@ (x <> t) exchanges role inside the horizon but metric depends on
X

@ K, = 0 not available as a gauge choice if metric depends on

‘time’ coordinate. EX = x? is also not a good gauge choice.

o Classically, E?(t) = t/ ¥ =Gt =" @ —1, N(t) =

1/\/3 -1, EX(t) = t%

» Suitable gauge choices: N = VEX, N¥ = 0, an anisotropic version
I

of conformal time

= M sin ( \_..--"'#1 - 02 :;)

7] — M H ' d M 2 5 ; , 2
= _ S:I)n(z;) e ( .7) {1 L B ( VvV 1+ 64 f;ﬂ
EX = 4M°cos(n/2) I 0=, | _,
Kri.-‘, = tan(f//z) K. - arctan |V - = tan ( i 52 !/;’;2)“
i /2) : V14 42 -

< = e =
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Effective line element in deep quantum regime
— Can calculate 3 inside the horizon
1-— (r’ig) tan (—v/1 + 621/2)
—ﬁ) tan (—v/'1 + 625/2)

l=>n= —L(M'{:, m/2)

V14 A%

— “After” time __.._1" —tan(---) = 1, n can be treated as a fourth
R

L&

spatial coordinate but not as time.

» K, increases in the homogeneous interior and ultimately 1'(‘;-1(?]1(‘&4I
} = 0. Formally, assume that K,’;_, keeps increasing in the direction
normal to X. At this point, we switch to a 2—dimensional boundary
value problem = Not clear what appropriate b.c. should be!

J

— The effective line element is the classical one

s . 2M /) o S———
ast = (1 = T) " -+ '].—_m;l'lx‘_ + XL(IQI_

Wil 8 = (B 1)
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Summary
» Conclusions:

@ Introducing QG corrections gives rise to new space-time
structures, going beyond corrections to the classical dynamics.

Only consistent effective line element is Euclidean when
holonomy effects are strong = only boundary-value problems
well posed in this region.

[mportant to understand the role of quantum symmetries =
Deformation of general covariance. NCG: Deformations generic

to different approaches” M. Bojowald, 8.B., U. Biiyitkgam & M. Ronco, 2017]
» Looking ahead:

@ Similar line-elements needs to be derived for early-universe
cosmology = Cannot interpret ‘signature-change’ as instabilities
of matter ot metric perturbations on an otherwise Lorentzian
manifold.

[mplications for the initial state? Smooth ‘no-boundary’ state
compatible with dynamical signature-change? M. Bojowald & $.B.,

forthcomang
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