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Abstract: <p>In the first part of the talk, | will describe the new large N limit of tensor models, based on the &€odndex&€s of graphs (in contrast to
the standard large N expansion & nbsp;based on the &€oadegreeé€s), and the associated new large D limit of matrix models. This new limit sheds an
interesting light on the relation between disordered models A la SYK, tensor models and black holes. In the second part of the talk, | will apply
these ideas to discuss the phase diagrams of some strongly coupled matrix quantum mechanics. The phase diagrams display many interesting
features, including first and second order phase transitions and quantum critical points. Some of these phase transitions can be argued to provide a
guantum mechanical description of the phenomenon of gravitationa collapse.& nbsp;</p>
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Plan of the talk

1. Big picture

2. The new Iarge N and large D limits of general matrix-tensor and tensor
models (degree, index, melons and All That).

(F.F, Vincent Rivasseau and Guillaume Valette, arXiv:1709.07366, CMP; see
also FF, arXiv:1701.01171; AFGLV, arXiv: 1710.07263)

3. Phase diagrams

(Tatsuo Azeyanagi, F.F. and Fidel Schaposnik, arXiv: 1707.03431, PRL; F.F. and
Fidel Schaposnik, to appear)
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Quantum Black Holes

(Unitarity puzzle, quasi-normal
behaviour, chaos, horizon physics,
BH interior...)
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String Theory / D-Branes / Matrix Models /Holography / Matrix models
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Quantum Black Holes

(Unitarity puzzle, quasi-normal
behaviour, chaos, horizon physics,
BH interior...)

Fermionic disordered models
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String Theory / D-Branes / Matrix Models /Holography / Matrix models
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Quantum Black Holes

(Unitarity puzzle, quasi-normal
behaviour, chaos, horizon physics,
BH interior...)

Fermionic disordered models Tensor models
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The holographic description of black holes suggests quite generically that

quantum black holes should be equivalent to large N, strongly coupled matrix
quantum mechanical systems.

The typical set-up involves branes:
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X, 1<u<D=d-p-1

]
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X, 1<p<D=d-p-1

The index mu transforms in O(D) and is associated with the rotation transverse
to the branes. Idea: take the large D [imit and make the link with tensors
(Ferrari 2017).

However, the large D limit cannot be vector-like, which is too trivial...
Something new must happen here.

Fy=3 DU RE,

(>0

oY N

9>0

There is also an interesting relationship with the large space-time dimension
limit studied by Emparan et al.
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L= ND(tr(X;E_X,_L +m? X[ X)) - tBIB(X))
B

Instead of taking the large D limit at fixed t_B, can we imagine a new
enhanced scaling of the form

tp = DI\

Naively this seems impossible. If one enhances a coupling, diagrams
containing a large number of the associated vertices will have an arbitrary
high power of D. If the highest power of D is not bounded above, the large D
limit cannot exist.

In other words, the 't Hooft's scalings is delicate. The typical situation is that, if
the couplings are diminished, the limit becomes trivial; and if they are
enhanced, the limit does not exist anymore.
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But it turns out that a remarkable property holds: the powers of D and N in a
diagram are not independent.

Intuition: the power of D is related to the number of O(D) loops in the
diagram. The power of N is related to the genus of the surface on which the
diagram can be drawn. But on a surface of a given genus, there is a constrain
on the number of loops one can draw.

| will provide a nice proof tomorrow on the black board.
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Result:

tp = D' Pxp

Examples: tr XH_){HJX'VAXV genus zero: no enhancement
tr X“)i;_;)&;;_.)iy genus 1/2: enhancement

tr )(“_XPXHJ‘(’_)({M\(V genus 1: enhancement

X X

With this rule, one shows that the highest power of D of a planar diagram is D
(the highest power of D at genus g is 1+g)
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Standard large N approximation:

F=) N*%F,

920
New large D approximation at fixed genus:
v l4+g—¢/2
ky § Dot e
0>0
The new large D and standard large N limits do not commute with each other.

The new large D limit yieldsa 1/v/ D expansion of Feynman diagram of
fixed genus g.
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We are getting a new approximation for the sum over planar diagrams.

[he BIG thing is that it seems that this new approximation, albeit quite simple,

does capture correctly the qualitative physics associated with the full sum
over planar diagrams!
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Horte g eoretic 1deas,
Important graph theoretic ideas, |

A graph is just a set of vertices and edges relating the vertices. When you draw
a graph on a piece of paper (surface), you actually provide more data:

1) you choose a particular cyclic ordering of the edges around the vertices.

This additional information is irrelevant for ordinary field theories

(}"’) 1 (:;-"')-‘3 (.-"f);; (,-"f') 1 = (ﬂ;)l (‘f;):] (;‘."l) 1 (b_-; 2

But it is relevant in the case of matrix models

tr )(I JX;’»XJP'YAl % tr .Xl AX:_) ,Xl X3
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Important graph theoretic ideas, |

2) you choose a particular type (untwisted or twisted) for the edges

sa sc -
0.0y, Hermitian

X OadObe + OacObd Real symmetric
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Important graph theoretic ideas, |

2) you choose a particular type (untwisted or twisted) for the edges

N N C [
0.0y, Hermitian

X OadObe + OacObd Real symmetric
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Important matrix model idea

S=N (tr X2 4y N'ter I (X ))

J \ tr X2 tr X2
F = Z N2-2hp,
h>0

/1:_(/+1—B+Z(f“_—1)

B is the number of connected components of the ribbon graph

g >0

1-B+)Y (ta—1)=) t,—B=> 1+1=22>0
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Important matrix model idea

—I \ tr X*tr X~
F=Y NtF,
h>0

h:_(/+1—b’+2(f“_—1)

B is the number of connected components of the ribbon graph

g >0

1-B+)Y (ta—1)=) t,—B=> 1+1=22>0
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Important graph theoretic ideas, I

A d-bubble, or d-colored graph, is a regular graph with colored edges such
that the d edges incident to any given vertex carry all the d possible colors.

f-u bed

Interaction vertices for tensors of rank R are R-bubbles

Non-melonic m.CIOH'IC
Non-bipartite Bipartite
tr X, X;t X, Xj tr X, X ;t Xy Xi
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Important graph theoretic ideas, I

Feynman graphs for tensors of rank R are (R+1)-bubbles

Note that if you remove p colors from a d-bubble, you get a (d-p)-bubble.
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yortar aph theoretic 1deas,
Important graph theoretic ideas, Il

There are many ways to draw a colored graph on a surface. Pick a cyclic
ordering of the colors, pick a vertex type for each vertex and decide that the
edges joining vertices of different types are untwisted. This defines a jacket.

There are now two distinct ways to naturally associate a positive number to
any colored graph.
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Important graph theoretic ideas, I
1) Consider all the possible ways to draw the graph on a surface (i.e. all the
possible jackets) and sum of all the genera of these surfaces. This defines the
degree (Gurau)
, 1 -
deg B = 3 E 9(B;o)
cycles o€ S5y
Graphs of degree zero are called melons; they are “superplanar”.
2)Pick a particular color (0, propagators) and consider all the possible matrix

model graphs embedded in the colored graph, by keeping the color 0 and any
two other colors i and j (“matrix indices”). This graph is proportional to

i;\[;z—',’!:J..; h'i:} = @;; + 1 — B-,j,‘ + Z.(fu;f;f - ])

The sum of all the integers h associated to all the matrix model graphs one
can build from the colored graph is the index (FRV)

. ,
indg B = 5 Z hi;
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~alines T (4 ¥ -1 1—t(B, v
Scalings S = ND’ (t..l Xpy oot X ppy ooy, Z N1-tBa) [b,”(_(\))

Standard Bonzom-Gurau-Rivasseau scaling, suitably generalized to the non-
bipartite and matrix/tensor case:

Ta = D!(b”) ('(bu.) - deg B,

Ha
D Mr X, X)X, X] tr X, XX, X/
Feynman graphs are proportional to N2~ prth-L
4-—;](‘.5;'B+I'—|-21: (B,) — 1 —B+l}
Gy dee B +2) |3 (e(Ba) — 1)

! (1

D=N: the expansion is governed by the degree.
Only melonic interactions can contribute at leading order.

This limit is “vector model” like; not interesting.
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~~ |1 ~ J N T . ' T 1—t B,;). 'Y
Scalings S =ND (m Xovoowo Xy, +ZN Be)r, IB,,(.X))

= Df(b},,) c(Bo)— % deg B,

/!(1
ing (FR e B _
New scaling (FRV) I'T”_ — pHBa)=c(Ba)+ iy deg Ba ,\r,_‘ Enhancement!
VD tr X, X/ X, X tr x,f,\ X, X/

Feynman graphs are proportional to N2~"pr+i=—

(= 2indy B+ (r + 1)(r +2) [Z((r(ﬁ.,_) ~1)-B+ 1}
The expansion is governed by the index. Many more graphs contribute, in
particular non-melonic interactions can contribute at leading orders. This is
the expansion we need for SYK-like physics.
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Maximally single trace interactions are interactions that are single-trace with
respect to all the possible matrix models you can build from the tensor
models.

This is a new fascinating class of models which are extremely interesting to
study. Deriving the form of the generalized melons (index zero graphs) for
these cases in an outstanding open problem. We have solved it for the

complete colored graph when R is a prime number (in which case it is MST).
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A model:

H = NDtI(A!z/ P+ - Aﬂf/,je/*v,m,)
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A model:
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M, AN, T=1/3
Parameters:
m=M/A, =T/A

v
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M, AN, T=1/3
Parameters:
m=M/A, =T/A

Perturbative a la SYK
around H=0 and p =1/Z

large t at m fixed

\ 4

m
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M, AN, T=1/3
Parameters:
m=M/A, =T/A

Perturbative a la SYK
around H=0 and p =1/Z7
large t at m fixed

Standard “textbook”
perturbation theory:
large m at t fixed

\ 4

m
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M, AN, T=1/3
Parameters:

m=M/AN, =T/A

Perturbative a la SYK
around H=0 and p =1/Z
large t at m fixed

Effective coupling: min(1/m,1/t)

Standard “textbook”
perturbation theory:
large m at t fixed

v

m
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M, AN, T=1/p
Parameters:
m=M/A, =T/A

Effective coupling: min(1/m.1/t)
Perturbative a la SYK "
around H=0 and p =1/Z7

large t at m fixed

Standard “textbook”
perturbation theory:
large m at t fixed

v

m
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M, A, T=1/3

Parameters:
m=M/A, =T/A
L. oe : .
Effective coupling: min(1/m,1/t)
Perturbative a la SYK '
around H=0 and p =1/Z7
large t at m fixed
S In2~0.693
= In2 ~ 0.69:
ViD "
Standard “textbook”
perturbation theory:
g Catalan 1 - large m at t fixed
NID - +- 1 In2 ~ 0.465
o : ' . zero zero temperature entropy
Non-zero zero temperature entropy . (exponentially small at small T)

> m
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Perturbative a la SYK
around H=0 and p =1/Z
large t at m fixed

Not mysterious

Quite:mysterious

© Zero zero temperature entropy
Non-zero zero temperature entropy (exp()nen[’ia”y small at small T)

> m
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m
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We may expect that, below some critical distance, the stack of branes
gravitationally collapse to a black hole...
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0.08

~ 7

0.06

Critical point

Coexistence of two solutions

First order phase transition
(gravitational collapse)

Perturbative solution
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Another more “realistic” model:

. 1 - | .
H=ND tI'(J\-I-'e/.vL_*g’f.rH + S AVD (D) + H.c.))

Quantum critical point

Page 45/47



Pirsa: 18050007

Understanding what is going on is particularly important in the case of the
bosonic systems, because then the “SYK-like” perturbation theory does not
exist at all.

/ Coupling constant: 1/m
o :
Classical non-perturbative . Classical perturbative
Quantum non-perturbative . Quantum perturbative
> m
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