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Abstract: <p>The talk will focus on issues connected with the quantization of initial data for vacuum general relativity on null hypersurfaces.
Complete and constraint free initial data for GR can be given on pairs of intersecting null hypersurfaces. These offer a route to a canonical
guantization of GR which avoids having to deal with constraints. However the Poisson algebra of these data is rather intricate and it is not obvious
how one might quantize it. This algebrais however amost the same in the cylindrically symmetric case as in the full theory, which suggests that the
cylindrically symmetric theory ought to offer valuable insights. Here | present recent joint work with Javier Peraza and Miguel Paternain relating the
Poisson algebrain the cylindrically symmetric case to well studied algebraic structures.</p>
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Double null sheets as initial data
hypersurfaces

e A double null sheet A is a pair of intersecting null hypersurfaces
(or “lightfronts™) - like an open book in spacetime.

e N, N1 are 3-surfaces swept out by null geodesics emerging
normally from the two sides of 2-disk Sp. ¢
y 0
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The dfree initial data

Coordinates adapted to N

) .
e 0' 6? coordinates on Sy. Held constant on generators.

e v is a parameter along each generator defined so that the cross
sectional area of an infinitesimal bundle of neighboring generators
is

;1((’) = ;‘1(}?)2

where Ay is the cross sectional area at Sy. (N truncated so A
monotonic along generators.)
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“Bulk” data on all of M. “Surface” data on Sj.
I

e Bulk data = conformal 2-metric e, (61, 0°, v)

e Induced metric on A degenerate because A is null, so
ds? = h,,d8*do® - no dv terms

e Definition:

eap = hap/p With p = v/deth - makes dete = 1

e Parametrize e, by a single complex number valued field g
ds® = hapd0®do® = Lﬁ(d; + pdz)(dz + pdz)
1 — pj ;
with 2z = 8! + i6°.

e Surface data on Sp:
e area density on So, po,
e A=—In|nL -ngl,
e and the twist, 7, =

np-Veng—mnp:-Vang
np MR '

na = 0,, is the tangent to the generators of Nj.
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The Poisson brackets for:free data on N
for classical vacuum GR

Brackets not shown vanish, For 1in N — 8,
s g e .
1 1= g {p(1), MO} = ArG—8%(0y — 0) w00, 1ty
(1), A2)} = 47G —6%8a ~ 01) H(1,2) ] P
po va 2 : [0
{' —l'.”} J2 Gidpe—pd i) /(1 =) {p(1),7[f]} = ""l'"('[ o W‘”"‘“]l'
W | — plil I J
A 2
) For 1 € Ny (including 1 € 5y)
for 1, 2 in the same branch, Ay
{i(1), Al = |'ﬁ('-'%f5i(”u ”;][(i‘u“m;i"}t
a . (!
10, A0 = SrGE% (0, — 0y) ’
{Iili(fll--:\”-lll} SrGa% (02 — ) +(i) o2 i i) [0 =ui) (g oy }
{pol) T[f]} = —8aGLppo(8) \vp /1 et
; Ly P . \ \ ; f Ly .
A#), - —s\r.'[j' A —0 (9, -, } 1), = —-.\u(.‘{ 28— == yph,
{0,711} G| £A+ = G = )] (). 7111} nG| (2470 - 5 =ERvridai)
( LLppy ¢l 2 [ (ed ) f (0 —pafi)
' . - o 1 : Y P g LY el 1, (e i) H]
{rlhi].7[fa]} = — 6= [T”.fl-.lel - ;',/ Lipy e ( =3 0 ; "”)1..(1‘”)1'
“dEmy
Ly ) | ’ i . where 1 € Sy is the origin of the generator through 1
+ /l: [7“ - Jlflii']” {ed pp— EJ fo €l i+ by, i)} = (1 & .’_J]] For 1 € N,
For 1in N — So
: S
- {i(1), A0} = 1n(.’)—n‘tﬂg — ) [n-, N
{i(1), MB2)} = 4nG 82 (02 ~ 01)vrdu, i 4 )
0 L 2 (i) /O =pii) ¢ g \ }
o . | £p0 +(” )1= ' (101,
{;I[IJ.TUH = —I[nr(;’[i'”i — = l!hn[,"‘“’f] ) :
i 1 o 1 - A o .
{p(), 71} = -8 (;ﬂ—f‘.!.!"r-;ﬂ’)l
For 1in S| SR
' (£~ 14100, n),.( | ), 72416 0B}/ 1=uB)
{p(1),A(2)} = 0 2 pyp Twl\vp/a ‘
{n(),7lfl} = —8xGLpu. M.R. Phys. Rev. Lett. 101:211101, 2008
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One generator Poisson algebra

Only data on same generator have
non-zero bracket. Consistent with
causality: points on distinct
generators spacelike separated.

e One generator algebra of pu, fi, A, po on N, — Sy,

"2 pdp—pdp

11(1, 2)[1 — }Lﬁ]l[l — Hﬂ]g el1 T 1—pnpi

{n(1),1(2)} = 4nG’

p1p2
{A, [)(]} = —871'(;”
. ,
{ANu(2)} = —4nG ;}[vbd,,, 12
& — 7 l p % 1 2 2 i ; -
{/\} [1(2)} = —"1ﬂ'G’ (E[’I.’LC}”L [l,]z -+ m c ']h(] L—pept [d’l-’uﬂ’]ﬁ'u)

- Brackets with 6(62 — 6;) removed. pu, i functions on single line.
A, po single numbers.

- All other brackets of these data vanish.

- H(1,2) =1 if 2 follows 1 along the generator, 0 otherwise.,
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Cylindrically symmetric vacuum gravity

e One generator algebra is Poisson algebra of cylindrically
symmetric GR, on A swept out by radial light rays from axis,
provided G’ = G/(0 coordinate arealSp)).

Worldsheet of symmetry axis.
Dimension along axis supressed

- Obtained as brackets of averages of data over symmetry orbits at
symmetric solutions, or from symmetry reduced action.

e Cylindrically symmetric GR with 7 = 0 is an integrable system.
Quantized on algebraic level in asymptotically flat case [Korotkin
and Samtleben 1998].
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One generator Poisson algebra

Only data on same generator have
non-zero bracket. Consistent with
causality: points on distinct
generators spacelike separated.

e One generator algebra of pu, fi, A, po on N, — Sy,

"2 pdp—pdg

11(1, 2)[1 — }Lﬁ]l[l — Hﬂ]g el1 T 1—npi

{n(1),1(2)} = 4nG’

p1p2
{A, [)(]} = —871'(;”
. ,
{ANu(2)} = —4nG ;}[vbd,,, 12
& — 7 l p . 1 2 2 i : -
{/\} [1(2)} = —"1ﬂ'G’ (E[’I.’LC}”L [l,]z -+ m c ']h(] L—pept [d’l-’uﬂ’]ﬁ'u)

- Brackets with 6(62 — 6;) removed. pu, i functions on single line.
A, po single numbers.

- All other brackets of these data vanish.

- H(1,2) =1 if 2 follows 1 along the generator, 0 otherwise.
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N
We treat only the branch Ny, which touches symmetry axis.

Define new variable: deformed conformal metric £. £(p) is
non-linear integral transform of ¢ on interval in A, from axis to

p.
Captures all information in e that propagates off N7..
On solutions E.u(p) = €ab(Paz).

Worldsheet of symmetry axis.

E(p) is e here
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Poisson bracket:of new variable
e A calculation yields [Fuchs and Reisenberger, 2017]

{Su. b ('_“"1 ) ’ 5(-‘(1 (“"2 ) } ™
327G’

P-"-’-(m) SYM (44, (cd) (émz(uu)éf:f_,('t-l-’z) == §c"uh(w1)rf'f-.d('lf-’z))

- pw.(1/x) is Cauchy principal value distribution of 1/x.

- w is the “spectral parameter”. On N, can be identified with
twice area density, 2p, or with —2p, where p is time coordinate so
that ds® o< —dp° + dp°.

e Equivalently

B 822G (.13 1, 3 3 .1 13
(6.6} =Pl (3255 LENELENE R EE "sz")

wy — Wy
12,1 2 1 2 12, .

where QQ = Q0 = 2(0,0, + 0y0y + 0:0) is the Casimir tensor

(inverse Killing form).
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Algebraic structures: Geroch group

Geroch group: &(w) — g(w)E(w)g" (w)
- g(w) € G = LSL(2,R) - group of SL(2,R) valued functions of w.
- action transitive in space F of &€ fields - real, symmetric, positive

definite, det £ =1

Is Poisson bracket of £s invariant under Geroch? - Is Geroch
symplectic?

No
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... unless @ itself carries non-trivial Poissdn bracket.
Then G x F is the phase space of a composite system. And

1y 222, 5 2l
']’(Lj}(}f, ):{L,L}('Y‘J.-')

- vye G,z € F, and v x is the point in F resulting from acting

with v on x.

iff Q9 (Y
1 2 - 32rG s . 52
{9(w1),g(w2)} = P-'*’-(m)[ﬂs g(w1)g(ws)]

]2
= [r%, 94|

e This is called the Sklyanin bracket.

] e e . . 5 .
pt = 32rG R «“olaggical T matrix”. Satisfies

* = wq — 1wy Fie
125 2%
- Pt ==7

- r T — P = —64miG §(w1 — w2)§) o< Casimir of LSL(2,R)

- classical Yang-Baxter equation
l“i 13 4 124 234 134 234
B=|2", 7" #[r= 272", 7]
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Algebraic structures: Classical double

e Since the Geroch group GG acts transitively on the space F of Es,
F ought to be contained in G somehow.

e Most obvious way, £ = gg', doesn’t give useful results, but there
is another way: the classical double.

e The Sklyanin bracket defines a natural Lie bracket on L*, the
dual of L, the Lie algebra of (7.

e [* then integrates up to dual group G*, and Lie bracket on L
defines Poisson bracket on G* - Semenov-Tian-Shansky bracket.

e (G x G* forms classical double. F is more or less GG*.

e Note that Killing form identifies L* with L as vector space, G*
with GG as manifold, but different multiplication law.
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N
e Killing form turns r into maps R* : L — L with
Rt — R~ = —64miG’ 1d.
e Defines decomposition a = a* —a~ for all a € L.
at = i/(647G")R*a. Defines factorization g = g~ 'g; of G. G*
multiplication law is g« h = h_" g:19+h+. Here decomposition is
in positive and negative frecuency of w dependence.

e Can define an object that represents £ in complexification of G*:

Let A= gieg’ with e = { _“1 (l] ]

e Require g = g3 e (* is componentwise complex conjugate, not
adjoint) and A real, then A is real, symmetric, positive definite,
and of determinant 1. The Semenov-Tian-Shansky bracket on
g+, g— implies that A satisfies same bracket as £.

e Korotkin and Samtleben obtained this structure, in a different
way, in 1998

Pirsa: 18040129 Page 14/17



Pirsa: 18040129

I -
Including A and py.

Is there a way to include A and pq in this structure?
LSL(2,R) has a natural extension by two degrees of freedom to the

simplest affine Lie group - exponentiation of Kac-Moody algebra A},

The extension consists of

e a central factor e®*. k central generator.

b,

e a translation operator e acting on w dependence of gs.

Can a and b be identified with A and pg?
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Poisson algebra of £, A, and py.
Very simple for £ on N, — S,

4 B 397 13 L. 2 3.0 33
&L} = D QEE+EQEF+EQVE+EEN
Wy — Woy

{E,P{]} =0

164 =

{\po} = —-8nG

% 2D SYMMETRY
The surprise is {£€, A} = 0. But REDUCED SPACETIME
{gu,b (p)a A} = {Eub (ptm‘)v )\} and Pax
is spacelike to Sy, the home of . p
N
E(p) is e here ¢ Pas So

We have two commuting subalgebras which we know (more or less)
how to quantize. So maybe we should stop here.

But let’s press on and see if A and pg fit naturally into the classical
double of the extended loop group.
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e This is invariant under the action of the extended Geroch group

E - a:g{

- With

.{‘;" — (,Vuﬂ(‘)u"q(-“_?)(f{:k if

12

12
{g,9} = [F*, g4

e Q) 12

+‘|" )i v/ -

T = 32 (s *Ii-' f)-,,_.

; " (-u_.rl — wa + 1€ - 2 Ous )

G — Q) |

7o o= 32nG( — — —kOw,)
w1 — Wo — 1€ 2

e Quantization of extended classical doubles of this type has been
studied (Reshetikhin and Semenov-Tian-Shansky 1989).
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