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Abstract: <p>Randomness is an essential tool in many disciplines of modern sciences, such as cryptography, black hole physics, random matrix
theory, and Monte Carlo sampling. In quantum systems, random operations can be obtained via random circuits thanks to so-called g-designs and
play a central role in condensed-matter physics and in the fast scrambling conjecture for black holes. Here, we consider a more physically motivated
way of generating random evolutions by exploiting the many-body dynamics of a quantum system driven with stochastic external pulses. We
combine techniques from quantum control, open quantum systems, and exactly solvable models (via the Bethe ansatz) to generate Haar-uniform
random operations in driven many-body systems. We show that any fully controllable system converges to a unitary g-design in the long-time limit.
Moreover, we study the convergence time of a driven spin chain by mapping its random evolution into a semigroup with an integrable Liouvillian
and finding its gap. Remarkably, we find via Bethe-ansatz techniques that the gap is independent of & nbsp;g. We use mean-field techniques to argue
that this property may be typical for other controllable systems, athough we explicitly construct counterexamples via symmetry-breaking arguments
to show that this is not always the case. Our findings open up new physical methods to transform classical randomness into quantum randomness,
viaacombination of quantum many-body dynamics and random driving.</p>

<p>Reference: L. Banchi, D. Burgath, M. J  Kastoryano, Phys. Rev. X 7&nbsp;<a href="tel:041%20015"
target="_blank">041015</a>& nbsp;(2017)</p>
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Question
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A driven quantum system
H(t) = Ho + g(t)V

Resulting unitary operation after a
time T

U — .T-e—f_[‘OTH(r) dt
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Question

A driven quantum system
H(t) = Ho + g(t)V

Resulting unitary operation after a
time T

U — .T-e—f_[‘OTH(r) dt

We show (under some conditions):

After some time {U} is fully random (Haar)

Estimation of the blending time using the theory of open quantum
systems and many-body techniques (Bethe Ansatz)

L. Banchi, D. Burgarth, M. J. Kastoryano, Phys. Rev. X 7, 041015 (2017)
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Motivation
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Very useful in quantum information processing

Quantum encryption

Y1)y [2), . Ui ), Ualia), ...

State tomography (2-design)
e Optical tomography with 2N-designs (N = number of photons)

Banchi, Kolthammer, Kim, (to appear)

Noise estimation in open quantum systems
(apply random unitaries such that the coherent part is averaged out)

Generation of highly entangled states
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Generation of highly entangled states

I. Pitsios, L. Banchi, A. S. Rab, M. Bentivegna, D. Caprara, A. Crespi,
N. Spagnolo, S. Bose, P. Mataloni, R. Osellame, F. Sciarrino,
Nature Communications 8: 1569 (2017)

Alternative: “Entanglement tsunami”
The generation of entanglement requires optimized dynamics, but it is

typically achieved also with random operations... and in a fast way!

A. Nahum, J. Ruhman, S. Vijay, J. Haah / PRX 2017
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Estimation of the control time in quantum control problems

o If

U=Te i [ H(t)dt

is Haar random, then all operations are achievable at time T.

e Minimal T provides an estimation of the control time
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Other applications

credit: J. Carolan et al./Science 2015

Boson sampling experiments require random operations
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Other applications

credit: J. Carolan et al./Science 2015

Boson sampling experiments require random operations

) ll !!
99,99

“n-1

credit: Perez-Leija et al./PRA 2013
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How?
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Geometric picture
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Geometric picture
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Geometric picture
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Geometric picture
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How “random” is the evolution?

Comparing probability distributions on unitaries as a physical process

‘TEU (UpUT] — / UpU' pi1aar (dU)|| < €
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How “random” is the evolution?

Comparing probability distributions on unitaries as a physical process

| Ey [Um(; P U:}mw — / U®a p y=at fHaar(dU)|| < €

?

Pirsa: 18040128 Page 21/60



How “random” is the evolution?

Comparing probability distributions on unitaries as a physical process

Ey [U®9p U=>¢-q'i'J = / U®9 o U i (dU)|| <

<

No single (global) measurement can distinguish between the two
processes with probability larger than ¢
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How “random” is the evolution?

Comparing probability distributions on unitaries as a physical process

Ey [U®9p URIT] — / UB9 p UBIT fi11.0: (dU)

o

Using vectorisation
X=X Gl = 1X0) =D Xylij)
i i

IAX)) = A® 1|X)) and |XA)) = 1@ AT|X)). With U299 = 29 @ (U®9)*

e(li‘an) = |[Ey {Uwq‘q} / Uwq'ql“ﬂrmr(du)

oo
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How “random” is the evolution?

E“(I-LU* Q) — ‘ EU ‘kalq‘qu i / UQ@Q,Q u”zmr(du)

Operational way of measuring if two probability distributions are “close
enough”

ey, q) <2gW(py, ftHaar) Brandao et al. (2016)

Pirsa: 18040128 Page 25/60



Physical picture

In boson sampling experiments the photon distribution follows

q
per(0)2 = 3" [T Gioty 0 rgy = Tr [US99K

a0’ jj=1

q is the number of injected photons — “quantum Plinko machine”
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Physical picture

Convergence of spin correlations in randomly driven XY spin chain

(S (t)S]

I+q

(t)) = Tr ’U‘m’q/(‘-mf| for o, 3 € {x,y}

q is the distance between spins
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Physical picture

Renyi entropies are studied in information scrambling

1
C,'] = m TI’[([) RPR - R p) P]

If p = Traneitia[U 1) (1] UT] then E[Tr(p?)] = Tr [UPF9K genyi]
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Results
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Random pulse

Stochastic driving of a quantum system

H(t) = H+ g(t)V

e.g. with random amplitudes and phases
K

g(t) = Z Ay cos(wit + @)
k=1
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Random pulse

Stochastic driving of a quantum system

H(t) = H+ g(t)V

e.g. with random amplitudes and phases
K

g(t) = Z Ay cos(wit + @)
k=1

The average is over the random amplitudes, phases etc.

Ey [U%7pU®T] =E [('To fJ As) ds)m p (Tl ﬁ(s)dS)ﬁq]
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Random pulse

Stochastic driving of a quantum system

H(t) = H+ g(t)V

e.g. with random amplitudes and phases
K

g(t) = Z Ay cos(wit + @)
k=1

The average is over the random amplitudes, phases etc.

Simplification when g(t) is

e Gaussian (central limit theorem)
e Harmonic E[g(t + s)g(t)] = c(s)
e Short correlations Tc(Ts) >~ 4(s)
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Simplifications

EU [UNQ{)UNGW

) [(7-6 iﬁjf H(s) dS)C{Jq ) (Tei,f.o! F‘J(S)ds)wq]

I
e~ '* o,

L‘,qp — —j [“H_\q. f)J o "_ Lvnphqﬂ [vﬂhq1 {)H

XP9=XDXD..., where @ is the Kronecker sum XQY=X®1+1Y
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Cartoon picture

Each “replica” is initially

decoupled from the others
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Cartoon picture

After the average over the random pulses these copies are interacting
(a la replica trick), but in a dissipative way

E,qp — _j |H[|'\'(], /')‘ - ’\f':_%?([ﬁ |\’ri|)(.1q p‘ ’

shown for g = 4
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Controllability implies uniform blending

If H+ g(t)V is fully-controllable, then

A sk ) .\’ 1T
lim e'* p= / 285128 T dU
+ Haar

t—0oC
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Controllability implies uniform blending

First central result

If H+ g(t)V is fully-controllable, then

t—00

o £5) X > 1
lim &< p = / U®9p,U%9 1 du
4 Haar
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Controllability implies uniform blending

If H+ g(t)V is fully-controllable, then

A sk ) .\’ 1T
lim e'* p= / 285128 T dU
+ Haar

t—0oC

Proof idea:

fully controllable means, H, V, [H, V], [H,[H, V]], ... generate the full
Lie algebra SU(d)

Schur Weyl duality: (CY)%9 = @,\P* @ U
P* irreducible representation of the symmetric group S,

U irreducible representation of SU(d)
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Convergence time

~q P .
LT lim ettt

t— o0

|

A" is the Liouvillean gap, the eigenvalue of —£9 with minimal non-zero
real part
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Convergence time

~q . ~q _
He“ — lim e'* < A,

t—=00 ” I

A" is the Liouvillean gap, the eigenvalue of —£9 with minimal non-zero
real part

How do we estimate \*7

Complicated problem:

e L9 is formed by g interacting copies of the original Hilbert space
e Huge Hilbert space

e Restriction to low g is not enough
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Many body theory

Let's write the Liouvillean using “vectorised” notation

Lo=—i(H®®1-10 H®) - _(V®I@1 -1 VE&9)?

o
2

Second quantized notation: for any operator H

®q _ LAl 4.
H=9 = E :H,jamaj,,

ij,u

q now is the total number of “virtual” particles
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Many body theory

Let's write the Liouvillean using “vectorised” notation

Lo=—i(H®@1-1® H®) - Z(V®Ig1 - 1R V&)

o
2

Second quantized notation: for any operator H

Rq _ Al 4.
H=9 = E :Huamaj,,

ij,u

g now is the total number of “virtual” particles

S ; :
Lg =~ Z H«w‘f(af-x-u-raf‘ftrr — 33, 3aul)

afu

ag
5 Z er\-‘ Vfﬂf(nuuT n”“i)(nﬁvT

afBuv

where n, = ala, and V is diagonal.
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Mean field predictions

Mean field solution

The gap A\* is independent on g

e Confirmed in “typical” numerical simulations
o Powerful result: the convergence time the same for all the moments?

e Validity because “everything interacts with everything”

LFor certain choices of the norm...
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Mean field predictions

Mean field solution

The gap A® is independent on g

e Confirmed in "typical” numerical simulations
Powerful result: tt : time th for all t ts!
e Powerful result: the convergence time the same for all the moments

e Validity because “everything interacts with everything”

But...

we found (uncommon) counterexamples

e (replica?) symmetry breaking in tensor powers

1 For certain choices of the norm..
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Exactly solvable model: symmetric case

Lo=—iY (480111 —al aas1,y +he) = (] = nf)(n] - n})

¥
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Exactly solvable model: symmetric case

Strong driving limit o > 1

+ st =i
K,- ajrd;|

Ki_ — (K!+)I
Kz = (fijr + firy +1)/2
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Exactly solvable model: symmetric case

Spectrum from Bethe Ansatz

b — —% (gg;{nk +4; uj:,)

ny i1s the number of unpaired particles in mode k

ng +1 1 . 1
k We — 28 “k B Wa — W5

Solutions related to the roots of Heine-Stieltjes polynomials, so

-1 ., P |
2gk+l <Wwa < 28,

ap = A" = — —]1=0
gap = \ — Sin (l_) Gl

L is the length. The gap is independent on g
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Exactly solvable model: other cases

Fermionic representation
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Exactly solvable model: other cases

Fermionic representation
57 =apd)y

+ _ (c—\t
5 =(5)

:_ (st s o sts
SHECHETE 3}1,3j.L 1)/2

Generic case

dixr iyt — Ajyt g

2

s ot _ st o=
djxl9jy | — iy x| . 2q

L-1

5, N () (k)

2 .J Eq o I o gkLan‘fX/‘j’n )
k=1

a

a3

I"i "‘l
=3aWay,

= dp Wajp .
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Exactly solvable model: generic cases

Spectrum from Bethe Ansatz

ny is the number of unpaired particles in mode k

L—-1 1

wj—i—l,.‘f‘f ij‘)‘i

l"LJJ’ o} L’LJ x Z-!\ "‘L',_[ oY

k=0 3,+
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Exactly solvable model: generic cases

Final result

e Gap independent on g

e Mean field analysis is rigorous
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Exactly solvable model: symmetric case

Lo=—iY (480111 —al aas1,y +he) = (] = nf)(n] - n})

¥
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Numerical check

===== Strong driving limit
v Weak driving limit
= Fxact

ool 1 "

|

g
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Finally?
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Putting things together

e We need full controllability
e All the moments (typically) converge at the same time

e Open quantum system theory to estimate this time
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Numerical tests with stochastic pulse

K

g(t) ZA;{ cos(wkt + @k)

k=1

Non controllable case Controllable, but short time
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Numerical tests with stochastic pulse

Fully controllable case, after the blending time

A oy 7.
.y,
47
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When, and how rapidly, a quantum system subject to dynamical noise
produces a fully-random (i.e. Haar-uniform) distribution of unitary

evolutions?

Different tools from

e quantum information (quantum control, g-design)

e open quantum systems (dynamical semigroup, “low energy”

Liouvilleans)
e condensed matter physics (Bethe ansatz, mean field in replica space)

Explicit applications:

e Boson sampling experiments
e Estimation of the control time
e Entanglement generation in many-body settings

L. Banchi, D. Burgarth, M. J. Kastoryano, Phys. Rev. X 7, 041015 (2017)
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Yes, it blends!




