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Abstract: Remark to last week's participants: This will be a condensed version of last week's talks. | will drop many details (in particular on the
relation to quantum theory) and also drop the introductory slides to algorithmic probability (for this, see Marcus Hutter's introductory talk on
Tuesday afternoon, April 10).

Motivated by the conceptual puzzles of quantum theory and related areas of physics, | describe a rigorous and minimal &ogoroof of principlea€e
theory in which observers are fundamental and in which the physical world is a (provably) emergent phenomenon. Thisis areversal of the standard
view, which holds that physical theories ought to describe the objective evolution of a unique external world, with observers or agents as derived
concepts that play no fundamental role whatsoever. Using insights from algorithmic information theory (AIT), | show that this approach admits to
address several foundational puzzles that are difficult to address via standard approaches. This includes the measurement and Boltzmann brain
problems, and problems related to the computer simulation of observers. Without assuming the existence of an external world from the outset, the
resulting theory actually predicts that there is one as a consequence of AIT & in particular, aworld with simple, computable, probabilistic laws on
which different observers typicaly (but not always) agree. This approach represents a consistent but highly unfamiliar picture of the world, leading
to anew perspective from which to approach some questions in the foundations of physics.
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‘ Outline

1. Motivation

2. Postulates of the theory

3. How does an external world emerge?

4. What about more than one observer?

1. Motivation
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Systematic conceptual problems ‘

* Quantum theory: measurement problem, Bell’'s Theorem,
“no-go results for facts of the world”
« Cosmology: probabilities in a “big” universe (Boltzmann brains),
why low-entropic initial conditions, measure problem

 Future technology: computer simulation of observers,
simulation hypothesis, ...
* Philosophy: Hume’s problem of induction, Goodman’s “new
riddle”, hard problems in the Philosophy of Mind

* Naive human curiosity: why is there a “world” with (simple,
probabilistic, computable) “laws” in the first place?

Claim: These all point in a particular direction: an approach where
not a “world”, but observers/observations are fundamental.

Fundamental: P(future observations | past observations).

| ] |
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Boltzmann brain problem

Cosmologists argue about this:

Sketch of argumentation:

¢ Fix a cosmological model X that
predicts a very large universe.

e Count Npzp (# of Boltzmann brains)
and compare to N,,.; (# of naturally
evolved brains).

e If Ngp > N,. then a “BB-obser-
vation” should be highly probable:
“What the...? I'm in space?! Aargh...”

“Wow! | hope I'm not, like, a disembodied brain ° Thatas not What we see hence x |S
randomly formed complete with false memories of f | f d ’
aisitieq.

an existence I never really had, floating in a sea of

chaos and disorder. That would really ruin my day...

Is this argumentation valid?

https://wallacegsmith.wordpress.com/ — HH
2013/06/10/invasion-of-the-boltzmann- What prObab“lty ShOU|d you
brains/ : 14 . ”
assign to a “BB-observation”?
1. Motivation ] o | _ : | : : |
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Pirsa: 18040123 Page 5/52



General approach

Approach:
e Drop any assumption of an "external world".

1. Motivation
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General approach

Approach:
e Drop any assumption of an "external world".
e Start with the first-person conditional probabilities

P(next state of observer | previous states of observer),

privately for every single observer.

e Postulate P=algorithmic probability, motivated by
structural arguments. See what follows, and
compare with actual physics.

1. Motivation
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‘ Disclaimer ‘

e “Observer” is a technical / information-
theoretic notion. Not (directly) related
to “consciousness” etc.

e Not meant as a “TOE”. Predicts its
own limitations. Useless for most
questions that physicists care about.

e “Reality” of world is not denied, but only
its fundamentality. Reproduces standard
view to good approximation.

Blueprint / proof of principle of a certain kind of theory

| |
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‘ Outline

1. Motivation

2. Postulates of the theory

3. How does an external world emerge?

4. What about more than one observer?

2. Postulates of the theory
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Postulates of the theory ‘

Absolutely minimal ingredients:
e An observer is in some state x (at any given moment).
e |t will be in some other state y next.
e Some future states y are more probable than others.

— stochastic process.

all | see and know
and remember,
encoded: 101101...

| 2. Postulates of the theory _

From observers to physics via algorithmic information theory

Markus P. Mller
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Postulates of the theory ‘

An observer’s state can be represented by a binary string (like
x1 = 011010). One (subjective) moment after the other, this
yields a sequence x = (1, xs,..., 2, ), and the probability
of the next state y is

P(ylzi,xa, ..., 20),

where P is conditional algorithmic probability.

all | see and know
and remember,
encoded: 101101...

|
Mz, =110.. XN x5 = 01001011

g

.MI.I.:'
/asssassssssssssssssssnssnnn
I3 T4 Ty

| 2. Postulates of the theory _ |
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Postulates of the theory ‘

An observer’s state can be represented by a binary string (like
x1 = 011010). One (subjective) moment after the other, this
yields a sequence x = (1, xs,..., 2, ), and the probability

of the next state y is
P(ylzi,xa, ..., 20),

where P is conditional algorithmic probability.

¢ No assumption that this comes from incomplete knowledge /
quantum state /... of any “external world”.
The P describes fundamental irreducible chances.

¢ Not the actual 0-1-sequence is relevant, but the computability
structure that relates the different strings. Analogy: in GR, the
actual coordinates don’t matter, but the differentiable structure.

2. Postulates of the theory | |
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’ What is algorithmic probability? ‘

Probability measures on “histories”:  pu(x1,...,x,) =7

(Boring) example: pu(x1) := 27201 g g 4(1011) = 27241 =279,

(g, ) = () - plas) - oo play,).
Measure: Y u(z1) =1, D e Ca = G e

T Tt

Semimeasure: Same with “<“ instead of “=".

all | see and know
and remember,
encoded: 101101...

Vi
y
V 4

/oo assssssssssssssssnn
X

2. Postulates of the theory |
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‘ What is algorithmic probability? ‘

Measure: Z iz =1, Z B e i pael ) =B T )
T

Ln41

Semimeasure: Same with “<“ instead of “=".

A (semi)measure is computable if there is a computer program that,
oninput z1,...,x, and m € N outputs an (1/m)—approximation
to wu(xy,...,x,).

A (semi)measure is enumerable if there is a computer program that,
oninput wy,...,7, and m € N outputs some approximation
/_1,('”")(3:1, ...,x,) suchthat 4" < 4 and lim plm =

Tmn— 0o

A universal enumerable semimeasure M is an enumerable semi-
measure such that for every enumerable semimeasure ;. there exists
some constant ¢ > 0 suchthat M(xzy,...,z,) > ¢ pu(xy,...,z,).

| | |
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‘ What is algorithmic probability? ‘

Measure: Z ey ) = i Z B e i pael ) =B T )
T

Ln41

Semimeasure: Same with “<“ instead of “=".

A (semi)measure is computable if there is a computer program that,

on inpht—a gand un o N _autonts an (1l _annraxvimation
to u(# pick any universal enumerable semimeasure M

A (ser | | and no_rmall.ze it. N L that.
on ing This defines algorithmic probability P.
li’(””f T, .-, Tn) saenat g < gang. oot i = 1.

Tm—r 00

A universal enumerable semimeasure M is an enumerable semi-
measure such that for every enumerable semimeasure ;. there exists
some constant ¢ > 0 suchthat M(xy,...,z,) > ¢ pu(xy,...,z,).

| | |
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‘ What is algorithmic probability?

Alternative definition:
< [0 JoJo[iJoh]oJo] }"""“ My :=distribution of outputs

tape

Tty if input is chosen at random.
Is universal enumerable.
Computer
(including

work tapes)

“Occam’s razor’:

0, Oy ... wriles strings —K(x )
' ' ln...H:‘:Ul:'ll‘ii::.lnlj\.' I M{lr (:I:lg L ._I:n) 2 2 v (-.1?1 yeseylimy :
<« [o|o[1 |1 [/

1 (]) (1] where K(x) is the length of the
f array of

A OTF A 7 L ot pes SHOrtest computer program

el [ele e le el | (Ondeen that outputs x.
T Favors compressibility!

Universal monotone Turing machine U

| 2. Postulates of the theory
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‘ What is algorithmic probability?

Alternative definition:
< [0 JoJoiJo1]oJo] }"""“ My :=distribution of outputs

tape

Tﬁl}]‘.ﬁi,‘,,’?;;‘.].\, if input is chosen at random.
Is universal enumerable.

Computer
(including
work tapes)

Q: Won'’t the resulting theory depend on the choice |,
ﬁ of universal machine U / univ. enum. semimeasure M? ’

A: No, but non-trivial why not. Maybe ask me later. he
id KPS KA kd Ed kA kd kid K outpul Tapes T S pe -
7 2 2 72 72 2 72 7 R that outputs x.

ERREEET Favors compressibility!

| 2. Postulates of the theory
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An open problem ‘

An observer’s state can be represented by a binary string (like
x1 = 011010). One (subjective) moment after the other, this
yields a sequence x = (v, xs,...,T,), and the probability

of the next state y is P(z

P(ylzy,...,x,) = Pz, .
Liyei: 3 T

where P is conditional algorithmic probability.

T, Y)

Conceptually, it would be more consequential to define P
only to depend on the present, not the past. In some sense,
the “past” is only what an observer presently remembers...

P(ylzy).

Conceptually (much) clearer, but consequences much
harder to work out. Don’t know how to do it (yet).

2. Postulates of the theory _ |
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Why algorithmic probability? ‘

Several possible arguments:

1. Extrapolating Solomonoff induction

Sol. Induction (1964): after seeing bits by,...,b,,
predict the next bit b with prob. P(blb; ...b,).

2. Postulates of the theory

From observers to physics via algorithmic information theory Markus P. Mller
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Why algorithmic probability? ‘

Several possible arguments:

1. Extrapolating Solomonoff induction

Universal
Sol. Induction (1964): after seeing bits by,...,b, , IakEEREEI T

predict the next bit b with prob. P(blb; ... b,).

e |Laws of physics computable:
Given a description of an experiment as input,
an algorithm can compute the expected outcome statistics.

e This is enough to guarantee: Solomonoff induction will do at
least as good as our best physical theories in prediction
(in principle, asymptotically, for many observations).

¢ |dea: postulate that Solomonoff induction is “the law”!
This will then have to be consistent with physics (given our data).

| % Postuaesor ooy | | |

From observers to physics via algorithmic information theory

Markus P. Mller
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Why algorithmic probability?

2. A structural motivation

Physics is nothing but what makes some future observations

more likely than others.
Algorithmic probability is an essentially unique “canonical

propensity structure”.

3. A “many worlds”-like motivation

P can be interpreted as describing what an observer sees who
doesn’t know in which (computable) world she is located (or
who is “objectively delocalized”).

2. Postulates of the theory

From observers to physics via algorithmic information theory

Markus P. Mller
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Postulate, roughly, in words

What happens to an observer is such that the best strategy for

her to predict her future state would be to use the algorithmic
prior — in all situations, no matter how crazy.

testable predictions

Like in any other physical theory, “agency”
is not a fundamental part of the formalism.
But can be formulated abstractly later.

From observers to physics via algorithmic information theory Markus P. Mller
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‘ What is algorithmic probability?

Alternative definition:

11 -1 1 -1 -1 input
< [0]t]i]o]oft]o]t]ojof }1;1;)(‘

Tesalr - i
reads bits
sequentially

Computer
(including
work tapes)

(O Oy ... writes strings
sequentially
n s s e [ 1) s s ey mnnmn )
& [ofo]1[1]7
t{o]1]#
11017 array of
#1111 > output tapes
73 A 7 PR R P P I {O bren
Py

Universal monotone Turing machine U

| 2. Postulates of the theory
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‘ Outline

1. Motivation

2. Postulates of the theory

3. How does an external world emerge?

4. What about more than one observer?

3. How does physics emerge?
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Prediction 1: Principle of persistent regularities ‘

f(bit string ) =0 or 1

Fix any computable test f. / f
yeSll
Suppose the answer has been "yes" all along:
) ) : ),
1011011 111110111 1100100110 ? time
yes yes yes listor yes r. Future steps
From observers to physics via algorithmic information theory Markus P. Miiller
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Prediction 1: Principle of persistent regularities ‘

f(bit string ) =0 or 1

Fix any computable test f. / f
et _ "yes"
Suppose the answer has been "yes" all along:
1011011 111110111 1100100110 ?i i
il . | tlJ:ne
yes yes yes iistor yes r.  Fut/fprobablyh S'¢PS

yes

Theorem: Then, with probability close to one,
answer will be "yes" in the future.

Intuitive reason: This makes sequence of strings more compressible.

| | |
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Prediction 1: Principle of persistent regularities

Rigorous mathematical formulation:

Theorem 8.3 (Persistence of regularities). Let A be a dead-
end free observer graph, and [ an open computable A-test.
For bits a;,...,an,b € {0,1}, define the measure p as

pblaas...ay) = P{f(x’lul) =0 /(xf) =L
i) = an,

and similarly define the semimeasure m with P replaced by
38 1) <« 9—K(n)+O( ' _

M. Then we have®® m(0|17) < 2-KM+OWM) " and for the

measure p we have the slightly less explicit statement

n—oQ

p(1]1") — 1, (10)
but the convergence is rapid since E: o U< oo iBln <
e.g., p(1|]1") > 1 — L for all but finitely many n. Moreover,

n

the probability that f(x}" 'Y = 1 for all n € N is non-zero.

3. How does physics emerge?
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Prediction 1: Principle of persistent regularities

This is already indicates how Boltzmann brains are exorcized:

f := computable test whether observations are typical for a planet-
like environment.

Suppose the answer has been "yes" all along:

(”‘ 'v-:_.\ (K ) ‘~-.~\_ ;‘,/.‘, “‘\_ ( “?:\__ : Py, P
¥ v v ) . )
y 4 v 4 d Aj‘/ _»/ : /'/ .
1011011 111110111 101 1100100110 . ? -“me
yes yes yes listor yes r. Future steps
From observers to physics via algorithmic information theory Markus P. Mller
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Prediction 1: Principle of persistent regularities

This is already indicates how Boltzmann brains are exorcized:

f := computable test whether observations are typical for a planet-
like environment.

Suppose the answer has been "yes" all along:

1011011 111110111 101 1100100110 ? tim
pdl l |t e
yes yes yes listor yes r. Futfprobablyh, S'¢PS
yes
Boltzmann brain experience ("what the... I'm
suddenly in space... argh!!") is highly unlikely.
|
From observers to physics via algorithmic information theory Markus P. Mller
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Prediction 1: Principle of persistent regularities

Rigorous mathematical formulation:

Theorem 8.3 (Persistence of regularities). Let A be a dead-
end free observer graph, and [ an open computable A-test.
For bits a;,...,an,b € {0,1}, define the measure p as

pblaas...ay) = P{f(x’lul) =0 /(xf) =L
i) = an,

and similarly define the semimeasure m with P replaced by
38 1) <« 9—K(n)+O( ' _

M. Then we have®® m(0|17) < 2-KM+OWM) " and for the

measure p we have the slightly less explicit statement

n—oQ

p(1]1") — 1, (10)
but the convergence is rapid since E: o U< oo iBln <
e.g., p(1|]1") > 1 — L for all but finitely many n. Moreover,

n

the probability that f(x}" 'Y = 1 for all n € N is non-zero.

3. How does physics emerge?
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Prediction 1: Principle of persistent regularities

But it is not quite enough — cf. Goodman’s New Riddle of Induction:

f := computable test whether observations are typical for a planet-
like environment.

F f if observed calendar shows year < 2050
771 NOT f if observed calendar shows year > 2050.

(cf. Goodman’s green/blue versus bleen/grue).

Theorem applies to both f and f. Contradiction?! No.

Resolution: Since K(f) < K(f), the f-regularity stabilizes earlier
than the f -regularity.

Careful quantitative analysis of K (see paper)
confirms exorcism of the Boltzmann brains.

| 3. How does physics emerge?
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Prediction 1: Principle of persistent regularities

But it is not quite enough — cf. Goodman’s New Riddle of Induction:

f := computable test whether observations are typical for a planet-
like environment.

f - f if observed calendar shows year < 2050
7| NOT f if observed calendar shows year > 2050.

(cf. Goodman’s green/blue versus bleen/grue).

Theorem applies to both f and f. Contradiction?! No.

Resolution: Since K(f) < K(f), the f-regularity stabilizes earlier
than the f -regularity.

Careful quantitative analysis of K (see paper)
confirms exorcism of the Boltzmann brains.

Will the different regularities “fit together” coherently? Yes! —>
| | |

From observers to physics via algorithmic information theory Markus P. Mller
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Prediction 2: Simple, computable, probabilistic “world”

Theorem. Consider any computable probabilistic process that
has description length L on a universal computer.
Suppose it generates outputs 7, x5, x5,... according
to the (computable) distribution p(x},...,z)).
Then, with P-probability at least 2~ we have

n—00

P(U|Il, SEER iy :I:n._) == [.L(y‘-’lfl, S 11-771,)3

l.e. the outputs of this process will asymptotically be a
perfect description of the observer’s states.

. -Cn r ;.:' -
looks as if "

it came from r

v
observer state,

P-distributed computational process,
output /-distributed.

| 3. How does physics emerge?

From observers to physics via algorithmic information theory
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Prediction 2: Simple, computable, probabilistic “world”

Theorem. Consider any computable probabilistic process that
has description length L on a universal computer.
Suppose it generates outputs '}, 75, 75,... according
!

to the (computable) distribution p(x},...,z)).
Then, with P-probability at least 2~ we have

n—00

| st e RS S () i DB i

l.e. the outputs of this process will asymptotically be a
perfect description of the observer’s states.

. -Cn- r ;.:' -
looks as if "

it came from r
v

observer state,
P-distributed computational process,
output /-distributed.

| 3. How does physics emerge?
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Prediction 2: Simple, computable, probabilistic “world”

Theorem. Consider any computable probabilistic process that
has description length L on a universal computer.
Suppose it generates outputs 7, x5, x5,... according
to the (computable) distribution p(x',...,z)).
Then, with P-probability at least 2~ we have

n—oo

P(ylzy,...,2zn) — plylzy, ..., z0),

l.e. the outputs of this process will asymptotically be a
perfect description of the observer’s states.

* It is contingent which process (and thus ) will emerge, but simpler
ones are highly preferred (simpler = smaller L = higher probability).

* Thus, observer’s probabilities will equal the marginal distribution of
some random variable that’s part of a probabilistic process with
computable laws of short description (a simple algorithm).

| | 3. How does physics emerge?

From observers to physics via algorithmic information theory

Markus P. Mller
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‘ Prediction 2: Simple, computable, probabilistic “world”

m.l-\_l_lljllllllll_llrll\l]

Abstract process (not even necessarily
discrete in a naive sense).

“External world”: computational
ontological model, useful for predicting
future experiences by providing direct
causal/mechanistic explanations.

,f'l“)
J

Comparison with physics that we observe: i

(:‘m y&L2,TL3, ."54)

(y,ro, w3, 1)

* Generically, (simple) computations start in simple initial state,
and then evolve with mcreasmg algorithmic entropy.

-III|II|II ll|l |l.l 0

time

3. How does physics emerge?
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‘ Prediction 2: Simple, computable, probabilistic “world”

m.l-\_l_lljllllllll_llrll\l]

Abstract process (not even necessarily
discrete in a naive sense).

“External world”: computational
ontological model, useful for predicting
future experiences by providing direct
causal/mechanistic explanations.

,f'l“)

‘l“\H

(y,ro, w3, 1)

(:‘m y&L2,TL3, ."54)

* Generically, (simple) computations start in simple initial state,

Comparison with physics that we observe: i
and then evolve with increasing algorithmic entropy.

* Time evolution is in principle simulatable by a (short) Turing
machine program (but not necessarily efficiently!).

3. How does physics emerge?

Markus P. Mller
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’ Prediction 2: Simple, computable, probabilistic “world”

Sy 2 is not Wi T Boa
1 ‘ ".5_':;' EL avery . L : 1% 'é’:‘ i
A A (e &5 2., . U
g‘ Iu s i 3‘I&lum”ulllg natural & _gu !b-:l '-; #i:}l‘\'__ f . -':I L '-:'
S L)) model of 20t _,_E'-,_ . e
~ A ——=11) . o e~ ha " .
\'@i ‘_ :ﬂ@g E]Q!J computation e9o %t e St
= for T .
Comparison with physics that we observe:
* Generically, (simple) computations start in simple initial state, a

and then evolve with increasing algorithmic entropy.

* Time evolution is in principle simulatable by a (short) Turing
machine program (but not necessarily efficiently!).

* Process is fundamentally probabilistic, but TM not necessarily
the most natural model of computation to represent the process.

| | |

Markus P. Mller
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’ Prediction 2: Simple, computable, probabilistic “world” ‘

e o s not ST G
RS .
In fact, violation of Bell inequalities | .'1’*' wt
and no-signalling (wrt. computational % n,
causal structure) generic predictions, i
L .

assuming that the open problem from
further above can be solved.
http://pirsa.org/displayFlash.php ?id=18040080

Compari BN
e (Gen Heads _ zzz2..| 7~ | | rmnznuonnannunrannonan...
and f [
e Timel |/ ¢ = | 6 —~
mac Sunday Teils an... M | ;\kkj) Zrzz2... .‘.ﬂ'-_- . 4‘ Zzzz21...
* Proc Monday Tuesday bessarily 41

the mhost natural model of computation to represent thelprocess\q

| | |
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‘ Outline

1. Motivation

2. Postulates of the theory

3. How does an external world emerge?

4. What about more than one observer?

3. How does physics emerge?
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Prediction 3: An emergent notion of objectivity

Apriori, different observers make their own "private" observations.

Abby Bambi
) .
),
o ALLA A B|..B B
Py |xi', ... 2z0) P(yZ|xy, ... x)))

3. How does physics emerge?
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Prediction 3: An emergent notion of objectivity

Apriori, different observers make their own "private" observations. They
are completely unrelated, and live in their own "external worlds".

A-world B-world

But suppose that A sees something in her external world
that seems like another observer B to her...

_ 3. How does physics emerge? PR
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Prediction 3: An emergent notion of objectivity

Apriori, different observers make their own "private" observations. They
are completely unrelated, and live in their own "external worlds".

A-world

e

But suppose that A sees something in her external world
that seems like another observer B to her...

Does what A sees really correspond to the
first-person perspective of another observer?

| 3. How does physics emerge?

From observers to physics via algorithmic information theory Markus P. Muller
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Prediction 3: An emergent notion of objectivity

How to formalize this:

x = 101100...

Choose some (simple) computable
function fp that, at any time step,
"reads out" some binary string
(interpreted as B's current state)

A-world

COMOREKEO
CORKFEOO

—

=

0
1
1
0 ;3
0
0
0

/B encodes “what other thing
in her world A is looking at”.

Two probability distributions:
v(xy,22,...,2,) = prob. that Bis in states x1,...,x, acc. to A-world

P(xq,...,x,) = algorithmic probability that B is in states x1,...,x,
(the real private chances for B!)
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Prediction 3: An emergent notion of objectivity

Let's consider a colourful example:

A-world o= 101100,

o
I |‘_|'_|'_‘|’_|‘—|‘_|'_|‘
R FCRCRC R

of Pf Pef P~f Pf P~f I~
Two probability distributions:
v(xy,22,...,2,) = prob. that Bis in states *1,...,x, acc. to A-world

P(xq,...,x,) = algorithmic probability that B is in states x1,...,z,
(the real private chances for B!)

| | 3. How does physics emerge?
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Prediction 3: An emergent notion of objectivity

Let's consider a colourful example:

A-world

If Abby has a chance of about 100% of seeina Bambi see the sun ¥

rise tomorrow, then will Bambi have a chance of about 100% of
seeing the sun rise tomorrow? P

v(xy,22,...,2,) = prob. that Bis in states x1,...,x, acc. to A-world

P(xq,...,x,) = algorithmic probability that B is in states x1,...,x,
(the real private chances for B!)

|7 | '_ 3. How does physics emerge?
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‘ Surprise 1: Probabilistic zombies

* “Objective reality” is a theorem, not an assumption:
v—> 00
P(y|lxy,....xx) — v(ylry, ..., xx).

Sometimes premises of theorem not satisfied ——p “zombies”!
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Prediction 3: An emergent notion of objectivity

Let's consider a colourful example:

A-world

If Abby has a chance of about 100% of seeina Bambi see the sun ¥

rise tomorrow, then will Bambi have a chance of about 100% of
seeing the sun rise tomorrow? P

Theorem: With 1/-probability one,
k— o0

Pllzune s cr) = (uloy s 2.
So the answer is "yes", asymptotically.

(In other words: P =~ v if B is “old enough” in A-world.)

|7 | | 3. How does physics emerge?
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‘ Surprise 1: Probabilistic zombies

® /(x) too small: A “points to” something in his world that is
too simple (e.g. a single bit, written on a blackboard)
® /{(v)too large: A “points to” something in a too complicated way

(example: Boltzmann brains, because very hard to localize.)

but
state/ 92)
history A B is a probabilistic
zombie for A.

prob. of B’s state according to A-world

Theorem: if K(x) < K(r) thenzombie,ie. P # v.

| | |

From observers to physics via algorithmic information theory Markus P. Mller

Pirsa: 18040123 Page 49/52



Surprise 2: Brain emulation

Get also concrete criteria for
when simulation of an agent
corresponds to an “actual first-
person perspective” (similarly
as in the zombie case).

Turns out: makes big difference

if simulation is “open” or “closed”
(feed in outside data or not).

More details in paper.

God ar His computer
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‘ Conclusions

= |Useless for most questions physicists care about.
O Proof of principle / blueprint of an “idealistic” predictive theory.

== Many predictions / consequences from very simple assumptions.

Existence of a simple computational probabilistic external world
Emergence of objectivity (typically)
Probabilistic zombies (in some cases)

Resolves (versions of) the Boltzmann brain problem++
No-signalling and Bell violation (modulo an open problem)

® Predictions for computer emulation of agents
* (Some sort of) subjective immortality, but no possibility to use this for solving NP-complete
problems in poly time. (But depends very much on details of the formulation.)

Full version: arXiv:1712.01826
Short version (v2 soon): arXiv:1712.01816

| |

From observers to physics via algorithmic information theory Markus P. Mller

Pirsa: 18040123 Page 51/52



An open problem ‘

An observer’s state can be represented by a binary string (like
x1 = 011010). One (subjective) moment after the other, this
yields a sequence x = (1, xs,..., 2, ), and the probability

of the next state y is P(x

Ty Y)
P(,U’T]J Ceey ',]’_fn) e P(ll "rlh ) ’
L]y gy,

where P is conditional algorithmic probability.

Conceptually, it would be more consequential to define P
only to depend on the present, not the past. In some sense,
the “past” is only what an observer presently remembers...

P(y|z,).

Conceptually (much) clearer, but consequences much
harder to work out. Don’t know how to do it (yet).

2. Postulates of the theory |
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