Title: Quantum speedup in testing causal hypotheses

Date: Apr 09, 2018 11:30 AM

URL: http://pirsa.org/18040122

Abstract: An important ingredient of the scientific method is the ability to test alternative hypotheses on the causal relations relating a given set of variables. In the classical world, this task can be achieved with a variety of statistical, information-theoretic, and computational techniques. In this talk I will address the extension from the classical scenario to the quantum scenario, and, more generally, to general probabilistic theories. After introducing the basic hypothesis testing framework, I will focus on a concrete example, where the task is to identify the causal intermediary of a given variable, under the promise that the causal intermediary belongs to a given set of candidate variables. In this problem, I will show that quantum physics offers an exponential advantage over the best classical strategies, with a doubling of the exponential decay of the error probability. The source of the advantage can be found in the combination of two quantum features: the complementarity between the information on the causal structure and other properties of the cause effect relation, and the ability to perform multiple tests in a quantum superposition. An interesting possibility is that one of the "hidden principles" of quantum theory could be on our ability to test alternative causal hypotheses.

Pirsa: 18040122 Page 1/71

QUANTUM SPEEDUP IN TESTING CAUSAL HYPOTHESES

Giulio Chiribella

Department of Computer Science, University of Oxford, CIFAR-Azrieli Global Scholars Program joint work with

Daniel Ebler

Department of Computer Science, The University of Hong Kong

Algorithmic Information, Induction, and Observers in Physics, April 9-13 2018
Perimeter Institute

Pirsa: 18040122 Page 2/71

CAUSAL INFERENCE (CLASSICAL)

The problem: discovering causal relations among a set of variables (cf. Pearl, Spirtes-Glymour-Scheines)

Basic idea: A is a cause for B iff intervening on A has an effect on the statistics of B

Caveat: "correlation does not imply causation":

no way to infer a causal relation from a *single* probability distribution p(a,b). It is necessary to probe different settings for a

Pirsa: 18040122 Page 3/71

CAUSAL INFERENCE (GENERAL)

Recently, various extensions of the notions of "causal relation" and "causal network" to quantum theory and beyond.

Basic idea (modulo variations across frameworks):

Variables: physical systems.

Causal relations: variable A is a cause for variable B iff

changing the state of A induces a change of the state of B

Leifer (2006), GC-D'Ariano-Perinotti (2008), Coecke-Spekkens (2012), Leifer-Spekkens (2013), Henson-Lal-Pusey (2014), Pienaar-Brukner (2015), Costa-Shrapnel (2016), Portmann-Matt-Maurer-Renner-Tackmann (2017), Allen-Barrett-Horsman-Lee-Spekkens (2017), MacLean-Ried-Spekkens-Resch (2017).

Pirsa: 18040122 Page 4/71

MOTIVATIONS FOR QUANTUM EXTENSION

Foundational:

- -understanding interplay between causality and quantum features
- -gain insights into future theories that will combine both
- -find new principles for quantum theory

• Practical:

- -identifying new quantum advantages
- -identifying working principles for new quantum devices, develop a "technology" of quantum causality.

Pirsa: 18040122 Page 5/71

PLAN OF THIS TALK

Formulate and analyze the quantum version of the task of **testing causal hypotheses.**

In this task, one has a **set of candidate hypotheses** on the causal relations occurring in a process and the goal is to **identify the correct hypothesis**.

Pirsa: 18040122 Page 6/71

Pirsa: 18040122 Page 7/71

AN INTRIGUING EXAMPLE

Task: distinguish between

• Situation (1): A causes B

• Situation (2): A and B have a common cause

Fact: *for some specific* ρ and \mathcal{C} it is possible to distinguish between (1) and (2) using *only projective measurements*.

Fitzsimons, Jones, and Vedral, Scientific Reports 5, 18281 (2015). Ried, Agnew, Vermeyden, Janzing, Spekkens, and Resch, Nature Physics 11, 414 (2015).

Pirsa: 18040122 Page 8/71

QUESTION

This is an intriguing and stimulating observation.

Still, the type of advantage here is contingent on a restriction on the allowed measurements, which in classical theory is equivalent to a restriction to passive observational strategies, where no intervention is allowed.

Question:

Can we find advantages in the situation where *arbitrary interventions* are allowed?

Pirsa: 18040122 Page 9/71

QUESTION

This is an intriguing and stimulating observation.

Still, the type of advantage here is contingent on a restriction on the allowed measurements, which in classical theory is equivalent to a restriction to passive observational strategies, where no intervention is allowed.

Question:

Can we find advantages in the situation where *arbitrary interventions* are allowed?

Pirsa: 18040122 Page 10/71

TESTING CAUSAL HYPOTHESES: A THEORY-INDEPENDENT FRAMEWORK

Pirsa: 18040122 Page 11/71

CAUSAL DISCOVERY VS CAUSAL HYPOTHESIS TESTING

Causal discovery. *Input:* variables A, B, C, ...

Output: the causal relations among them.

Causal hypothesis testing: *Input*: variables A, B, C, ...

and a set of hypotheses on the

causal relations among them.

Output: the correct hypothesis

Pirsa: 18040122 Page 12/71

CAUSAL HYPOTHESES

Causal Hypothesis: an hypothesis **on the causal structure** of the process connecting the variables.

e.g.

(H1) A causes B but not C

(H2) A causes B but not C

NB: causal hypotheses can be formulated independently of the underlying theory.

Pirsa: 18040122 Page 13/71

TESTING CAUSAL HYPOTHESES

The experimenter can probe the **same process** for a **finite number of times**, performing **arbitrary interventions**.

Most general intervention:

x= guess for the correct hypothesis

Special cases: process tomography, parallel queries, etc...

Pirsa: 18040122 Page 14/71

DISCRIMINATION RATE

Goal of causal hypothesis testing:

minimize the probability of choosing the wrong hypothesis.

Worst-case approach: since the process C is **unknown**

(a part from the fact that it is compatible with one and only one of the given hypotheses) we will consider the

worst-case error probability $p_{\rm err}(N)$

Discrimination rate: $R = \lim_{N \to \infty} \frac{-\log p_{\mathrm{err}}(N)}{N}$

quantifies the distinguishability of the hypotheses

DISCRIMINATION RATE

Goal of causal hypothesis testing:

minimize the probability of choosing the wrong hypothesis.

Worst-case approach: since the process C is **unknown**

(a part from the fact that it is compatible with one and only one of the given hypotheses) we will consider the

worst-case error probability $p_{
m err}(N)$

Discrimination rate: $R = \lim_{N \to \infty} \frac{-\log p_{\mathrm{err}}(N)}{N}$

quantifies the distinguishability of the hypotheses

Pirsa: 18040122 Page 17/71

CAUSAL INTERMEDIARIES

Variable B is a **(complete) causal intermediary** for variable A, if "all the causal influences of A" propagate through B.

More formally:

Variable B is a causal intermediary for variable A if

- B is an effect of A
- every other effect of A, say B', is an effect of B (assuming that B' takes place after B)

Example: A localized at a spacetime point and B localized at a section of the forward lightcone based at A.

Pirsa: 18040122 Page 18/71

IDENTIFYING THE CAUSAL INTERMEDIARY

Variables: A, B, and C

Hypothesis (1): B is a causal intermediary of A, while C fluctuates uniformly at random.

Hypothesis (2): C is a causal intermediary of A, while B fluctuates uniformly at random.

Problem: decide which hypothesis is correct.

Pirsa: 18040122 Page 19/71

IDENTIFYING THE CAUSAL INTERMEDIARY

Variables: A, B, and C

Hypothesis (1): B is a causal intermediary of A, while C fluctuates uniformly at random.

Hypothesis (2): C is a causal intermediary of A, while B fluctuates uniformly at random.

Problem: decide which hypothesis is correct.

Pirsa: 18040122 Page 20/71

Pirsa: 18040122 Page 21/71

SETTINGS

Assume that the random variables A, B, and C have all the **same dimension** d.

With this assumption, Hypotheses (1) and (2) become:

Hypothesis (1): b is a permutation of a,

and *c* is uniformly random

Hypothesis (2): c is a permutation of a,

and b is uniformly random

Pirsa: 18040122 Page 22/71

NAIVE CLASSICAL STRATEGY

Initialize the input variable A to a certain value, and observe the values taken by the output variables B and C. Repeat for *N* times, possibly trying different values of A.

Pirsa: 18040122 Page 23/71

NAIVE CLASSICAL STRATEGY

Initialize the input variable A to a certain value, and observe the values taken by the output variables B and C. Repeat for N times, possibly trying different values of A.

Example for N=8, d=2

	1	2	3	4	5	6	7	8
A	0	0	1	1	0	0	0	1
В	1	1	0	0	1	1	1	0
С	0	0	1	1	1	0	0	1

Pirsa: 18040122 Page 24/71

PROBABILITY OF ERROR (NAIVE STRATEGY)

Error occurs when both variables B and C take values that are compatible with permutations.

In that unlucky case, the probability of error is 1/2.

Pirsa: 18040122 Page 25/71

PROBABILITY OF ERROR (NAIVE STRATEGY)

Error occurs when both variables B and C take values that are compatible with permutations.

In that unlucky case, the probability of error is 1/2.

If we try v different values for A, the probability to be unlucky is

$$p_{\text{unlucky}} = \frac{\left| \{ \text{injective functions from } v \text{ element set to } d \text{ element set} \} \right|}{d^N}$$

$$= \frac{d(d-1)(d-2)\cdots(d-v+1)}{d^N}$$

Pirsa: 18040122 Page 26/71

DISCRIMINATION RATE (NAIVE STRATEGY)

Choosing v=1, the errpr probability of the naive strategy is minimal:

$$p_{\rm err}(N) = \frac{p_{\rm unlucky}}{2} = \frac{1}{2d^{N-1}}$$

Discrimination rate:
$$R = \lim_{N \to \infty} \frac{-\log p_{\mathrm{err}}(N)}{N}$$

$$= \log d$$

Pirsa: 18040122

GENERAL CLASSICAL STRATEGIES?

We have found the rate of the naive classical strategy. What about general strategies?

Pirsa: 18040122 Page 28/71

GENERAL CLASSICAL STRATEGIES?

We have found the rate of the naive classical strategy. What about general strategies?

Theorem [Hayashi, IEEE TIT, 55, 3807 (2009)]:

The optimal *asymptotic rate* in distinguishing *two classical channels* can be attained by a parallel strategy.

Applying this theorem to a fixed pair of permutations, we obtain that $\log d$ is an **upper bound to the rate.**

Pirsa: 18040122 Page 29/71

IN SUMMARY

For classical variables of dimension d, the optimal rate in identifying a complete causal intermediary is

$$R_{\rm C} = \log d$$

Attained by the naive strategy "initialize variable A for N times to the same value"

Pirsa: 18040122 Page 30/71

Pirsa: 18040122 Page 31/71

SETTINGS

Assume that the quantum systems A, B, and C have all the **same dimension** d.

With this assumption, Hypotheses (1) and (2) become:

Hypothesis (1):
$$\mathcal{C}_{A \to BC}(\rho_A) = (U \rho U^\dagger)_B \otimes \left(\frac{I}{d}\right)_C$$
 for some unknown unitary U

Hypothesis (2):
$$\mathcal{C}_{A \to BC}(\rho_A) = \left(\frac{I}{d}\right)_B \otimes (V \rho V^\dagger)_C$$
 for some unknown unitary V

Pirsa: 18040122 Page 32/71

NAIVE QUANTUM STRATEGY

Initialize the input system A in a fixed state, repeat for *N* times, measure the output state.

Pirsa: 18040122 Page 33/71

NAIVE QUANTUM STRATEGY

Initialize the input system A in a fixed state, repeat for *N* times, measure the output state.

Error probability:

$$p_{\rm err}(N) = \frac{\binom{N+d-1}{d-1}}{2d^N}$$

Worse than the classical error probability.
But at least, same rate: log *d*

Pirsa: 18040122 Page 34/71

QUANTUM TOMOGRAPHY?

Initialize the input system A together with a reference system R in a fixed state, repeat for N times, measure the output state.

Pirsa: 18040122 Page 35/71

QUANTUM TOMOGRAPHY?

Initialize the input system A together with a reference system R in a fixed state, repeat for *N* times, measure the output state.

Rate

same as the classical rate: $\log d$

Pirsa: 18040122 Page 36/71

QUANTUM TOMOGRAPHY?

Initialize the input system A together with a reference system R in a fixed state, repeat for N times, measure the output state.

Pirsa: 18040122 Page 37/71

Pirsa: 18040122 Page 38/71

Pirsa: 18040122 Page 39/71

PARALLEL STRATEGIES

Without reference:

With reference:

Pirsa: 18040122 Page 40/71

OPTIMAL STRATEGY WITHOUT REFERENCE

For simplicity, assume d = 2 and N even, say N=2p.

Divide the N input variables in p pairs. Prepare each group in the singlet state $|\Psi^-\rangle = \frac{|0\rangle \otimes |1\rangle - |1\rangle \otimes |0\rangle}{\sqrt{2}}$

Pirsa: 18040122 Page 41/71

OPTIMAL STRATEGY WITHOUT REFERENCE

For simplicity, assume d = 2 and N even, say N=2p.

Divide the N input variables in p pairs. Prepare each group in the singlet state $|\Psi^-\rangle = \frac{|0\rangle \otimes |1\rangle - |1\rangle \otimes |0\rangle}{\sqrt{2}}$

Key intuition: invariance of the singlet

$$(U \otimes U)|\Psi^{-}\rangle = |\Psi^{-}\rangle \qquad \forall U$$

we can test the causal structure without extracting any information about the functional dependence between cause and effect.

ERROR PROBABILITY

For general dimension d, divide the N input variables in groups of d and prepare each group in the SU(d) singlet

$$|S_d\rangle = \frac{1}{\sqrt{d!}} \sum_{k_1, k_2, \dots, k_d} \epsilon_{k_1 k_2 \dots k_d} |k_1\rangle |k_2\rangle \dots |k_d\rangle$$

Perform the Helstrom measurement on the output.

Pirsa: 18040122 Page 43/71

ERROR PROBABILITY

For general dimension d, divide the N input variables in groups of d and prepare each group in the SU(d) singlet

$$|S_d\rangle = \frac{1}{\sqrt{d!}} \sum_{k_1, k_2, \cdots, k_d} \epsilon_{k_1 k_2 \dots k_d} |k_1\rangle |k_2\rangle \cdots |k_d\rangle$$

Perform the Helstrom measurement on the output.

Error probability:
$$p_{\rm err}(N)=\frac{1}{2d^N}$$

Better than classical value $p_{\rm err}(N)=\frac{1}{2d^{N-1}}$
but rate is still log d

Pirsa: 18040122

OPTIMAL PARALLEL STRATEGIES WITH **REFERENCE**

Pirsa: 18040122 Page 45/71

d=2, N even. Many ways to partition the inputs into pairs:

Pirsa: 18040122 Page 46/71

d=2, N even. Many ways to partition the inputs into pairs:

Pirsa: 18040122 Page 47/71

d=2, N even. Many ways to partition the inputs into pairs:

Pirsa: 18040122 Page 48/71

d=2, N even. Many ways to partition the inputs into pairs:

Pirsa: 18040122 Page 49/71

 $-\mathcal{C}$

 \mathcal{C}

 \mathcal{C}

 \mathcal{C}

 \mathcal{C}

 \mathcal{C}

Pirsa: 18040122 Page 50/71

Pirsa: 18040122 Page 51/71

Pirsa: 18040122 Page 52/71

Pirsa: 18040122 Page 53/71

Pirsa: 18040122 Page 54/71

Pirsa: 18040122 Page 55/71

Pirsa: 18040122 Page 56/71

In dimension *d*:

$$|\Psi\rangle = \frac{1}{\sqrt{L}} \sum_{i=1}^{L} (|S_d\rangle^{\otimes N/d})_i \otimes |i\rangle_R$$

where i labels the way to group the systems and L is the number of groupings in the superposition

45

ERROR PROBABILITY

When there are *r* linearly independent groupings, the error probability is

$$p_{\text{err}}^{\text{Q}}(r) = \frac{r}{2d^N} \left(1 - \sqrt{1 - r^{-2}} \right) \xrightarrow{r \gg 1} \frac{1}{4rd^N}$$

Pirsa: 18040122 Page 58/71

ERROR PROBABILITY

When there are r linearly independent groupings, the error probability is

$$p_{\text{err}}^{\text{Q}}(r) = \frac{r}{2d^N} \left(1 - \sqrt{1 - r^{-2}} \right) \xrightarrow{r \gg 1} \frac{1}{4rd^N}$$

Picking the maximum r, we obtain the rate

$$R_{\rm Q} = -\lim_{N \to \infty} \frac{\log p_{\rm err}^{\rm Q}}{N} = 2\log d$$

Twice the classical rate!

Pirsa: 18040122 Page 60/71

GENERAL CLASSICAL STRATEGIES?

We have found the rate of the best parallel strategies. What about general strategies?

In principle, we should optimize over all quantum testers

GC-D'Ariano-Perinotti, PRL 101, 180501 (2008) Gutoski-Watrous, Proc. STOC, p. 565-574 (2007).

However, the optimization is hard.

Pirsa: 18040122 Page 61/71

A TRICK

Page 62/71

Define the **fidelity divergence** of two channels

$$\partial F(\mathcal{C}_{1}, \mathcal{C}_{2}) = \inf_{R} \inf_{\rho_{1}, \rho_{2}} \frac{F\left[\left(\mathcal{C}_{1} \otimes \mathcal{I}_{R}\right)\left(\rho_{1}\right), \left(\mathcal{C}_{2} \otimes \mathcal{I}_{R}\right)\left(\rho_{2}\right)\right]}{F(\rho_{1}, \rho_{2})}$$

Pirsa: 18040122

A TRICK

Define the **fidelity divergence** of two channels

$$\partial F(\mathcal{C}_{1}, \mathcal{C}_{2}) = \inf_{R} \inf_{\rho_{1}, \rho_{2}} \frac{F\left[\left(\mathcal{C}_{1} \otimes \mathcal{I}_{R}\right)\left(\rho_{1}\right), \left(\mathcal{C}_{2} \otimes \mathcal{I}_{R}\right)\left(\rho_{2}\right)\right]}{F(\rho_{1}, \rho_{2})}$$

Fact: if we try to distinguish between two channels with *N* queries, the error probability satisfies

$$p_{\mathrm{err}}^{\mathrm{seq}}(\mathcal{C}_1, \mathcal{C}_2; N) \ge \frac{\partial F(\mathcal{C}_1, \mathcal{C}_2)^N}{4}$$

Upper bound on the rate: $R_{\mathbf{Q}}^{\mathrm{seq}}(\mathcal{C}_1, \mathcal{C}_2) \leq -\log \partial F(\mathcal{C}_1, \mathcal{C}_2)$

Pirsa: 18040122

OPTIMAL RATE

The **fidelity divergence** between the channels

$$C_{A \to BC}(\rho_A) = (U \rho U^{\dagger})_B \otimes \left(\frac{I}{d}\right)_C$$

$$\mathcal{C}_{A o BC}(
ho_A)=\left(rac{I}{d}
ight)_B\otimes (V
ho V^\dagger)_C$$
 is $\partial F=rac{1}{d^2}$

is
$$\partial F = \frac{1}{d^2}$$

Hence, we have the bound $R_{\rm Q} \leq 2 \log d$

IN SUMMARY

For quantum variables of dimension d, the rate

$$R_{\rm Q} = 2\log d$$

is optimal, and it is attained by preparing singlets in a superposition of different groupings.

Pirsa: 18040122 Page 65/71

EXTENSION TO K CAUSAL HYPOTHESES

Pirsa: 18040122 Page 66/71

CAUSAL INTERMEDIARY: K CANDIDATES

Variables: A, B_1 , B_2 ... B_k

Hypothesis (i): B_i is a causal intermediary of A,

i=1, ..., k and all the other variables fluctuate

uniformly at random.

Problem: decide which hypothesis is correct.

Pirsa: 18040122 Page 67/71

OPTIMAL RATES

Classical: log d

Quantum without reference: log d

(attained with singlets)

Quantum with reference: $2 \log d$

(attained with superposition of singlets, optimal among all quantum strategies)

Note: rates are independent of the number of hypotheses k

Pirsa: 18040122 Page 68/71

CONCLUSIONS

- Theory-independent framework for testing causal hypotheses
- Instance of the problem MMARY identifying the causal intermediary.
- Classical solution: rate log d OOK
- Quantum solution: rate 2 log d, achieved by superposition of singlet states in equivalent configurations

Pirsa: 18040122 Page 69/71

CONCLUSIONS

- Theory-independent framework for testing causal hypotheses
- Instance of the problem:
 identifying the causal intermediary.
- Classical solution: rate log *d*
- Quantum solution: rate 2 log d, achieved by superposition of singlet states in equivalent configurations

Pirsa: 18040122 Page 70/71

OUTLOOK

- Is it always true that quantum theory does better (or at least, not worse) than classical theory in the task of causal hypothesis testing?
- Is quantum theory optimal for causal hypothesis testing?
- If not, which physical principles determine the power in identifying causal hypotheses?
- What about indefinite causal order?
 How well can we test non-standard hypotheses on the causal structure?

Pirsa: 18040122 Page 71/71