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Abstract: An important ingredient of the scientific method is the ability to test alternative hypotheses on the causal relations relating a given set of
variables. In the classical world, this task can be achieved with a variety of statistical, information-theoretic, and computational techniques. In this
talk | will address the extension from the classical scenario to the quantum scenario, and, more generally, to general probabilistic theories. After
introducing the basic hypothesis testing framework, | will focus on a concrete example, where the task is to identify the causa intermediary of a
given variable, under the promise that the causal intermediary belongs to a given set of candidate variables. In this problem, | will show that
guantum physics offers an exponential advantage over the best classical strategies, with a doubling of the exponential decay of the error probability.
The source of the advantage can be found in the combination of two quantum features: the complementarity between the information on the causal
structure and other properties of the cause effect relation, and the ability to perform multiple tests in a quantum superposition. An interesting
possibility isthat one of the "hidden principles’ of quantum theory could be on our ability to test alternative causal hypotheses.
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CAUSAL INFERENCE (CLASSICAL)

The problem: discovering causal relations among a set of variables
(cf. Pearl, Spirtes-Glymour-Scheines)

Basic idea: A is a cause for B iff

intervening on A has an effect on the statistics of B

Caveat: “correlation does not imply causation”:

no way to infer a causal relation
from a single probability distribution p(a,b).
It is necessary to probe different settings for a
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CAUSAL INFERENCE (GENERAL)

Recently, various extensions of the notions of
“causal relation” and “causal network”
to quantum theory and beyond.

Basic idea (modulo variations across frameworks):
Variables: physical systems.

Causal relations: variable A is a cause for variable B iff
changing the state of A induces a change of the state of B

Leifer (2006), GC-D’Ariano-Perinotti (2008),
Coecke-Spekkens (2012), Leifer-Spekkens (2013),

Henson-Lal-Pusey (2014), Pienaar-Brukner (2015), Costa-Shrapnel (2016),
Portmann-Matt-Maurer-Renner-Tackmann (2017),

Allen-Barrett-Horsman-Lee-Spekkens (2017), MacLean-Ried-Spekkens-Resch (2017).
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MOTIVATIONS FOR QUANTUM EXTENGSION

* Foundational:
-understanding interplay between causality and quantum features
-gain insights into future theories that will combine both
-find new principles for quantum theory

* Practical:
-identifying new quantum advantages
-identifying working principles for new quantum devices,
develop a “technology” of quantum causality:.
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PLAN OF THIS TALK

Formulate and analyze the quantum version of the task of
testing causal hypotheses.

In this task, one has a set of candidate hypotheses
on the causal relations occurring in a process

and the goal is to identify the correct hypothesis.
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PROLOGUE
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AN INTRIGUING EXAMPLE

Task: distinguish between

* Situation (1): A causes B _M_ C —m— Tr

0

e Situation (2): A and B have a common cause

Fact: for some specific 0 and C it is possible to distinguish
between (1) and (2) using only projective measurements.

Fitzsimons, Jones, and Vedral, Scientific Reports 5, 18281 (2015).
Ried, Agnew, Vermeyden, Janzing, Spekkens, and Resch, Nature Physics 11, 414 (2015).
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QUESTION

This is an intriguing and stimulating observation.

Still, the type of advantage here

is contingent on a restriction on the allowed measurements,

which in classical theory is equivalent to a restriction to

passive observational strategies, where no intervention is allowed.

Question:
Can we find advantages in the situation where

arbitrary interventions are allowed?
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TESTING
CAUSAL HYPOTHESES:

A THEORY-INDEPENDENT FRAMEWORK
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CAUSAL DISCOVERY
VS CAUSAL HYPOTHESIS TESTING

Causal discovery. Input: variables A, B, C, ...
Output: the causal relations among them.

Causal hypothesis testing: I[nput: variables A, B, C, ...
and a set of hypotheses on the
causal relations among them.
Output: the correct hypothesis
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CAUSAL HYPOTHESES

Causal Hypothesis: an hypothesis on the causal structure
of the process connecting the variables.

B B
ACC ACC

(H1) A causes B (H2) A causes B
but not C but not C

NB: causal hypotheses can be formulated
independently of the underlying theory.
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TESTING CAUSAL HYPOTHESES

The experimenter can probe the same process

for a finite number of times, performing arbitrary interventions.

Most general intervention:

x= guess for the correct hypothesis

Special cases: process tomography, parallel queries, etc...
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DISCRIMINATION RATE

Goal of causal hypothesis testing:
minimize the probability of choosing the wrong hypothesis.

Worst-case approach: since the process C is unknown
(a part from the fact that it is compatible with
one and only one of the given hypotheses)
we will consider the
worst-case error probability PDerr ( N )

Yoo log . N
Discriminationrate: R = lim &1 _-f“"( )
N—o0 N

quantifies the distinguishability of the hypotheses
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EXAMPLE:

[DENTIFYING
THE CAUSAL INTERMEDIARY
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CAUSAL INTERMEDIARIES

Variable B is a (complete) causal intermediary for variable A,
if “all the causal influences of A” propagate through B.

More formally:

Variable B is a causal intermediary for variable A if

* B is an effect of A

e every other effect of A, say B’, is an effect of B
(assuming that B’ takes place after B)

Example: A localized at a spacetime point
and B localized at a section of the
forward lightcone based at A.
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IDENTIFYING THE CAUSAL INTERMEDIARY

Variables: A, B, and C

Hypothesis (1): B is a causal intermediary of A,
while C fluctuates uniformly at random.

Hypothesis (2): Cis a causal intermediary of A,
while B fluctuates uniformly at random.

Problem: decide which hypothesis is correct.
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CLASSICAL
SOLUTION

irsa: 18040122 Page 21/71



SETTINGS

Assume that the random variables A, B, and C have all

the same dimension d.

With this assumption, Hypotheses (1) and (2) become:

Hypothesis (1): b is a permutation of a,
and c is uniformly random

Hypothesis (2): cis a permutation of 4,
and b is uniformly random
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NAIVE CLASSICAL STRATEGY

Initialize the input variable A to a certain value,
and observe the values taken by the output variables B and C.
Repeat for N times, possibly trying different values of A.
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NAIVE CLASSICAL STRATEGY

Initialize the input variable A to a certain value,
and observe the values taken by the output variables B and C.
Repeat for N times, possibly trying different values of A.

Example for N=8, d=2

0 0 1 1 0 0 0 1

‘ 4 ‘ :
" e

Y
]
{4y
Q)

o’

N

] 1 0 0 1 1 1 0

0 0 1 1 1 0 0 1
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PROBABILITY OF ERROR (NAIVE STRATEGY)

Error occurs when both variables B and C
take values that are compatible with permutations.

In that unlucky case, the probability of error is 1/2.
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PROBABILITY OF ERROR (NAIVE STRATEGY)

Error occurs when both variables B and C
take values that are compatible with permutations.

In that unlucky case, the probability of error is 1/2.

If we try v different values for A,
the probability to be unlucky is

{injective functions from v element set to d element set }

Punlucky = dN

Ladid== i =20l d =l
d¥
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DISCRIMINATION RATE (NAIVE STRATEGY)

Choosing v=1, the errpr probability of the naive strategy
is minimal:

Z T Punlucky v 1
Pere( V) = 0 el

— log perr (N
Discrimination rate: R = lim g Perr (V)
N—oo N

= log d
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GENERAL CLASSICAL STRATEGIES?

We have found the rate of the naive classical strategy.
What about general strategies?
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GENERAL CLASSICAL STRATEGIES?

We have found the rate of the naive classical strategy.
What about general strategies?

Theorem [Hayashi, IEEE TIT, 55, 3807 (2009)]:
The optimal asymptotic rate in distinguishing two classical channels
can be attained by a parallel strategy.

Applying this theorem to a fixed pair of permutations,
we obtain that log d is an upper bound to the rate.
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IN SUMMARY

For classical variables of dimension d,
the optimal rate in identifying a complete causal intermediary
1S

Rc = logd

Attained by the naive strategy
“initialize variable A for N times to the same value”
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QUANTUM
SOLUTION
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R L INGS

Assume that the quantum systems A, B, and C have all
the same dimension d.

With this assumption, Hypotheses (1) and (2) become:

. /
Hypothesis (1):  Ca_,pc(p4) = (UpU")p ® (E)
f C‘f

for some unknown unitary U

| 7
Hypothesis (2): CA—>BC-(P.4) — (E) &) (VpVT)C’
LB

for some unknown unitary V
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NAIVE QUANTUM STRATEGY

¢

Initialize the input system A
in a fixed state,

repeat for N times,

measure the output state.

ACE
B
¢

¢
&<

¢
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NAIVE QUANTUM STRATEGY

Initialize the input system A
in a fixed state,

repeat for N times,

measure the output state.

Error probability:

N+d-1
_ 4 d—1

Perr(N)

5 Dty

Worse than the classical
error probability.

But at least, same rate: log d
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QUANTUM TOMOGRAPHY?

Initialize the input system A
together with a reference system R
in a fixed state,

repeat for N times,

measure the output state.
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QUANTUM TOMOGRAPHY?

Initialize the input system A
together with a reference system R
in a fixed state,

repeat for N times,

measure the output state.

Rate

same as the classical rate: log d

Pirsa: 18040122 Page 36/71



QUANTUM TOMOGRAPHY?
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OPTIMAL
PARALLEL STRATEGIES
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OPTIMAL
PARALLEL STRATEGIES
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PARALLEL STRATEGIES

Without reference:
S B
= E
2 R

m B

A
- C ¢

With reference:

R L
i

R L
I C
L
i

A
-C C

R
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OPTIMAL STRATEGY WITHOUT REFERENCE

For simplicity, assume d = 2 and N even, say N=2p.

Divide the N input variables in p pairs.

LB 1) D
Prepare each group in the singlet state |V ):' )@ 11) — 1) ®10)
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OPTIMAL STRATEGY WITHOUT REFERENCE

For simplicity, assume d = 2 and N even, say N=2p.

Divide the N input variables in p pairs. 0y ® 1) — [1) @ |0)

Prepare each group in the singlet state |V™) =

Key intuition: invariance of the singlet

(Lr U = Pl vU

we can test the causal structure without extracting

any information about the functional dependence between
cause and effect.
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ERROR PROBABILITY

For general dimension d,
divide the N input variables in groups of d
and prepare each group in the SU(d) singlet

1
S = Z €kiko. ky |K1)|K2) < - |Kd)
Va o

Perform the Helstrom measurement on the output.
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ERROR PROBABILITY

For general dimension d,
divide the N input variables in groups of d
and prepare each group in the SU(d) singlet

1
Vi -

Perform the Helstrom measurement on the output.

1Sq) =

Z €kika.. kg |K1)|K2) - - | k)

1
2dN
Better than classical value p(_\n-(N ) ==

Error probability: p...(N) =
1
2dN -1

but rate is still log d
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OPTIMAL
PARALLEL STRATEGIES
WITH
REFERENCE
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EQUIVALENT STRATEGIES

d=2, N even. Many ways to partition the inputs into pairs:
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EQUIVALENT STRATEGIES

d=2, N even. Many ways to partition the inputs into pairs:

C C
<C C
C C
<C C
C

C

(-
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EQUIVALENT STRATEGIES

d=2, N even. Many ways to partition the inputs into pairs:

< ¢ ¢ ¢ ¢
& ¢ ( ¢ ( €
¢ & ¢ C etc,
< etc...
¢ C ¢ (&
< & < C < ¢ ¢
¢ C ¢ C
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IDEA: EQUIVALENT STRATEGIES IN
SUPERPOSITION

C

o G G E G0 O
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IDEA: EQUIVALENT STRATEGIES IN
SUPERPOSITION

<C
©
©

C

(
G

(i—
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IDEA: EQUIVALENT STRATEGIES IN
SUPERPOSITION

G

AR

A
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IDEA: EQUIVALENT STRATEGIES IN
SUPERPOSITION
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N
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IDEA: EQUIVALENT STRATEGIES IN
SUPERPOSITION

(s

N

A

irsa: 18040122 Page 54/71



IDEA: EQUIVALENT STRATEGIES IN
SUPERPOSITION

C
C

I\ YN

Gy W Loy

T
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IDEA: EQUIVALENT STRATEGIES IN
SUPERPOSITION

(C
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IDEA: EQUIVALENT STRATEGIES IN

SUPERPOSITION
C
C
In dimension d:
C ey
2 : IN/d :
‘\Ij> =7 (‘S(f,)& /()[® ‘Z>R
¢ & J
where i labels the way to group the systems
C and L is the number of groupings
c in the superposition
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ERROR PROBABILITY

When there are r linearly independent groupings,
the error probability is

CQi e (1 - 1_,1—2) r>1 1
) r) = T ?
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ERROR PROBABILITY

When there are r linearly independent groupings,
the error probability is

R =g
1 (r)= ——(1—=—+1—1 >

Picking the maximum 7, we obtain the rate

log pQ :
< =2logd
N g

Rq = — lim

N — o0

Twice the classical rate!
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GENERAL
QUANTUM STRATEGIES
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GENERAL CLASSICAL STRATEGIES?

We have found the rate of the best parallel strategies.
What about general strategies?

ACC

In principle, we should optimize over all quantum testers

GC-D’Ariano-Perinotti, PRL 101, 180501 (2008)
Gutoski-Watrous, Proc. STOC, p. 565-574 (2007).

However, the optimization is hard.
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A TRICK o

Define the fidelity divergence of two channels

. Fl@®Zr)(p), (€2 ® Ir)(p2)
E)F(Cl., Cg ) = inf inf

R p1,p2 F([)la [)2)

Pirsa: 18040122 Page 62/71



A TRICK Cir

Define the fidelity divergence of two channels

o Fl@eTae) . © 9 Ta)
) F C ,L9) = inf inf -
OF(C1,C2) = i Py F(p1, p2)

Fact: if we try to distinguish between two channels with N queries,
the error probability satisfies

OF (Cy,Co)
> 1

Perr (C1,Ca; N)

Upper bound on the rate: R5%(Cy,C2) < —log dF (Cy,Cs)
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OPTIMAL RATE

The fidelity divergence between the channels

Caspe(pa) = (UpUM)p ® (Z)
1) ¢

and

_ I _ t
Ca-pc(pa) = (—) ® (VoVhe
d B
1
d?

Hence, we have the bound RQ < 2 10g d
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IN SUMMARY

For quantum variables of dimension d,
the rate

Rq = 2log d

is optimal, and it is attained by preparing
singlets in a superposition of different groupings.
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EXTENSION
TO
K CAUSAL HYPOTHESES
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CAUSAL INTERMEDIARY: K CANDIDATES

Variables: A, By, B>... Bk

Hypothesis (i): B;is a causal intermediary of A,

i=1 ..k and all the other variables fluctuate
uniformly at random.

Problem: decide which hypothesis is correct.
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OPTIMAL RATES

Classical: logd

Quantum without reference: logd
(attained with singlets)

Quantum with reference: 2 logd
(attained with superposition of singlets,
optimal among all quantum strategies)
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Dep

AN
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CONCLUSIONS

e Theory-independent framework
for testing causal hypotheses

e Instance of the problem:
identifying the causal intermediary.

* Classical solution: rate log d

* Quantum solution: rate 2 log d,
achieved by superposition of singlet states
in equivalent configurations
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OUTLOOK

e [sitalways true that quantum theory does better
(or at least, not worse) than classical theory
in the task of causal hypothesis testing?

¢ [s quantum theory optimal for causal hypothesis testing?

e If not, which physical principles determine the power
in identifying causal hypotheses?

e What about indefinite causal order?
How well can we test non-standard hypotheses on the
causal structure?
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