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Abstract: In this talk, | show how information theoretic concepts can be used to extend the scope of traditional Bayesianism. | will focus on the
learning of indicative conditionals (&€odf A, then B&€s) and a Bayesian account of argumentation. We will see that there are also interesting
connections to research done in the psychology of reasoning. The talk is partly based on the paper &oBayesian Argumentation and the Vaue of
Logical Validitya€. (with Ben Eva, forthcoming in Psychological Review, http://philsci-archive.pitt.edu/14491/).
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Motivation

Bayesianism is the leading theory of uncertain reasoning with many
applications in artificial intelligence, philosophy, statistics, and other
sciences. (Like established disciplines such as mechanics and
electrodynamics, it has even been quantized.)

| am interested in developing the Bayesian framework and study
applications to old and new philosophical problems.

In particular, | am interested in understanding how the learning of
evidence which may not be propositional can be modeled. In this case
(Jeffrey) Conditionalization cannot be applied and new ways of
dealing with the problem have to be found.

| propose such a method (which is inspired by information theory)
and relate it to discussions in cognitive science.

The proposal also raises some challenges to information theory, but
more about this later.

@ | also hope that there are applications in physics.
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Argumentation

Argumentation plays an important role in science as well as in every
day life.

While some arguments are good and convincing, others are
misleading or simply do not work.

It is therefore desirable to have a general theory that helps us to
distinguish good arguments from bad arguments.

So far there is no such theory although it is widely acknowledged that
classical logic is too limited. But there is no consensus about how to
proceed.

| will show how the research program on Bayesian Argumentation,
which was initiated by the cognitive scientists Ulrike Hahn and Mike
Oaksford, can be further developed.
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Overview

O Bayesian Argumentation 1.0

@ Learning (Indicative) Conditionals

@ The Distance-Based Approach to Bayesianism
@ Bayesian Argumentation 2.0

@ Outlook
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What is an Argument?

@ An argument is a set of statements ( “premises”) to support another
statement ( “conclusion™).

@ An argument is the better, the more the premises support the
conclusion.

@ But what are the principles for assessing arguments? The following
factors play a role here:

©Q The structure of the argument: is the argument logically valid?

@ The content of the argument: are the premises plausible? How
plausible is the conclusion initially?

© The source that makes the argument: is the source reliable?
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Argument Schemes

M,

o Affirming the Consequent (AC)

C
A — C

A
e Denying the Antecedent (DA)
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Good and Bad Arguments

AC and DA are often called fallacies. They are not logically valid.

However, logically invalid arguments can nevertheless be good
arguments in the sense that they can raise the probability of the
conclusion.

This suggests that we study argumentation from a probabilistic point
of view.

To do so, we need a framework theory which allows us to model the
process of argumentation.

We choose Bayesianism because (i) it is the simplest and (ii) most
developed one. Besides, (iii) it has a normative foundation and

(iv) comes with the powerful machinery of Bayesian Networks which
will help us to represent beliefs and to effectively compute the change
of belief that a good argument induces.
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Bayesian Argumentation: The Idea

e Consider an agent who entertains the propositions A and B. Let P be
& prior probability distribution defined over the corresponding
propositional variables A and B.

@ Someone else then makes a MP argument (I work with these simple
schemes for illustrative purposes) and states:

A
A — C

C

@ Here the agent learns the premises A and A — C and updates her
(partial) beliefs accordingly.

@ Representing the conditional A — C by the material conditional
- A V C and conditionalizing on both propositions yields

P*(C) := P(C|A,~AVC) = 1.

@ Slogan: “Argumentation is learning”
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The Value of Logical Validity

o If the propositions ¢1,¢2 ..., ¢, are “prior premises’ and ¢ is a logical
consequence of them, then the probability of ¢ increases if the
probability of at least one of the premises increases (and no

probability decreases).
@ This is a special case of the Uncertainty Sum Rules found by Adams.

@ Define the uncertainty of a proposition as u(¢) := 1 — P(¢).

If p1,02...,0¢, are ‘prior premises’ and ¢ is a logical consequence of
O1,02 .., ¢n, then u(@) < u(p1) + - - + u(dn).

If 1,02 ...,¢, are ‘prior premises’, ¢ is a new premise, and ¢ is a logical
consequence of ¢1, ¢2..., ¢, and ¢, then u(p) < u(p1|e) + -+ + u(dnlt).
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Bayesian Argumentation: Generalization

This ideas presented so far can be generalized:

©Q An agent represents her beliefs as a Bayesian Network with a prior
probability distribution P defined over it.

@ She then learns the premises of an argument from another agent and
updates her beliefs using (Jeffrey) conditonalization (leaving the
network structure unchanged).

© The procedure can also be applied to other argument schemes, e.g.
to new argument schemes used in science.
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Bayesian Argumentation: Two Problems

Q@ What if the conditional is non-extreme, 1.e. if the conditional is not

learnt with certainty? Can it still be represented as a material
conditional?

@ Does the information gathering process matter? If so, how can it be
modeled?

In this talk, | focus on the first problem. In joint work with Peter Collins,

Ulrike Hahn, Karolina Krzyzanowska and Greg Wheeler, we address the
second problem.
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Il. Learning (Indicative) Conditionals
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Representing Indicative Conditionals

° An agent considers two propositions, A and C, and has a prior
probabillty distribution P defined over the corresponding propositional

variables.

@ She then learns the (ordinary language) indicative conditional "If A,
then C" (which we denote by A — C).

@ Questions:

@ How should she update her beliefs?
© Do conditionals have a probability at all?
© Are indicative conditionals propositions?

@ To start with, let us consider

Stalnaker's Thesis |

P(A — C) = P(C|A).
@ Using this thesis, David Lewis proofed a famous triviality result.
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Lewis’ Triviality Result

@ The calculation proceeds as follows:

" P(A - Q) P(A — C|C) - P(C) 4+ P(A — C|=C) - P(=C)
P(C|A, C) - P(C) + P(C|A,~C) - P(~C)
1-P(C)+0-P(=C)

P(C)

Here we have used the Law of Total Probability (line 1), Stalnaker's
Thesis (line 2) and the assumption that P(A,C), P(A,—~C) > 0.
From this, people concluded that we should not assign probabilities to
conditionals and that conditionals are not propositions. This is a
radical conclusion that has many unwanted consequences. It should
only be given up if there is no way out.

To proceed, let us explore how we can model the learning of a
conditional (which does not necessarily presuppose that we assign a
probability to it) by representing the conditional by the material
conditional A D C = -A Vv C.

Stephan Hartmann (MCMP) Inform. Theoretic Concepts in Bayesianism Perimeter Institute 2018 16 / 52

Pirsa: 18040121 Page 19/53



Pirsa: 18040121

Representing Indicative Conditionals

@ An agent considers two propositions, A and C, and has a prior
probability distribution P defined over the corresponding propositional
variables.

@ She then learns the (ordinary language) indicative conditional "If A,
then C" (which we denote by A — C).

@ Questions:

@ How should she update her beliefs?
© Do conditionals have a probability at all?
© Are indicative conditionals propositions?

@ To start with, let us consider

Stalnaker’s Thesis

P(A — C) = P(C|A).

@ Using this thesis, David Lewis proofed a famous triviality result.

Stephan Hartmann (MCMP) Inform. Theoretic Concepts in Bayesianism Perimeter Institute 2018 15 / 52

Page 20/53



Lewis’ Triviality Result

@ The calculation proceeds as follows:

" P(A - Q) P(A — C|C) - P(C) 4+ P(A — C|=C) - P(=C)
P(C|A, C) - P(C) + P(C|A,~C) - P(~C)
1-P(C)+0-P(=C)

P(C)

Here we have used the Law of Total Probability (line 1), Stalnaker's
Thesis (line 2) and the assumption that P(A,C), P(A,—~C) > 0.
From this, people concluded that we should not assign probabilities to
conditionals and that conditionals are not propositions. This is a
radical conclusion that has many unwanted consequences. It should
only be given up if there is no way out.

To proceed, let us explore how we can model the learning of a
conditional (which does not necessarily presuppose that we assign a
probability to it) by representing the conditional by the material
conditional A D C = -A Vv C.

Stephan Hartmann (MCMP) Inform. Theoretic Concepts in Bayesianism Perimeter Institute 2018 16 / 52

Pirsa: 18040121 Page 21/53



Pirsa: 18040121

Representing Indicative Conditionals

° An agent considers two propositions, A and C, and has a prior
probabillty distribution P defined over the corresponding propositional

variables.

@ She then learns the (ordinary language) indicative conditional "If A,
then C" (which we denote by A — C).

@ Questions:

@ How should she update her beliefs?
© Do conditionals have a probability at all?
© Are indicative conditionals propositions?

@ To start with, let us consider

Stalnaker's Thesis |

P(A — C) = P(C|A).
@ Using this thesis, David Lewis proofed a famous triviality result.

Stephan Hartmann (MCMP) Inform. Theoretic Concepts in Bayesianism Perimeter Institute 2018 15 / 52

Page 22/53



Lewis’ Triviality Result

@ The calculation proceeds as follows:

" P(A - Q) P(A — C|C) - P(C) 4+ P(A — C|=C) - P(=C)
P(C|A, C) - P(C) + P(C|A,~C) - P(~C)
1-P(C)+0-P(=C)

P(C)

Here we have used the Law of Total Probability (line 1), Stalnaker's
Thesis (line 2) and the assumption that P(A,C), P(A,—~C) > 0.
From this, people concluded that we should not assign probabilities to
conditionals and that conditionals are not propositions. This is a
radical conclusion that has many unwanted consequences. It should
only be given up if there is no way out.

To proceed, let us explore how we can model the learning of a
conditional (which does not necessarily presuppose that we assign a
probability to it) by representing the conditional by the material
conditional A D C = -A Vv C.

Stephan Hartmann (MCMP) Inform. Theoretic Concepts in Bayesianism Perimeter Institute 2018 16 / 52

Pirsa: 18040121 Page 23/53



Learning Indicative Conditionals

An agent considers two propositions, A and C, and has a prior
probability distribution P defined over the corresponding propositional
variables.

She then learns the indicative conditional “If A, then C".

@ Representing the conditional by the material conditional —A Vv C,
once can then show that

Q@ P*(A) = P(A|-A Vv C) decreases, and that
Q@ P*(C) := P(C|-A Vv C) increases,

if the probability distribution P is not extreme.

These results are plausible: Once we learn the conditional, the
antecedent becomes more informative (and therefore less likely).

Note that all this only holds for two propositions and without any
additional constraints.
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Alleged Problems: Douven's Counterexamples

@ lgor Douven presented a number of counterexamples against
conditonalizing on the material conditional.

@ Here is one of them (the "Ski Trip Example”):

Harry sees his friend Sue buying a skiing outfit. This surprises him a bit,
because he did not know of any plans of hers to go on a skiing trip. He
knows that she recently had an important exam and thinks it unlikely that
she passed. Then he meets Tom, his best friend and also a friend of Sue,
who is just on his way to Sue to hear whether she passed the exam, and
who tells him,

If Sue passed the exam, then her father will take her on a skiing vacation.

Recalling his earlier observation, Harry now comes to find it more likely
that Sue passed the exam.

Stephan Hartmann (MCMP) Inform. Theoretic Concepts in Bayesianism Perimeter Institute 2018 18 / 52

Pirsa: 18040121 Page 25/53



Learning Indicative Conditionals

An agent considers two propositions, A and C, and has a prior
probability distribution P defined over the corresponding propositional
variables.

She then learns the indicative conditional “If A, then C".

@ Representing the conditional by the material conditional —A Vv C,
once can then show that

Q@ P*(A) := P(A|=A Vv C) decreases, and that
Q@ P*(C):= P(C|=A v C) increases,

if the probability distribution P is not extreme.

These results are plausible: Once we learn the conditional, the
antecedent becomes more informative (and therefore less likely).

Note that all this only holds for two propositions and without any
additional constraints.

Stephan Hartmann (MCMP) Inform. Theoretic Concepts in Bayesianism Perimeter Institute 2018 17 / 52

Pirsa: 18040121 Page 26/53



Alleged Problems: Douven's Counterexamples

o Note that there are three variables involved here: E (with the values
“Sue passes the exam” etc.), S ("Sue is invited on a ski trip” etc.),
and B (“Sue buys a skiing outfit” etc.).

@ Harry has prior beliefs about these propositions and then learns two
items of information: (i) B and (ii) “If E, then S”.

@ Conditionalizing on B and —E V S, one can then show that the
probability of E increases. This becomes especially clear if one
additionally makes the assumption that E I B|S.

(O—(E—©®

@ All other “counterexamples” (Sundowners, Driving Test, etc.) can be
dealt with analogously.
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Problems (as before)

@ What if the conditional is non-extreme, 1.e. if the conditional is not
learnt with certainty (as, e.g., in the Judy Benjamin problem)?

@ Does the information gathering process matter? If so, how can it be
modeled?

To address the first problem, we develop the distance-based approach to
Bayesianism.
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I1l. The Distance-Based Approach to Bayesianism
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Repetition: Conditionalization (“Bayes' Rule")

0,

@ There are various rules that specify how a Bayesian agent should
change her beliefs in a rational way if she learns a proposition. Most
prominently, there is

Conditionalization
E|H) - P(H)
P(E) '

P*(H) := P(H|E) = 2.

e Conditionalization applies if the evidence becomes certain (i.e. if
P*(E) = 1).
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Repetition: Jeffrey Conditionalization

Jeffrey Conditionalization

O,

P*(H) := P(H|E) P'(E) + P(H|-E) P'(-E)

e Jeffrey Conditionalization applies if the evidence remains uncertain,
e.g. if it increases from P(E) = .4 to P*(E) = .9.

e Jeffrey Conditionalization follows from the Law of Total Probability,
P'(H) := P'(H|E) P(E) + P'(H|-E) P'(-E).
if the following condition holds:
Rigidity Condition
P'(H|E;) = P(H[E;)

for all elements of a partition of E.
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The Distance-Based Approach

Question: What can be done if the learned evidence is not propositional?

An agent holds beliefs, represented by a probability distribution P.

She then learns some new information which poses a constraint on
the new probability distribution Q.

@ is then found by minimizing a “distance” between Q and P, i.e. we
assume that the agents wants to change her beliefs in a conservative
way.

This approach requires the specification of a distance measure and we
will see that there are several candidate measures (such as the
Kullback-Leibler divergence).

We request that any admissible distance measure should imply
(Jeffrey) Conditionalization.

It can then be shown that this approach can be applied to the
learning of other kinds of evidence (such as indicative conditionals,
structural evidence).
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The Kullback-Leibler Divergence

0,

Kullback-Leibler Divergence between @ and P

Let Sy,...,S, be the possible values of a random variable S over which
probability distributions P and Q are defined and let p; := P(S;) and
gi := Q(Si). Then:

Dk (QI|P) : Zq. |Og<m>

Note that the KL divergence is not symmetrical and that it may not satisfy
the triangle inequality. So it is not a distance measure in the mathematical
sense of the term.
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The f-divergence

The f-divergence is a generalization of the KL divergence:

f-Divergence (Csiszar 1967)

Let f be a convex function with f(1) = 0 and p; := P(S;) and
gi := Q(S;). Then

.f(ﬂ>.
pi

o Note that the KL divergence results for f(t) = tlogt.

@ Other measures, such as the inverse KL divergence (f(t) = — log t),
the Hellinger distance and the y?-divergence are also f-divergences.

@ Important: All f-divergences imply (Jeffrey) Conditionalization.
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Learning (Indicative) Conditionals

I, one learns the indicative conditional “If A, then C" from a perfectly
reliable source, then the constraint on Q is Q(C|A) = 1.

Note that Q(C|A) =1 iff Q(wA V C) =1 (if Q(A) > 0) because
Q(-AVC)=Q(A)+ Q(—A) Q(C|A).

It is therefore not surprising that one gets the same results for
conditonalizing on the material conditional and for minimizing an
f-divergence if the learned conditional is strict.

However, it the learned conditional is not strict, then one gets
different results for both procedures (and for different divergencies).

If one additionally accepts the norm Minimizing Inaccuracy (as in
Epistemic Utility Theory), then the KL-divergence is the only
divergence left (logarithmic scoring rule).

Stephan Hartmann (MCMP) Inform. Theoretic Concepts in Bayesianism Perimeter Institute 2018 27 / 52

Pirsa: 18040121 Page 35/53



lllustration: The Judy Benjamin Problem

A soldier is dropped with her platoon in a territory that is divided in two
parts, the Red Territory (R) and the Blue Territory (—R) where each
territory is also divided in two parts, Second Company (S) and
Headquarters Company (—S), forming four sections of almost equal size.
The platoon is dropped somewhere in the middle so she finds it equally
likely to be in one section as in any of the others, i.e. P(R,S) =
P(R,—S) = P(-R,S) = P(—R,S) = 1/4. Then they receive a radio
message:

| can not be sure where you are. If you are in Red Territory the odds are
3:1 that you are in the Secondary Company.

How should Judy Benjamin update her belief function based on this
communication? (van Fraassen 1981)
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lllustration: The Judy Benjamin Problem

O,

@ We translate the learnt conditional into the following constraint on
the new distribution Q: Q(S|R) = k, where k = n/(n+ 1) if the odds
are n: 1. (In the present case, k = 3/4.)

Minimizing the KL divergence then yields Q(R) < 1/2, which
contradicts the intuition many people have.

It has been noted, however, that as n — oo, Q(R,~S) — 0. Hence,
of the four original quarters only three remain. Learning the
conditional excludes one of four possibilities. Using the Principle of
Indifference, it therefore seems rational to assign a probability of 1/3
to each of the remaining quarters. Hence, in the limit, Q(R) = 1/3.
This limiting value is reached as n increases and it is therefore
reasonable to have Q(R) < 1/2 for n = 3.
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lllustration: The Judy Benjamin Problem

A Theorem

Minimizing an f-divergence between @ and P for_the Judy Benjamin
Problem yields g1 = kd,q> = ké and g3 = qa = §/2 with § € (0,1) The
value of & depends on the respective f-divergence: d;x; = 1/2,

1+ 2Vkk
3+2Vkk

i % 0N

L — L L L L
0.45
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0.36
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lllustration: The Judy Benjamin Problem

But what about other f-divergencies? The plot shows that all
f-divergencies apart from the IKL divergence yield Q(R) < 1/2.
Only the IKL divergence yields Q(R) = 1/2.

However, one might want to argue that we do not only learn (i)
Q(S|R) = k, but also (ii) Q(R) = P(R). If one translates the learned
information in these two constraints on @, then all f—divergencies
yield Q(R) = 1/2.

To conclude, it may not always be uncontroversial which constraints
on Q follow from the information which is provided.
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IV. Bayesian Argumentation 2.0
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The Main Idea: “"Argumentation is Learning’

An agent entertains beliefs about a set of propositions, represented by
a Bayesian Network with a prior probability distribution P defined
over it.

She then learns the premises of an argument from another agent. The
network structure is not changed as a result of the learning
experience. (There could, however, be information that may result in
a change of the network structure.)

This poses constraints on the new probability distribution Q.

The full distribution Q is then determined by minimizing an
f-divergence (such as the KL-divergence) between Q and P.

As a result, the probability of the conclusion changes.
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lllustration 1: MP, Certain Premises

@ The agent has beliefs about the propositions A and B. These beliefs
are represented by a probability function P.

@ The agent learns from a perfectly reliable information source that
o A
e A— B.

@ The learned information puts constraints on the new distribution Q:
o A: Q(A) =1
o A - B: Q(BJA) = 1.
@ In this case, the full probability distribution Q results from the
constraints an no minimization is neccessary. We obtain, as expected,

Q(B) = 1.
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lllustration 1: DA, Certain Premises

The agent has beliefs about the propositions A and B. These beliefs
are represented by a probability function P.
The agent learns from a perfectly reliable information source that
o —A
e A— B.
The learned information puts constraints on the new distribution Q:
o —A: Q(-A) =1
o A B: Q(B|A) =1.
The agent then minimizes an f-divergence between @ and P and
obtains in accordance with other approaches that
Q(—B) = P(=B|-A).
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[[lustration 2: MP, Uncertain Minor Premise

The agent has beliefs about the propositions A and B. These beliefs
are represented by a probability function P.

The agent learns that A — B.
Furthermore, the agent learns from a partially reliable information
source that A.
The learned information puts constraints on the new distribution Q:
o A: Q(A) > P(A)
o A — B: Q(B|A) = 1.
The agent then minimizes an f-divergence between @ and P and
obtains that Q(B) > P(B).
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lllustration 3: Uncertain Mayor Premise

The agent has beliefs about the propositions A and B. These beliefs
are represented by a probability function P.
@ The agent learns that A and that A — B.

@ The learned information puts constraints on the new distribution Q:

o A: Q(A) = P(A)
o A — B: Q(B|A) > P(BJA).

The agent then minimizes an f-divergence between @ and P and
obtains that Q(—B) > P(—-B).

A similar result obtains for MT, but not for the invalid schemes AC
and DA.
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A Conjecture

Generalizing from our findings, the following conjecture emerges:

(i) If the underlying argument pattern is logically valid, then the
probability of the conclusion (following the procedure described
above) always increases if the probability of at least one of the
premises increases (and the probability of no other premise goes
down).

(i1) For arguments which are not logically valid, this is not the case.

Proving a refinement of this generalization of Adams’ sum rules is a major
challenge.

Stephan Hartmann (MCMP) Inform. Theoretic Concepts in Bayesianism Perimeter Institute 2018 43 / 52

Pirsa: 18040121 Page 47/53



Argumentation is a dialogical endeavor: One agent (agent 1) wants
to convince another agent (agent 2) of a conclusion.

Agent 1 does this in an indirect way by making the premises of the
argument more likely. As a result (and to make sure that the beliefs
remain coherent), agent 2 changes her beliefs also about the
conclusion.

The problem is that agent 1 does not know the prior probability
distribution of agent 2.

However, if agent 1 uses a logically valid argument pattern such as
MP or MT, then she can be certain that agent 2 will raise the
probability of the conclusion. This does not hold for AC and DA.
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Argumentation Beyond MP and MT

Scientific argumentation (as well as ordinary argumentation) is much
more than MP and MT.

An indeed, scientists come up with new argument schemes which they
use to convince each other.

The corresponding arguments typically involve a fair amount of
uncertainty about the truth of the premises.

@ What is more, they are often indirect in a specific sense.

O~

Indirect confirmation (involving a “common cause“):

@ Direct confirmation:
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V. Outlook
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Outlook

We have sketched a unified Bayesian theory of argumentation.

The key idea is that argumentation is learning.

| have offered a conjecture which answers the question why logical

validity is a valuable ingredient to argumentation even if the premises
are uncertain.

Along the way, | have sketched the Distance-Based Approach to
Bayesian and argued that it has many applications in the psychology
of reasoning and beyond.

In future work, we plan to (i) find other normative constraints that
single out subclasses of f-divergencies and (ii) conduct experiments
and see how well different f-divergencies do empirically.

| also hope for further applications in information theory and physics.
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Thanks. ..

... for your attention!

Stephan Hartmann (MCMP) Inform. Theoretic Concepts in Bayesianism Perimeter Institute 2018 52 / 52

Pirsa: 18040121 Page 53/53



