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Abstract: In this talk we describe a general procedure for associating a minimal informationally-complete quantum measurement (or MIC) with a
probabilistic representation of quantum theory. Towards this, we make use of the idea that the Born Rule is a consistency criterion among
subjectively assigned probabilities rather than a tool to set purely physically mandated probabilities. In our setting, the difference between quantum
theory and classical statistical physics is the way their physical assumptions augment bare probability theory: Classical statistical physics
corresponds to a trivial augmentation, while quantum theory makes crucia use of the Born Rule. We prove that the representation of the Born Rule
obtained from a symmetric informationally-complete measurement (or SIC) minimizes the distinction between the two theories in at least two
senses, one functional, the other geometric. Our results suggest that this representation supplies a natural vantage point from which to identify their
essential differences, and, perhaps thereby, a set of physical postulates reflecting the quantum nature of the world.
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Why look for other representations?

E.T. Jaynes Omelet
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Seek a Probabilistic Representation

» Probabilities are about our expectations/information /beliefs.
About us. How they fit together would be about nature.

“It is obviously possible to devise a formulation of quantum
mechanics without probability amplitudes. One is never forced to
use any quantities in one’s theory other than the raw results of
measurements. However, there is no reason to expect such a
formulation to be anything other than extremely ugly.”
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Personalist /Subjective Bayesian Probabilities

» Probabilities are not given by na-
ture. They are an agent’s degrees of
belief, specifically gambling commit-
ments. Always.

» The price you are willing to buy or sell
a ticket worth $1 if the event occurs.

» Standard probabilistic rules arise from
consistency among simultaneous gam-
bling commitments.

» With additional assumptions, one can derive rules of inference
(e.g., the Bayes Rule), but that's not the subject of this talk.
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Eg: Sum of exhaustive probabilities cannot exceed unity

» Let A be a lottery ticket worth $1 if it snows today and $0 if
it doesn't and B = —-A =1 — A be the reverse lottery ticket.

» Suppose you were willing to pay P(A) = $0.60 and
P(B) = $0.90

» Your expected net gain for buying both A and B at prices
P(A) and P(B) is

(A _ P(A)) ~+- (B —_ P(B)) = $1 — $0.60 — $0.90 = —$0.50

Figure 1: April 6th (Snow) Showers in Boston
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The Law of Total Probability

P(D;) = > P(D:|H;)P(H,)

J

» LTP is a consequence of consistency among one's
expectations for two consecutive measurements.

» Conditional probability P(D;|H;) is price you're willing to buy
or sell ticket worth $1 if ID; occurs in second action which is
refunded if H; is not obtained in first action.

» Your probabilities must be related in this way or you're a sure
loser.
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But What About the Born Rule?

Given quantum state p and POVM {FE;}, P(FE;) = trpFE;.
If all probabilities are personal judgements,

vy

» o must be some expression/encoding of a personal judgement.
» Association between experiences and the set { £;} must also
be personal judgements.
» Nonetheless, the Born Rule is what allows us to relate
probabilities in different contexts. Probabilities must hold
together in a particular way.

» Candidate for probabilistic representation.

\4

Is it ugly?
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Enter the SICs

Consider set of rank-1 projectors such

that
d5-5j+1
trl_I,-Hj = Td+1
These form a MIC H, = éHi called

a Symmetric Informationally-Complete

POVM (SIC).
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Coefficients are particularly simple in this basis.

(Iz
P = Z l:(d—l— 1)P(Hz') — %] II; .

=1

Consider an arbitrary measurement ;. The probability for
outcome j would be

dz
(Q(DJ) — tl’[)DJ‘ — Z |:(d+ I)P(Hz) — %] tl’Hz‘Dj .
i=1
If one performed a SIC measurement on p and obtained outcome ¢,
they would update to the state II; (Liders’ rule). So
tl'Hz'Dj — P(DJ.lHI) and

di.’.'

QD)) = 3= [(d+ VP — 5| P(D1Hy)

i=1

Probabilites for one measurement in terms of the probabilities and
conditional probabilities for another.
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More ways SICs are special

In dimensions where a SIC exists (and they seem to in all finite
dimensions), they

==

yvy

are optimal measurements for quantum state tomography,
even when complete set of MUBs doesn’t exist.

are most sensitive to quantum eavesdropping.
may be used as “magic states” in quantum computation.

are a definining feature of the Singapore protocol for quantum
key distribution.

Our representation of the Born Rule was aesthetically motivated,
but perhaps the SIC representation is optimal as well?
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T he General Scenario

» Consider a reference process consisting of a MIC measurement
{H;} and the subsequent preparation of a state o; from a
linearly independent set {0, }.

» In the special case where H,; and o; are rank-1 and
proportional, the post-measurement state is what would be
obtained from an application of Luders’ rule.
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T he General Scenario

P(H;) (H.)

D ‘, ~‘ ‘
-

(o0

~

Ve,

QD)

P(D;|H;)

)

Now repeat the derivation from earlier.

\Bﬁ
/
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T he General Scenario

7

The probability of outcome H,; given this quantum state is
P(H;) = tr pH; = Z ajtro;H; = Z (@], a; .
J J

where
[(I)‘l]r._j :=trH;o; .

With this we get,

p=>_ [>:[‘I’]ikp(Hk)] Ti .

k

z
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T he General Scenario

Similar to before,

Q(Dj) =trpDj; = ZP(DJ'IH:') [Z [<I>],-A.P(HL.)]

k

where P(DJIHZ) — tl‘O‘iDj.

In more compact vector notation, we might write
QD) =P(DH)PP(H),

where P(D|H) is a matrix of conditional probabilities.
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P(H;) (1)

_‘______?
) .
"/
f’ \

QD) s ;

Q(D) = P(D|H)® P(H)
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D captures deviation from LTP

LTP:
P(D) = P(D|H) P(H) .

Born Rule probability meshing:

QD)= P(DH)PP(H).

» & is column quasistochastic: real-valued matrix with columns
summing to 1.

» |If & could equal I, then with respect to the corresponding
reference process, there'd be no strange probability
meshing—we could behave as though there were ontic states.

» All reference processes are valid, but some choices will
“scramble subjective and objective into a messier omelette.”
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What about the No-Go T heorems?

» In MIC form, the Born rule automatically differs from the
LTP. Not within ontological models framework (OMF).

» No-go theorems all invoke LTP conditioning on ontic
variables. We don't.

P(a 3) -/;AP(A)A(;. A B (BN € /_;“’x'\"--"""” vil Eara v, (BL)
Bell (1964) PBR (2012)
[A Pr(E|M, Ddu() = Tr (Ep). (9) Pl (k) = (pF Y, (2)
Leifer (2014) Myrvold (2018)
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How close can ® and 1l be?

» The remaining differences between the LTP and a
representation as ‘‘close” as possible would be due to
genuinely nonclassical properties of physical reality.

» One way to measure a representation’s difference from the
LTP is with an operator distance.

» Let's look at the Frobenius distance in the special case that
the post-measurement states are proportional to the MIC.
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S/Cs are the closest!

Theorem
Let & be the column-quasistochastic matrix associated with a MIC

and a proportional set of post-measurement states. T hen

I — @l =dvd?—1,

with equality iff the MIC is a SIC.

Page 23/36
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One direction of proof

Via Schwarz inequality:

(tr & — d?)?
d? —1 '

I — |3 >
Note that

Z ,\(iI)) =trd ' = Zhitrp? = th‘ = d .

The largest eigenvalue of a stochastic matrix is 1 which means the
smallest eigenvalue of & is 1, so
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One direction of proof

Recall the ordering of the Pythagorean means:

1 e 1 1\ !
1wz (=) = (2322

2 Z

Then

1 trd — 1 1 1
FI 2 MM =m g z|E a2l @) =4t

1<<d?
can be rearranged into
trd > 1+ (d? —1)(d+ 1),

with equality iff \;_2(P) =d + 1. This is the SIC value.
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Majorization

We can prove a much stronger result. For this, it is helpful to
review the theory of majorization.

We say that = weakly majorizes 1, denoted = ~,, vy, if

ke ke
Zarfszyﬁ', fork=1,....N .

i=1 =1

If the last inequality is an equality, we say = majorizes y, denoted
xr = vy.
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Some notation

» The & matrix associated with the special case of a SIC
measurement and proportional SIC update is denoted Pgjc:.

» s(A) is the vector of singular values of a matrix A sorted in
descending order.
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Majorization Lemma

Lemma
Let & be the column-quasistochastic matrix associated with an
arbitrary reference process. Then

s(P) >=wiog s(Psic) ,

with equality iff the MIC and post-measurement states are SICs.
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Sketch of part of the proof
After significant amount of work, reason that
ldet ®| > (d+ 1) ! = det dgjc .

For any matrix, s(A) =g |[A(A)| and

d?—1 B d?—1
log |A(®)] » (zizl log [Mi(®)] " log [\i(®)) O)

d? — 1 Y d? — 1
- (log | det P| log | det D 0)
B 2 -1 7 d?2-1
. log det g log det g1 O)
w d2—1 LR d2—1 ?
= (log(d + 1), ..., Jog(d +1).0) = log A(Psic) .

—_— 3((1)) >"10g |/\((I))| >"u:l()g ’\((I)SIC) m— S((I)Sl(:) .
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All unitarily invariant norms!

A unitarily invariant norm is one such that ||A|| = ||[UAV||.

T heorem
Let & be the column-quasistochastic matrix associated with an
arbitrary reference process. Then for any unitarily invariant norm

r

I — @| = ||T — Psic]|

with equality iff the MIC and post-measurement states are SICs.

» Schatten p-norms (including trace norm, Frobenius norm,
operator norm).

» Ky Fan k-norms.
» Any norm depending only on singular values.
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Majorization keeps giving

Born Rule
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Majorization keeps giving

Theorem
For any MIC in dimension d, let P denote the image of quantum
state space under the Born rule and let volg('P) denote its

Euclidean volume. Then
volg(P) < volg(Psic) .

with equality iff the MIC is a SIC.

Page 33/36
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Another notion of deviation from classicality

Born Rule

SICs give the largest possible volume.

Pirsa: 18040114 Page 34/36




Future work

» Similarly motivated search for optimal representations of
general quantum time evolutions to see if results coincide.

» Full quantum reconstruction taking the SIC LTP analog as
one of the axioms.

» Progress has been made.! Last few assumptions stronger than
we think necessary.
» Connection between quasiprobability representations and &,
may lead to way to easily move between each.

M. Appleby, C. A. Fuchs, B. C. Stacey, and H. Zhu, “Introducing the
Qplex: A Novel Arena for Quantum Theory". Eur. Phys. J. D (2017) 71: 197
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For more information about SICs, see:

C. A. Fuchs, M. C. Hoang, and B. C. Stacey, “The SIC Question:
History and State of Play”. Axioms 2017, 6(3), 21;
doi:10.3390/axioms6030021.
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