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Abstract: Algorithmic information theory (AIT) delivers an objective quantification of simplicity-qua-compressibility,that was employed by
Solomonoff (1964) to specify agold standard of inductive inference. Or so runs the conventional account,that | will challengein my talk.
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The Solomonoff-Levin definitions

» Solomonoff (1964): the algorithmic probability distribution Qu.
> A probability assignment based on universal description lengths.

> An implementation of Occam’s razor in prediction.

Solomonoff (1964). A formal theory of inductive inference. Inform. Control.
Zvonkin & Levin (1970). The complexity of finite objects and the development of the concepts of
information and randomness by means of the theory of algorithms. Russ. Math. Surv
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The Solomonoff-Levin definitions

» Solomonoff (1964): the algorithmic probability distribution Qu.
> A probability assignment based on universal description lengths.

> An implementation of Occam’s razor in prediction.

» Levin (1970): the universal a priori distribution & .
> A weighted mean over a large class of effective probability distributions.

> A universal prediction method.

Solomonoff (1964). A formal theory of inductive inference. Inform. Control.
Zvonkin & Levin (1970). The complexity of finite objects and the development of the concepts of
information and randomness by means of the theory of algorithms. Russ. Math. Surv
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A representation theorem

» The two definitions are equivalent.

Wood, Sunehag, & Hutter (2013). (Non-)equivalence of universal priors. Proc. Solomonoff Memorial
Conf.
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A representation theorem

» The two definitions are equivalent. That is,

{Qutu = {&wlw.

Wood, Sunehag, & Hutter (2013). (Non-)equivalence of universal priors. Proc. Solomonoff Memorial
Conf,
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A representation theorem

» The two definitions are equivalent. That is,

{Qutu = {&wlw.

> The choice of universal Turing machine corresponds to the choice of
universal weight function.

Wood, Sunehag, & Hutter (2013). (Non-)equivalence of universal priors. Proc. Solomonoff Memorial
Conf.
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This talk Ailal

» Does the Solomonoff-Levin definition really give a convincing
specification of a universal prediction method?

» Does the Solomonoff-Levin definition really give a convincing
implementation of Occam’s razor?

S. (2018). Universal Prediction. University of Groningen
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Part |:
A universal method of prediction?

» We assume the setting of binary sequential prediction.

> A prediction method we define as a function p: {0,1}" — P from finite
data sequences to predictions, distributions over {0, 1}.

> Prediction methods correspond to probability measures j. over the whole
Cantor space, by p,,(x) = p'(- | x).

O @ @ o @ m @

Dawid (1984). Statistical theory: The prequential approach. J. R. Stat. Soc. A
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A universal prediction method

» Universal reliability: to a/lways converge on successful predictions.

> This is quite impossible, at least without making inductive assumptions
on what Nature can do.

Howson (2000). Hume's Problem
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A universal prediction method

» Universal reliability: to always converge on successful predictions.

> This is quite impossible, at least without making inductive assumptions
on what Nature can do.

» Alternatively, universal optimality: to converge on successful predictions
whenever some prediction method would.

> Rather than making assumptions about Nature, formulate reasonable
restrictions on what we could ever do.

Howson (2000). Hume's Problem
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The restriction of effective computability

» Any prediction method we could possibly design may be captured in an
algorithm.

> Universal optimality: to converge on successful predictions whenever
some computable prediction method would.
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Mixture predictors 9

» Take the class H of all computable probability measures over Cantor
space, corresponding to all computable prediction methods. A mixture,

defined by
)= ) wlm) - (),

i€H

corresponds to a prediction function that is optimal w.r.t. all computable
prediction methods.

> End of story?
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A diagonal argument

Putnam (1963). “Degree of confirmation” and inductive logic. The Philosophy of Rudolf Carnap
Kelly (2016). Learning theory and epistemology. Readings in Formal Epistemology
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A diagonal argument

» The problem is that this mixture is itse/f no longer computable.

> For any computable prediction method you propose, | can exhibit a
sequence that your method doesn't converge on, but some other
computable method does.

Putnam (1963). “Degree of confirmation” and inductive logic. The Philosophy of Rudolf Carnap
Kelly (2016). Learning theory and epistemology. Readings in Formal Epistemology
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The Solomonoff-Levin definition £y

» Try to escape diagonalization by expanding to the class of
“semi-computable” measures (on the space of infinite and finite
sequences), that does contain universal elements.

L <
k PRy, -~

"
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» Try to escape diagonalization by expanding to the class of
“semi-computable” measures (on the space of infinite and finite
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A failed escape e

» However, we are not so much interested in the underlying measures as in
the actual prediction methods—the conditional measures.

> In the case of computable measures, this doesn’t make a difference: the
computable measures correspond precisely to the computable conditional
measures.

Leike & Hutter (2015). On the computability of Solomonoff induction and knowledge-seeking. ALT '15
Putnam (1963). “Degree of confirmation” and inductive logic. The Philosophy of Rudolf Carnap
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A failed escape £l

» However, we are not so much interested in the underlying measures as in
the actual prediction methods—the conditional measures.

> In the case of computable measures, this doesn’'t make a difference: the
computable measures correspond precisely to the computable conditional
measures.

> But in the case of semi-computable measures, this does make a
difference. In particular, the Solomonoff-Levin predictor is no longer
semi-computable!

Leike & Hutter (2015). On the computability of Solomonoff induction and knowledge-seeking. ALT ‘15
Putnam (1963). “Degree of confirmation” and inductive logic. The Philosophy of Rudolf Carnap
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Addendum: the funny notion of a semi/limit-
computable method

» Consider the notion of a partially computable method for categorical
prediction.

Kelly, Juhl, & Glymour (1994). Reliability, realism, and relativism. Reading Putnam
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Addendum: the funny notion of a semi/limit-
computable method

» Consider the notion of a partially computable method for categorical
prediction. It doesn’'t seem very adequate for this purpose, because at
each trial it might be undefined and we have to either

> resign to waiting forever (actually losing universality!); or

> stop waiting and issue a default prediction at some point (actually losing
universality—or else computability!).

Kelly, Juhl, & Glymour (1994). Reliability, realism, and relativism. Reading Putnam
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Addendum: the funny notion of a semi/limit-
computable method

» Consider the notion of a partially computable method for categorical
prediction. It doesn’t seem very adequate for this purpose, because at
each trial it might be undefined and we have to either

> resign to waiting forever (actually losing universality!); or

> stop waiting and issue a default prediction at some point (actually losing
universality—or else computability!).

» With a semi-computable prediction method we superficially seem to be in
a better place—but are we really?

Kelly, Juhl, & Glymour (1994). Reliability, realism, and relativism. Reading Putnam
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Part II:
An implementation of Occam's razor?

» The (modern) definition of Solomonoff's algorithmic probability
distribution, via monotone Turing machine U, is given by

Quly):= Y 27"
xcAy(y)

with
Auly) = [{U(x) = y}]
the prefix-free set of shortest U-descriptions of y.

Solomonoff (1964). A formal theory of inductive inference. Inform. Control.
Ortner & Leitgeb (2011). Mechanizing induction. Handbook of the History of Logic: Inductive Logic
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Part Il:
An implementation of Occam's razor?

» The (modern) definition of Solomonoff's algorithmic probability
distribution, via monotone Turing machine U, is given by

Quly) = Y 27",

xEAy(y)

with
Auly) = [{U(x) = y}]
the prefix-free set of shortest U-descriptions of y.
> The algorithmic probability of y is higher as it is more compressible.

> Hence the predictive probability

aly 1) = X4

is greatest for the y such that yy is more compressible, which is
“evidently an implementation of Occam’s razor that identifies simplicity
with compressibility.”

Solomonoff (1964). A formal theory of inductive inference. Inform. Control.
Ortner & Leitgeb (2011). Mechanizing induction. Handbook of the History of Logic. Inductive Logic.
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Coding systems and compressibility (1)

» Let's investigate the relevant notion of compressibility in some more
detail.
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Coding systems and compressibility (1)

» Let's investigate the relevant notion of compressibility in some more
detail.

> A coding system or simply code is a function C : {0,1}" — {0,1}" from
source sequences to their description sequences, in such a way that no
description is a prefix of another.

> A code comes with a code length function Lc : {0,1}" — N, that returns
the length of a given source sequence’s description.
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Coding systems and compressibility (1)

» Let's investigate the relevant notion of compressibility in some more
detail.

> A coding system or simply code is a function C : {0,1}" — {0,1}" from
source sequences to their description sequences, in such a way that no
description is a prefix of another.

> A code comes with a code length function Lc : {0,1}" — N, that returns
the length of a given source sequence’s description.

» Codes and probability distributions on finite sequences can be treated as
equivalent. Namely, for every code C the function 2 ¢ gives a
probability assignment; conversely, for every probability assignment there
is some code that thus (approximately) corresponds to it.
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Coding systems and compressibility (2)

» If y has a small code length Lc(y) then one can say that C compresses y
well, or even that y is simple to C.
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Universal coding sytems

» Given a class C of codes. A universal code C© for this class is “almost as
good” as any code in it: for every C € C there is an overhead constant
such that for every source sequence y, the universal description length of
y via C“ does not exceed the description length Lc(y) more than this
overhead.

Pirsa: 18040110 Page 30/40



Universal coding sytems

» Given a class C of codes. A universal code C© for this class is “almost as
good” as any code in it: for every C € C there is an overhead constant
such that for every source sequence y, the universal description length of
y via C° does not exceed the description length Lc(y) more than this
overhead.

> A universal code for C represents the full class C in the sense that if some
C € C assigns a particular sequence a short description, then the universal
code does too—up to the overhead constant.

> But the corresponding “universal compressibility” is again really a relative
measure of how well sequences are fit by this particular class, equivalent
to the goodness-of-fit of the corresponding mixture over the class P of
distributions corresponding to C.

> A mixture £ over P represents the full class P in the sense that if some
P € P assigns a particular sequence a high probability, then the mixture
does too—up to the weight.
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Universal coding sytems Eilal

» Given a class C of codes. A universal code C¢ for this class is “almost as
good” as any code in it: for every C € C there is an overhead constant
such that for every source sequence y, the universal description length of
y via C° does not exceed the description length Lc(y) more than this
overhead.

> A universal code for C represents the full class C in the sense that if some
C € C assigns a particular sequence a short description, then the universal
code does too—up to the overhead constant.

> But the corresponding “universal compressibility” is again really a relative
measure of how well sequences are fit by this particular class, equivalent
to the goodness-of-fit of the corresponding mixture over the class P of
distributions corresponding to C.

> A mixture £ over P represents the full class P in the sense that if some
P € ‘P assigns a particular sequence a high probability, then the mixture
does too—up to the weight.

» Arguably, truly universal compressibility must again be found in the class
of all effectively computable elements.
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The issue of variance

» The choice of overhead constants.

> ... Or the choice of universal machine in the algorithmic probability
distribution.

> ... Or the choice of weights in the universal mixture.

» If any choice of overhead constants gives a universal code (algorithmic
probability distribution, universal mixture) that is as valid as the next one,
does this not make such a choice and thereby the definition rather
arbitrary?
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The issue of variance Erla

» The choice of overhead constants.

> ... Or the choice of universal machine in the algorithmic probability
distribution.

> ... Or the choice of weights in the universal mixture.

» If any choice of overhead constants gives a universal code (algorithmic
probability distribution, universal mixture) that is as valid as the next one,
does this not make such a choice and thereby the definition rather
arbitrary?

> Perhaps we can identify a privileged, objective such choice?

Pirsa: 18040110 Page 34/40



The invariance theorem £

» Any two choices are equivalent up to an additive/multiplicative constant.

> “The bearing of the invariance theorem is that “from an asymptotic
perspective, the complexity ... does not depend on accidental
peculiarities of the chosen optimal method.”

> | fix some universal code, you fix another; then for any sequence we
investigate the description lengths will not differ more than a constant.

> An alternative perspective: | fix some universal code, and for any
sequence | investigate, you can choose another universal code such that
the two description lengths for this sequence diverge arbitrarily much.

Kolmogorov (1965). Three approaches to the quantitative definition of information. Probl. Inf. Transm.
Chaitin (1969). On the length of programs for computing finite binary sequences: statistical considera-
tions. J. ACM.

Kolmogorov (1983). Combinatprobabilities. Russ. Math. Surv
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The invariance theorem

» Any two choices are equivalent up to an additive/multiplicative constant.

> “The bearing of the invariance theorem is that “from an asymptotic
perspective, the complexity ... does not depend on accidental
peculiarities of the chosen optimal method.”

> | fix some universal code, you fix another; then for any sequence we
investigate the description lengths will not differ more than a constant.

> An alternative perspective: | fix some universal code, and for any
sequence | investigate, you can choose another universal code such that
the two description lengths for this sequence diverge arbitrarily much.

> Yet another perspective: we only care about the order of complexity. We
can distinguish, for instance, data streams of complexity order O(log t)
from those of order O(1).

Kolmogorov (1965). Three approaches to the quantitative definition of information. Probl. Inf. Transm.
Chaitin (1969). On the length of programs for computing finite binary sequences: statistical considera-
tions. J. ACM.

Kolmogorov (1983). Combinatprobabilities. Russ. Math. Surv
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The invariance theorem

» Any two choices are equivalent up to an additive/multiplicative constant.

> “The bearing of the invariance theorem is that “from an asymptotic
perspective, the complexity ... does not depend on accidental
peculiarities of the chosen optimal method.”

> | fix some universal code, you fix another; then for any sequence we
investigate the description lengths will not differ more than a constant.

> An alternative perspective: | fix some universal code, and for any
sequence | investigate, you can choose another universal code such that
the two description lengths for this sequence diverge arbitrarily much.

> Yet another perspective: we only care about the order of complexity. We
can distinguish, for instance, data streams of complexity order O(log t)
from those of order O(1).

» Is this enough?

Kolmogorov (1965). Three approaches to the quantitative definition of information. Probl. Inf. Transm.
Chaitin (1969). On the length of programs for computing finite binary sequences: statistical considera-
tions. J. ACM.

Kolmogorov (1983). Combinatprobabilities. Russ. Math. Surv
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The permissiveness of universality

» Intuition: universality just is an extremely permissive notion.

> Consider again the definition of the algorithmic probability distribution,
OU()’) = Z 2—1)(1-
xEAY(y)

which we can write as

Quly) = Z A(x),

x€Ay(y)

for the wuniform distribution \.

S. (2017). A generalized characterization of algorithmic probability. Theor. Comput. Sys.
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A so(m)ber conclusion

» The Solomonoff-Levin definition really doesn’t give a convincing
specification of a universal prediction method.

» The Solomonoff-Levin definition doesn’t really give a convincing
implementation of Occam’s razor.
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A so(m)ber conclusion Exy

» The Solomonoff-Levin definition really doesn’t give a convincing
specification of a universal prediction method.

» The Solomonoff-Levin definition doesn’t really give a convincing
implementation of Occam’s razor.

tom.sterkenburg@lmu.de
www.cwi.nl/~tom
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