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Abstract: The progression of theories suggested for our world, from ego- to geo- to helio-centric models to universe and multiverse theories and
beyond, shows one tendency: The size of the described worlds increases, with humans being expelled from their center to ever more remote and
random locations. If pushed too far, a potential theory of everything (TOE) is actually more a theories of nothing (TON). Indeed such theories have
already been developed. | show that including observer localization into such theories is necessary and sufficient to avoid this problem. | develop a
guantitative recipe to identify TOEs and distinguish them from TONs and theories in-between. This precisely shows what the problem is with some
recently suggested universal TOEs.
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Summary of Shannon Entropy

Let X,Y € X be discrete random variable with distribution P(X,Y).

Definition 1 (Definition of Shannon entropy)

EntropylX) =H(X)} =—) -+ PlzilogP(z)

Entropy(X|Y) = H(X|Y) := = > 3y P(y) > _.cx P(z|y) log P(z|y)

Theorem 2 (Properties of Shannon entropy)
e Upper bound: HiX] = log|[X| =nforX=40,1 }”'
e Extra information: g () = HIA N = )
e Subadditivity: H(X Y] = HiX ) ( A
e Symimetry: HiX Iy = HiXax ) = ( X
e Information non-increase: HfI X)) < HiX) forany f

Relations for Kolmogorov Complexity will formally look very similar.
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Prefix Sets & Codes
String «x is (proper) prefix of y <= dz(# ¢) such that zz = y.

no element is a proper

Set P is prefix-free or a prefix code <= .
prefix of another.

Example: A self-delimiting code (e.g. P = {0, 10, 11}) is prefix-free.

Kraft Inequality

Theorem 3 (Kraft Inequality)
AT £ ~inarv nrefiv code T N NAave ‘)_F(") <8
For a binary prefix code P we have ) _p 2 =1,
Conversely, let (4, {5, ... be a countable sequence of natural numbers
such that Kraft’s inequality >, 27 < 1 is satisfied. Then there

exists a prefix code P with these lengths of its binary code.
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Identify Numbers and Binary (Prefix) Strings
z € INg (0] 1 2 3 4 5 9] 1
el Plcl @ | 1 |00 | B @ | 1L | 000
1 & 3
100 | 101 [11000|11001 1101011011 1110000

) 1000({1001{10100|10101/10110(10111{11000000{- - -

{z 2 € {0,1}*} is prefix code with ¢(Z) = 2¢(xz) + 1 ~ 2loga

o P={x":2¢e{0,1}*} forms an asymptotically shorter prefix code

with ¢(z*) = l(x) + 20(f(x)) + 1 ~ logx + 2loglogx

e Allows to pair strings x and y (and z) by (x,y) := x'y (and
(x,y,2) := x'y‘z). Uniquely decodable, since x‘ and y* are prefix.

=zl
I
|l |®

e Since ‘ serves as a separator we also write f(x,vy) instead of f(xz‘y)

e Notation: f(x) i g(x) means f(x) < g(x) + O(1)
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Turing Machines & Effective Enumeration

e Turing machine (TM) = (mathematical model for an) idealized
computer.

e Instruction i: If symbol on tape under head is 0/1, write 0/1/- and
move head left/right/not and goto instruction j.

e {partial recursive functions } = {functions computable with a TM}.

e A set of objects S = {01, 02,03, ...} can be (effectively) enumerated
<= 9 TM machine mapping i to (0;),
where () is some (often omitted) default coding of elements in S.
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Sharpened Church-Turing Theses

TMs and p.r. functions are important due to .

Thesis 4 (Church-Turing) The class of algorithmically computable
numerical functions (in the intuitive sense) coincides with the class

of Turing computable = partial recursive functions.

Thesis 5 (Short compiler) Given two natural Turing-equivalent
formal systems F'1 and F'2, then there always exists a single short

rogram on F'2 which is capable of interpreting all F'1-proerams.
S 8 5

Lisp, Forth, C, Universal TM, ... have mutually short interpreters.
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Prefix Turing Machine

For technical reasons we need the following variants of a Turing machine

Definition 6 (Prefix Turing machine 7" (pTM))

e one unidirectional read-only input tape,
e one unidirectional write-only output tape,
e some bidirectional work tapes, initially filled with zeros.
e all tapes are binary (no blank symbol!),
e [’ halts on input p with output x <= T'(p) =«
:<=> p is to the left of the input head

and x is to the left of the output head after 7" halts.

o {p:T(p)=x} forms a prefix code.

e We call such codes p self-delimiting programs.
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Monotone Turing Machine
For technical reasons we need the following variants of a Turing machine

Definition 7 (Monotone Turing machine 1" (mTM))

e one unidirectional read-only input tape,
e one unidirectional write-only output tape,
e some bidirectional work tapes, initially filled with zeros.

e all tapes are binary (no blank symbol!),

e [’ outputs/computes a string starting with x (or a sequence w)

on input p ;<= T'(p) = a* (or T'(p) = w) :<= p is to the left

of the input head when the last bit of x is output.
e /' may continue operation and need not to halt.

e For given x, {p: T(p) = xx} forms a prefix code.

e We call such codes p minimal programs.
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Universal Prefix/Monotone Turing Machine

('I') := some canonical binary coding of (table of rules) of TM T’

= set of TMs {T,T5, ...} can be effectively enumerated = JU...

Theorem 8 (Universal prefix/monotone Turing machine U)
which simulates (any) pT'M/mT'M 7; with input y‘q if fed with input
y'i'q, 1.e.

U(y'itq) = Ti(y'q) Vi, q
For p # y'i‘q, U(p) does not halt. y is side information.

Theorem 9 (Halting Problem. That's the price we pay for 3U)
Thereisno TM T: T(i'p) = 1 <> T;(p) does not halt.
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Formalization of Simplicity/Complexity

Intuition: A string is simple if it can be described in a few words,
like “the string of one million ones”,

e and is complex if there is no such short description, like for a
random string whose shortest description is specifying it bit by bit.

e Effective descriptions or codes = Turing machines as decoders.

e p is description/code of 2z on pTM T <= T'(p) = .

e Length of shortest description: Kp(x) := min,{{(p) : T'(p) = x}.

e This complexity measure depends on 7" :-(
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Universality /Minimality of A
Is there a TM which leads to shortest codes among all TMs for all 27

Remarkably, there exists a Turing machine (the universal one) which

“nearly” has this property:

Theorem 10 (Universality/Minimality of K¢/)

Ky (1) = ﬁ’fp(;ﬁlﬁ) SR B
+ P da i . . .
where cry < Ky (1) < oo is independent of z

Pair of UTMs U’ and U”: | Ky (x) — Kyn ()| < cyrpr

Thesis 5 holds <= ¢/ small for natural UTMs U’ and U”.

Henceforth we write O(1) for terms like cirp.
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(Conditional) Prefix Kolmogorov Complexity

Definition 11 ((conditional) prefix Kolmogorov complexity)

= shortest program p, for which reference U outputs = (given y):

Rillelt— ininglin) ipl— 2}
p

K(zly) := min{{(p) : U(y‘'p) = '}
P

For (non-string) objects: K (object) := K ((object)),

eg K(z,y) = K((z,1)) = K(z'y).
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Upper Bound on i

Theorem 12 (Upper Bound on K)
+

Kiz) < Hz)+2loglic), K(n) < logn + 2loglogn

Proof:
There exists a TM T}, with ig = O(1) and T; (e¢'z*) = x,

then U (e‘tH2’) = =z,

hence K (z) < {(e'ipx’) s {(2') < f(x) + 2logl(x).
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Extra Information & Subadditivity

Theorem 14 (Extra Information)
K(zly) < K(z) < K(z,y)

Providing side information 3 can never increase code length,
Requiring extra information y can never decrease code length.

Proof: Similarly to Theorem 12

Theorem 15 (Subadditivity)

K(y) < K@,y) < K@) +K@le) < K@) +K(y)

Coding & and y separately never helps.

Proof: Similarly to Theorem 14
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Symmetry of Information

Theorem 16 (Symmetry of Information)

K(zly, Ky)+K(y) £ K(z,y) £ K(y,2) £ K(ylz, K(z)+K (2)

Is the analogue of the logarithm of the multiplication rule for conditional
probabilities (see later).

Proof: > = < similarly to Theorem 15.

For < = >, deep result: see [LV08, Th.3.9.1].
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Proof Sketch of K (y|v)+ K (x)< K (x,y)+O(log)

all +0(log) terms will be suppressed and ignored. Counting argument:

(1) Assume K (ylz) > K(x,y) — K(x).

2y iz ule A =12 ‘ Ktu,z3 < k), k= &%y =0og)
(Slpcdsi—1u: Kozl = k)

(4) Use index of y in A, to describe y: K(y|x) < log|A.]

(5) log|Az| > K(z,y) — K(z) =: 1 = O(log) by (1) and (4)

(6) x € U :={u:log|A.| >} by (5)

(7) {{u,2) :uelU,z€ A,} CA

(8) log |A| < k by (2), since at most 2¥ codes of length < k

(9) ’/M < min{|4.|: u € UHU| < |A] < 2° by (6),(7).(8), resp.
(10) K(z) <log|U| < k—1= K(x) by (6) and (9). Contradiction! W
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Coding Relative to Probability Distribution,
Minimal Description Length (MDL) Bound

Theorem 18 (Probability coding / MDL)

K(z) < —logP(z) + K(P)

if P:{0,1}* — [0,1] is enumerable and Z Pl

This is at the heart of the MDL principle [Ris89],
which approximates K (z) by —logP(x) + K(P).
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General Proof ldeas

e All upper bounds on A (z) are easily proven by devising some
(effective) code for z of the length of the right-hand side of the
inequality and by noting that A'(z) is the length of the shortest
code among all possible effective codes.

e Lower bounds are usually proven by counting arguments
(Easy for Thm.13 by using Thm.3 and hard for Thm.16)

e [he number of short codes is limited.

More precisely: The number of prefix codes of length < ( is
bounded by 2°.
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Remarks on Theorems 12-18

All (in)equalities remain valid if K is (further) conditioned under some

2. be. K.}~ K(...|z) and K{...]n)~ K{...|9,2).

A log(x)+2log(log(x)).

-
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Relation to Shannon Entropy

Let X,Y € & be discrete random variable with distribution P(X,Y).

Definition 19 (Definition of Shannon entropy)

EntropylX) =H(X) =—) .+ PlzilogP(z)
Entropy( X |Y) = H(X|Y ) == Py Y c» Plzly)log Plaly)

Theorem 20 (Properties of Shannon entropy)

e Upper bound: HiX] = log [X] =hifor 2=40.1 }”'
e Extra information: ) = HIAT = X1
e Subadditivity: H(X Y| = HiX ) ( )
e Symimetry: Hi X By = HiXar ] = ( X)
e Information non-increase: HifIX)) = Hi{X) for any f

Relations for H are essentially expected versions of relations for K.
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Monotone Kolmogorov Complexity iKm

A variant of K is the monotone complexity Km(x) defined as the
shortest program on a monotone TM computing a string starting with 2:

Theorem 21 (Monotone Kolmogorov Complexity /iAm)

Kmi(z) := min{4(p) : U(p) = o*}
P
has the following properties:
S 5 R
o Km(x) < l(x),
e Km(xy) > Km(zx) € INy,

i + . e : ot i
o Km(x) < —logu(x)+ K(p) if p comp. measure (defined later).

It is natural to call an infinite sequence w computable if Am(w) < 0.
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Computable Functions f : IN — IR

f is (finitely) computable or recursive iff there are Turing machines 717
T (z)
To(z) "

with output interpreted as natural numbers and f(x) =

Y

f is estimable or computable iff 3 recursive ¢(-,-) V >0 :
\qﬁ)(;z:,&J) — f(x)] < e Va.
J

f is lower semicomputable or enumerable iff ¢(-,-) is recursive and

lim; o0 ¢(x,t) = f(x) and ¢(x,t) < o(x,t + 1).
Y

f is approximable or limit-computable iff ¢(-,-) is recursive and

litne o0 02, £) = Flz).
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(Non)Computability of A and Am complexity

Theorem 22 ((Non)computability of A and K Complexity)
The prefix complexity K : {0,1}* — IN and the monotone
complexity Km : {0,1}* — IN are co-enumerable, but not finitely

computable.

Proof: Assume K is computable.

= f(m) :=min{n : K(n) > m} exists by Theorem 13 and is
computable (and unbounded).

K(f(m)) > m by definition of f.

K(f(m)) < K(m)+ K(f) b 2logm by Theorem 17 and 12.

= m < logm + ¢ for some ¢, but this is false for sufficiently large m.

Co-enumerability of A as exercise. I
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Kolmogorov Complexity vs Shannon Entropy

Shannon Entropy H:
+ computable
+ relations in Thm.20 are exact
— only about expected information

— requires true sampling distribution

Kolmogorov Complexity /:
+ information of individual strings
+ no sampling distribution required
+ captures all effective regularities
— incomputable

— additive slack in most relations
— depends on choice of UTM U
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Presented Applications of AIT

e Philosophy: problem of induction

e Machine learning: time-series forecasting

e Artificial intelligence: foundations [COMP4620/COMP8620]
e Probability theory: choice of priors

e Information theory: individual randomness/information

e Data mining: clustering, measuring similarity

e Bioinformatics: phylogeny tree reconstruction

e Linguistics: language tree reconstruction
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2 UNIVERSAL A PRIORI PROBABILITY

e The Universal a Priori Probability M

e Relations between Complexities

e Fundamental Universality Property of M
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The Universal a Priori Probability A

Solomonoff defined the universal probability distribution M () as the
probability that the output of a universal monotone Turing machine
starts with 2 when provided withfair coin flips on the input tape.

Definition 2.1 (Solomonoff distribution) Formally,
il = e
p:Ulpl=xx

The sum is over minimal programs p for which U outputs a string

starting with .

Since the shortest programs p dominate the sum, A (x) is roughly
i ] More precisely ...
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Relations between Complexities

Theorem 2.2 (Relations between Complexities)
KM := —logM, Km, and K are ordered in the following way:

I < Kixlr)) < KM (z] = Kmjz) = Kiz) < {(z) + 2logl(x)

Proof sketch:

The second inequality follows from the fact that,

given n and Kraft's inequality > . M(z) <1,

there exists for x € A’ a Shannon-Fano code of length —logM (),

which is effective since M is enumerable.

Now use the MDL bound conditioned to n.

The other inequalities are obvious from the definitions.
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3 UNIVERSAL SEQUENCE PREDICTION

e Solomonoff, Occam, Epicurus

e Prediction

e Simple Deterministic Bound

e Solomonoff's Major Result

e Implications of Solomonoff’s Result
e Universal Inductive Inference

e More Stuff / Critique / Problems
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Prediction
How does all this affect prediction?

If M () correctly describes our (subjective) prior belief in x, then
M(y|z) .= M(zy)/M(z)

must be our posterior belief in y.

From the symmetry of algorithmic information
K(x,y) + K(y|x, K(x))+ K(x), and assuming K (z,y) ~ K(zy), and

approximating K (y|z, K(x)) ~ K (y|z), M(z) ~ 2=5®) and
M (zy) ~ 278 we get:

M (y|x) ~ 2~ HWl)

This tells us that M predicts y with high probability iff ¥ has an easy
explanation, given x (Occam & Epicurus).
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Simple Deterministic Bound

Sequence prediction algorithms try to predict the continuation
x¢ € {0,1} of a given sequence x1...x¢—1. Simple deterministic bound:

> 1M (z]z<) < > In M (xi|we) L —InM(21.00) < In2-Km(21:00)
t=1

t=1]
(a)use |1 —a| < —Inafor0<a <1,
(b) exchange sum with logarithm and eliminate product by chain rule.
(c) used Theorem 2.2.

If 1.0 is @ computable sequence, then Km(x;.o) is finite,
Ter) = 1 (vx, 1 1 —a:| <o00=a; —1).

Lt =

which implies M (x;

= if environment is a computable sequence (digits of 7 or Expert or ...),
after having seen the first few digits, A correctly predicts the next digit
with high probability, i.e. it recognizes the structure of the sequence.
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Simple Deterministic Bound

Sequence prediction algorithms try to predict the continuation
x¢ € {0,1} of a given sequence x1...x:—1. Simple deterministic bound:

Z | 1-M (z¢|x <) “! Z In M (2¢|x<t) L In M (21.00) < In 2- Km(21.00)
t=1

t=1
(a)use |1 —a| < —Inafor0<a<1.
(b) exchange sum with logarithm and eliminate product by chain rule.
(c) used Theorem 2.2.

If 1.0 IS @ computable sequence, then Km (2.5 ) is finite,
zet) 21 Q02 |1 —ai <o0o=ar—1).

which implies M (.

= if environment is a computable sequence (digits of 7 or Expert or ...),
after having seen the first few digits, A/ correctly predicts the next digit
with high probability, i.e. it recognizes the structure of the sequence.
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Simple Deterministic Bound

Sequence prediction algorithms try to predict the continuation
x¢ € {0,1} of a given sequence x1...x¢—1. Simple deterministic bound:

> 1M (z]z<) < > In M (xi|we) L —InM(21.00) < In2-Km(21:00)
t=1

t=1]
(a)use |1 —a| < —Inafor0<a <1,
(b) exchange sum with logarithm and eliminate product by chain rule.
(c) used Theorem 2.2.

If 1.0 is @ computable sequence, then Km(x;.o) is finite,
Ter) = 1 (vx, 1 1 —a:| <o00=a; —1).

Lt =

which implies M (x;

= if environment is a computable sequence (digits of 7 or Expert or ...),
after having seen the first few digits, A correctly predicts the next digit
with high probability, i.e. it recognizes the structure of the sequence.
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More Stuff / Critique / Problems

Other results: M convergence rapidly also on stochastic sequences;
solves the zero-prior & old evidence & new theories problems;
can confirm universal hypotheses; is reparametrization invariant;

predicts better than all other predictors.

Prior knowledge 1 can be incorporated by using “subjective” prior

U o—K(v]

Bl = ) or by prefixing observation & by y.

.f.l| ‘,J’

Additive/multiplicative constant fudges and U-dependence is often
(but not always) harmless.

Incomputability: A and M can serve as “gold standards” which
practitioners should aim at, but have to be (crudely) approximated
in practice (MDL [Ris89], MML [walo5], LZW [LZ76], CTW [WSTT95],
NCD [cVvos)).
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4 MARTIN-LOF RANDOMNESS

e When is a Sequence Random? If it is incompressible!

e Motivation: For a fair coin 00000000 is as likely as 01100101,
but we “feel” that 00000000 is less random than 01100101.

e Martin-Lof randomness captures the important concept of
randomness of individual sequences.

e Martin-Lof random sequences pass all effective randomness tests.
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5 THE MINIMUM DESCRIPTION
LENGTH PRINCIPLE

e MDL as Approximation of Solomonoff's A

e [he Minimum Description Length Principle
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The Minimum Description Length Principle
Identification of probabilistic model “best” describing data:

Probabilistic model(=hypothesis) H, with v € M and data D.

MDL _

Most probable model is v arg max,esm p(H,|D).

Oceam’s razor: p(Hy) = 222
By definition: p(D|H,) = v(x), D = x =data-seq., p(D) =const.

Take logarithm:

Definition 5.1 (MDL)  vMPY = arg min { Kv(z) + Kw(v)}

" VeEM

Kuv(x) := —logr(x) = length of Shannon-Fano code of & given H,,.

Kw(1r) = length of model H,, .
Names: Two-part MDL or MAP or MML (3 slight/major differences)
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Application: Regression / Polynomial Fitting

e Data D=1y} - lvs v}

e Fit polynomial fy(z) := ao + a1z + axx® + ... + aqx? of degree d
through points D

e Measure of error: SQ(ag...aq) =S+, (yi — fa(x;))?

e Given d, minimize SQ(ag.4) w.r.t. parameters an...a..
a0
e This classical approach does

not tell us how to choose d?  4o-
(d > n — 1 gives perfect fit)

linear polynomial

- ' +
2 optimal polynomial
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Conditional Kolmogorov Complexity
Question: When is object=string & similar to object=string 1?

Universal solution: x similar y < & can be easily (re)constructed from y
< Kolmogorov complexity K (z|y) := min{l(p) : U(p,y) = x} is small

Examples:
1) x is very similar to itself (K (z]x) = 0)

2) A processed x is similar to o (K (f(x)|x) Z0if K(f) = 1))
e.g. doubling, reverting, inverting, encrypting, partially deleting .

3) A random string is with high probability not similar to any other
string (/' (random|y) =length(random)).

The problem with A (x|y) as similarity=distance measure is that it is
neither symmetric nor normalized nor computable.
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The Universal Similarity Metric

e Symmetrization and normalization leads to a/the universal metric d:

max{ K (z|y), K (y|z)} = g

0 < d(z,y) := max{ K (z), K(y)}

e Every effective similarity between = and 1 is detected by d
o Use K(x|y)~ K (xy)—K(y) (coding T) and K(x)=Ky(x)~Kp(x)

— computable approximation: Normalized compression distance:

o] o ey minET ) Rl -
LylY) = ]-]__l_-(-,,);{_K’_;’(.‘_l.‘), /\/(1’/) }

2

e For T" choose Lempel-Ziv or gzip or bzip(2) (de)compressor in the
applications below.

e [heory: Lempel-Ziv compresses asymptotically better than any
probabilistic finite state automaton predictor/compressor.
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Tree-Based Clustering [cvos)

e If many objects uy, ..., z,, need to be compared, determine the
Slmllaﬂty matrix: J[,‘,— (](;j'h "1_‘“;') for 1 2 /«] <n

e Now cluster similar objects.

e T[here are various clustering techniques.

e Tree-based clustering: Create a tree connecting similar objects,
e e.g. quartet method (for clustering)

e Applications: Phylogeny of 24 Mammal mtDNA,
50 Language Tree (based on declaration of human rights),
composers of music, authors of novels, SARS virus, fungi,
optical characters, galaxies, ... [Cilibrasi& Vitanyi'05]
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Tree-Based Clustering cvos

e |f many objects 1, ..., z,, need to be compared, determine the
Similarity matrix: M;;= d(x;, x;) for 1 <i,j <n

e Now cluster similar objects.

e T[here are various clustering techniques.

e Tree-based clustering: Create a tree connecting similar objects,
e e.g. quartet method (for clustering)

e Applications: Phylogeny of 24 Mammal mtDNA,
50 Language Tree (based on declaration of human rights),
composers of music, authors of novels, SARS virus, fungi,
optical characters, galaxies, ... [Cilibrasi& Vitanyi'05]
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Genomics & Ph

Evolutionary tree built from comp
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Basgue [Spain]
Hungarian [Hungary]
Polish [Poland]
Sorbian [Germany ]
Slovalk [Slovaloia])
Czech [Czeclhh Rep]
Slovenian [Slovenin]
Serbian [Serbin]
Bosnian [Bosnia]
Croatinn [Croatia]
Romani Ballkan [Ean
Aldbanian [Albany]

-t Europe]

Iathuaananan [Tathuaanial
Iatvinn [Latvan]

Turlkash [Turlkey ]

Uzbel [Utzbelcistnn]
Breton [France])

Maltese [Malta]
ODccitanAuvvergnat [France]
Walloon [Belgiqgue]
Eunglizlhh [ULD]

French [France]

Asturinn [Spain )
Pormuguese [Posrtugal)
Spanislh [Spain]

Galicinn [Spaiin]

Catalan [Spain]

Occitnn [France]

Rhneto Romance [ Switzerland]
Friulinn [Italy ]

ITtaliaa [Ttalsy]

Saiiiiariiae = [ITtals]
Corzicain [France]
Sarvclinann [Italy ]
Romaninan [Romania]
Romani Viach [Macedonia]
Welsh [UUK]

Scottizly O =lic [TTEI]

Irisly Gaelic [UTED]

Germmnn [Germnany]
Luxembourgizh [Luxembourg]
Frisian [Netherlands]
Dutceh [WNetherlands])
Afrilcanns

Swedish [Sweden]
Norwegian Nynorslk [Norway ]
Danish [Dennminric])
Norweginn Bolanal [Norwavy ]
Faroese [Denmaric]

Teelandic [Teelnned]

Fiunnaslhh [Finlandd]

Ezstonian IEstonial
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The Agent Model

Universal

ArtiiialItelligence Most if not all Al problems can be
formulated within the agent
framework

| 01 Fo ‘ 02 sk os T4 ‘ 04 rs

N

fucnt = Environ- f————
work tape ... work tape ...
P ment q
) a3

\/

(I (i

(1.4 ars ae
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Formal Definition of Intelligence
e Agent follows policy 7 : (AXOXxR)* ~ A
e Environment reacts with p: (AXOXxR)*x A~ OXR
e Performance of agent 7 in environment
= expected cumulative reward = V7 :=E,[> 77, "]

e T[rue environment ;. unknown
= average over wide range of environments

e Ockham-+Epicurus: Weigh each environment with its
Kolmogorov complexity K (y) := min,{length(p) : U(p) = u}

e Universal intelligence of agent 7 is T(7) := > -_)—f\‘(,;)‘_____;z.-_

.:'_,...J!i

e Compare to our informal definition: Intelligence measures an
agent'’s ability to perform well in a wide range of environments.

o AlXIl = argmax, T(7m) = most intelligent agent.
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Computational Issues: Universal Search

Levin search: Fastest algorithm for
inversion and optimization problems.

Theoretical application:

Assume somebody found a non-constructive \
proof of P=NP, then Levin-search is a polynomial \l‘ >
time algorithm for every NP (complete) problem.

Practical applications (J. Schmidhuber)
Maze, towers of hanoi, robotics, ...

FastPrg: The asymptotically fastest and shortest algorithm for all
well-defined problems. .

AlXItl and PMDP: Computable variants of AlXI.

Human Knowledge Compression Prize: (50'000<€)
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Formal Definition of Intelligence
e Agent follows policy 7 : (AXOXxR)* ~ A
e Environment reacts with p: (AXOXxR)*x A~ OXR
e Performance of agent 7 in environment
= expected cumulative reward = V7 :=E,[> 77, "]

e T[rue environment ;. unknown
= average over wide range of environments

e Ockham-+Epicurus: Weigh each environment with its
Kolmogorov complexity K (y) := min,{length(p) : U(p) = u}

e Universal intelligence of agent 7 is T(7) := > -_)—f\‘(,;)‘_____;z.-_

.:'_,...J!i

e Compare to our informal definition: Intelligence measures an
agent'’s ability to perform well in a wide range of environments.

o AlXIl = argmax, T(7m) = most intelligent agent.
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8 MORE APPLICATIONS OF AIT/KC

e Computer science: string matching,
complexity /formal-language/automata theory

e Math: oo primes, quantitative Goedel incompleteness
e Physics: Boltzmann entropy, Maxwell daemon, reversible computing
e Operations research: universal search

e Others: Music, cognitive psychology, OCR
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See also Advanced Al course COMP4620/COMP8620 @ ANU
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