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Abstract: Landauer's famous dictum that 'information is physical’ has been enthusiastically taken on by a range of communities, with researchersin
areas from quantum and unconventional computing to biology, psychology, and economics adopting the language of information processing.
However, this rush to make all science about computing runs the risk of collapsing into triviality: if every physical processis computing, then to say
that something performs computation gives no meaningful information about it, leaving computational language devoid of content. In thistalk | will
give an introduction to Abstraction/Representation Theory, a framework for representing both computing and physical science that alows us to
draw a meaningful distinction between them. The use of AR theory - with its commuting-diagrammatic framework and associated algebra of
representation - allows us to take significant steps towards giving a formal language and framework for the processes of science. | will show how
AR theory represents this process (including the potential for automation), and the insights it gives into the usage and limits of computation as a
formal process language for, and description of, physical sciences.
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Outline: physics and computing

The language of information theory is frequently used (to a greater or
lesser degree of precision) in physical theories.

Can it be made precise? How do physics and computation relate?
The starting point: computing is physical.

Abstraction/representation theory: a framework for reasoning about
representation (interface between physical and abstract systems).

Representation -> modelling -> scientific theories -> computing
Observers in AR theory: ‘representational entities’.

Intrinsic logics: a correct use of computational language for physical
systems.

M
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NFORMATION theory has, in the last few years,
become something of a scientific bandwagon.
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tists in many different fields, attracted by the fanfare
and by the new avenues opened to scientific analysis,
are using these ideas in their own problems. Applica-
tions are being made to biology, psychology, lin-
guisties, fundamental physics, economics, the theory
of organization, and many others. In short, informa-
tion theory is currently partaking of a somewhat
heady draught of general popularity.

on
Anf nm\:\hm

Bits ./.. ’r *Messages® (:50

ENTROPY

A 2012 parody dspiction of the Shannon bandwagon from
American electrochemical angineer 5" article
“Thermodynamics # Information Theory: Science'’s Grealtest
Sokal Affair.” [3]
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“The universe is a (quantum) computer:”

SETH LLOYD

POES A ROCK IMPLEMENT LVERY FINTTLATATE

AUTOAMATON®
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“The universe is a (quantum) computer:”

SETH LLOYD
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How can we put rigorous meaning behind the use of
information-theoretic language in physics?
(Never mind everywhere else...)
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Two extremes to avoid:
Everything computes all the time

Computing requires consciousness/other magic

If there is physical content to the assertion “system X computes”
then we need a better way of telling when it does.

So: when does a physical system compute?
What does physics have to do with computation in the first place
(isn’t that just a branch of mathematics?)
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Proposal: computer science is the natural science of the
computing abilities of physical systems
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Computers and CS theory: Lovelace and the Analytical Engine
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Computers and CS theory: Turing and the Bombe
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Computers and CS theory: Shannon and the Differential Analyser

Dr Bonita Lawrence
(Marshall University)
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What do we do with this?

IBM Q 50 qubit
device

https.//www.research.ibm.com/ibm-q/
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Or this?

“PhiBot”
Slime-mould
controlled robot
Zauner Group
Southampton

www.sense.ecs.soton.ac.uk/
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Or this?

Openworm Project
Lego robot
controlled by
simulated C.
Elegans neurons

www.openworm.org
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Or this?

Adaptive Flight Control With Living Neuronal
Networks on Microelectrode Arrays

Fhomas B. DeMarse and Karl P. Dockendord

Department of Biomedical Engineering, University of Florida, Gainesville, Florida
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Or this? Rat_d_sj_on a plane!

nal Joint nference on Neural Networks, Montreal, Canada

Adaptive Flight Control With Living Neuronal
Networks on Microelectrode Arrays

I'homas B. DeMarse and Karl P, Dockendord

Department of Biomedical Engineering, University of Florida, Gainesville, Florida

Abstract- The brain is perhaps one of the most robust and fault W
tolerant computational devices in existence and yel little is known
about its mechanisms, Microeleetrode arrays have recently been - -
developed in which the computational pr rties of networks of T I —»
living neurons ¢an be studied in detail, In this paper we report HHH | H 1l
work investigating the ability of living neurons to act as a set of
s which were used to control the M A
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[ Introduction

Research into the computational properties ol living

neuronal networks has seen a rapid explosion in interest of the

last two decades. This interest has been fostered by the advent

ol technology able to simultaneously measure neural activity I New
from hundreds of neurons both in vivo [ 1-3] and in vitro [4 8]

However, many ol the computational properties exhibited by
|

Fi 1. Schematle of N n using living rat cortic

these networks remain unclear
ms for pitch and roll control

Our approach is 1o use a system where we can measure

stimulate, and theretore manipulate activity across a gnd of 60
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What else?

* SOCIAL MACHINES
7

WIKIPEDIA

The Free Encyclopedia

eb

Pirsa: 18040108 Page 22/82



What else?

~ SOCIAL MACHINES
_: -‘(f\\‘
WIKI?EDIA

The Free Encyclopedia

eb

sociam.org
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Abstract

Physical
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0111000011010011

Abstract @

Physical
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011100001101001]

Abstract @

“Just
engineering”?
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Abstract ﬁ E

Physical
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Representation

The central issue: how do we get from the physical to the abstract
domain?

Answer: REPRESENTATION.

The core of Abstraction/Representation Theory is the representation
relation between physical and abstract objects.
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Representation

Abstract

Physical
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Representation

Abstract

Physical
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Representation

b ih % = Hep
Abstract di

Physical
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Representation

b ih 2= Hy
Abstract di

Physical
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Representation

What is representation and what is it not?

The representation relation R maps physical to abstract objects.

This is not a mathematical function.

This is not a logical relation.

What is it?

Good question! But we know it exists, so let’s interrogate it.

Representational issues appear in a wide range of areas.
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Representation

Brief context:

Rorty (1979) Philosophy and the Mirror of Nature
- Representation is not mirroring of physical in abstract

van Fraassen (2008) Scientific Representation
- The representation is not the thing, but encodes scientific theories

See also:

Carnap (1928) Aufbau (The Logical Structure of the World)
- The universal objects of science are sense-data (repudiated)

See also also:
Wittgenstein (early), Putnam, Fodor, Frigg, Quine, Hartmann...

Note: starting from a physical perspective of computing, not a semantic/
mental one.

24
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Representation

Aren’t there already representations of computers in theoretical CS?
Machine code, words, concrete semantics, etc?

Isn’t a “computer” a model of a formal system?

No:

A model or a code or a semantics is still an abstract object, not the
physical computer itself.

When we talk about p we mean the physical system itself, not a
representation of it.
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AR Theory

Fundamental representation:

Abstract Mp

Physical
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AR Theory

In algebraic terms:

Domain of physical objects P
Domain of abstract objects M

Directed relation R : P — M
Foreach p € P

if Rtakes p > m € M

then mis written ""'p

and (P: R, mp)

forms a representational triple.

-
27
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AR Theory

This is the modelling relation.

What makes something a good model? This is (partly) the domain of
experimental science:
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AR Theory

Abstract evolution:

C'(m ,
Abstract ,r?’lp ------------------- >m
Rt
Physical H(p) y
p ------------------- > p
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AR Theory

Outcome representation:

Abstract

Physical
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AR Theory

A commuting diagram:

m Cim) My =~ M.
Abstract p M S
RT R'T
Physical H(p) p
p ------------------- > p
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AR Theory

A commuting diagram:

m ¢(m) My =M.
------------------- 4 I~ )
Abstract P P P

RT R
Physical H(p) p
p ------------------- > p
itf [mpr —my| < e
33
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AR Theory

A minimal requirement of a “good theory” is that it gives commuting
diagrams.

Note: this is not the only requirement

Different theories T give different models for the same physical system.

Testing a theory is testing for a set of commuting diagrams.

What is “good enough” is a matter for the philosophy of science.

34
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AR Theory

A commuting diagram:

TMp  weeeeememsnnaness > Mp XM,

Abstract P

Physical H(p)

33

irsa: 18040108 Page 46/82



No fundamental representation

AR theory allows for multiple representations of the same system.

Abstract

Physical

35
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No fundamental representation

An example of a hierarchy as often seen:

Psychology —> Biology —> Chemistry —> Fundamental Physics
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No fundamental representation

An example of a hierarchy as often seen:

Psychology —> Biology —> Chemistry —> Fundamental Physics

WHAT IS THIS?

Is it quantum mechanics? Quantum field theory? String theory? (Quantum)
information theory?

Pirsa: 18040108 Page 49/82



Pirsa: 18040108

No fundamental representation

An example of a hierarchy as often seen:

Psychology —> Biology —> Chemistry —> Fundamental Physics

WHAT IS THIS?

Is it quantum mechanics? Quantum field theory? String theory? (Quantum)
information theory?

Algorithmic information theory?

We should stop basing our metaphysics on a “theory of everything” that
does not exist.
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No fundamental representation

Representation is always representation within a theory.

Representing the external world as a bit string (Muller, Hutter) is a
representation in a physical theory.

E.g. data gathered by a robot:
What is the camera on the robot?
What level of detail does it see?
Full e.m. spectrum?
What resolution - optical zoom, electron microscope, gravity wave
detector...?

This is what negated Carnap’s search for an observer-independent sense-data
language: no theory-independent observations. Not even for a robot.
(At the very least: | am not hallucinating).

AR theory: no “universal concrete semantics” for the world. Physics is part of
the foundations of CS irreducibly. No “computational idealism” for the world.

38
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AR Theory

Prediction:

m ¢(m) My =~ M/
Abstract p P T p
Rr R
Physical H(p) p
p ------------------- > p
39
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AR Theory

Prediction:
m (m) Mo =~ M
gy e eeemmsssscsse-a= I~
Abstract p M & P
Rt
Physical
P
40
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AR Theory

Representation has been given as directed. Can it be reversed?

Abstract Hp
Rt
Physical

41
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AR Theory

Representation has been given as directed. Can it be reversed?

Abstract Hiop

~ 7
Rt

Physical v
&
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AR Theory

Representation has been given as directed. Can it be reversed?

Reversing R7 depends on how much confidence we have in7 .

If we know the theory well enough to say that it will produce commuting
diagrams, we can ask:

Which set of p, H(p), R+ will give a physical state p’ whose representation
is the desired state 77lp’ to instantiate?

This is engineering.

It requires skill and creativity: reversing the representation relation is not an
algorithmic process.

43
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AR Theory

The instantiation relation and engineering:

Cr(mp)

Mp > m;, ~ Mg
= |
abstract Ry -
physical
raw /7 T\ engineer ' R
(el) material [" II(p) at q ’.Iu product

An engineered instantiation triple: <mp, R, p)

44
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AR Theory

But what about computers?

A computer is a device with a well-known 7, sufficient to allow both a
modelling and an instantiation relation, { R-7, R 1 }

Computing starts with an abstract initial state and an abstract evolution to
run.

The first step is instantiation, or, here, initialisation.

Unless the physical device, the computer, is well-understood, it
cannot have a reversed representation relation.

45
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AR Theory

C'r(my)
p o
Mp {ml) & my My Ty, &y,
1 I T A
abstract :RI R_f abstract ‘ ]\‘{ IR.,r
physical | physical 4
’ - computer rns
coOmputer runs ) ’ i) I,’
P H(p) p [l)) H(p)

(a)

Running a computation on a computer.

46
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AR Theory

C'r(my) ,
P [ m Ny, =
My Ty, = Iy 'p p P
T - »

. [ ~ abstract 5 ‘
abstract !'RI Ry Rt Rt
!H‘Hf.\“"“! | _f’hf,’i#(”’ - |

L 4 computer rns
computer runs ' p I,r
p Ho, WP H(p)
. (p) |
(a) I (b)

Running a computation on a computer.

More precisely: embedding ' LS
a computation in assembly/ e
machine code and then abateact Rr Rt
running on a computer. R e
p H(p) P

46
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Computing is the use of a
physical system to predict the
outcome of an abstract evolution
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What is computing?

Computing vs engineering/science requires all the following:

A (usually highly-engineered) device in the physical domain with a good and
valid theory T

Representation and instantiation relations {R 7, fér}

Relevant commuting diagrams over a specific domain of inputs and range
of computational operations

A full compute cycle, with the physical device predicting abstract problem-
space evolution

Example: rocks don't predict anything, so Putnam’s doesn’t compute.

48
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“No computation without representation”

49
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Computing example

Classical digital computing:

Theory: The theory of classical computing covers the hardware (includ
ing how the transistors implement Boolean logie, and how the architecture
implements the von Neumann model) and software (including programming
language semantics, refinement, compilers, testing and debugging).
Encode: The problem is encoded as a computational problem by making
design decisions and casting it in an appropriate formal representation.
Instantiate: Instantiation covers the hardware (building the physical com-
puter) and software (downloading the program and instantiating it with input
data)

l—“lll ‘]-llt' IJI'U%’l‘IlIL (',\('('Hl(‘h Ol llll' I)ll\hl('[ll |I;||(]\\"||(', Illl' lil\\.\ ()I ]}}l\'hi{'h
describe how the transistors, exquisitely arranged as processing units and
memory, and instantiated into a particular initial state, act to produce the
systems final state when execution halts.

Represent: The final state of the physical system is represented as the ab-
stract result, for example, as the relevant numbers or characters,

Decode: The represented computational result is decoded into the prob

lem’s answer.

50
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Refinement

Relation of ART to standard CS: putting in lower-level physical foundations
underneath a typical refinement stack.

This is explicitly the lack of a universal concrete semantics/machine code/
assembly language: all in the theory of the physical system, and rooted in
the physical system itself not its abstract representation —

(ar) (h) ()

dec add dec add dec add
1,2} 1,2 1.2}
Ran Ran [HU: Rig
binary add binary add
[o1. 1op———{i1] (o1, 10 1]
—— —— K
Ry Ry
asm add
01, 10
R.y(asm) R.p(asm) R (bin) Ry (hin) R (dec) Rop(dec)

[—'—‘ Hasm) [—'j H(bhin) H(dec)
plasm) | e 1‘»1 p'lasm) plhin) o pl p'(hin) pldec) = 1% p (e Ii

Figure7. Physical computation, with layers of refinement £ on top for base ten (decimal) addition ('dec add’), binary addition
(‘binary add') and assembly language addition (‘asim acdd’). Note the physical device and representation differ in each case.

51
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Representational entities

A representational entity grounds the representation relation.

It is important not to smuggle ourselves in as representational entities without
taking note.

Key distinction: “we can use the system to process information” vs. “the system is
processing information intrinsically”.

The difference is whether the representational entity is internal or external to the
system. The systems are said to be closed under representation or open under
representation.

Do we represent the system as containing representation, or is the only
representation present coming from us qua (computer) scientists?
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Representational entities

But how do we tell whether representation is occurring in the systems?
We interrogate our best physical theories of the system

But note: the question “is representation occurring” is relative to a theory of the
system. Different levels of description may (will) return different answers.

The question is then, for a theory T, is there a valid semantics of the system

processes that includes within itself a description of (parts of) the system using
compute cycles and representation?

53
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Representational entities

We are looking for encoding and decoding, and semantics apart from physics.

How do we argue for the latter? A hallmark of representation is arbitrariness of
the encoding: same semantics, different language.

We are looking for highly-engineered systems.
In biology, we can see the process of engineering and different outcomes that
produce the same representational semantics.

Evolution is engineering biology.

54
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Bacteria

Bacterial chemotaxis is an instance of signalling.

Same signal, different pathways:

E. coli signalling.
Different bacteria use
different proteins.
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Photosynthesis

Light-harvesting complexes transmit photons to the reaction centre via
coherent (quantum) energy transport.

This is the same mechanism as used in quantum walk computation.

J coherent transport theory

.-

A
model [ml, My, = My

Ry Ry
) N exciton transmission ] ‘
exciton | P — > P | exciton at
at surface ' A~~~ L reaction centre

58
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Photosynthesis

Light-harvesting complexes transmit photons to the reaction centre via
coherent (quantum) energy transport.

This is the same mechanism as used in quantum walk computation.

— coherent transport theory

! ~
model [1’”1, > IHPH ~ Hi'p
Ry i
) - exciton transmission 7 ‘
exciton | P —— > P | exciton at
at surface : | reaction centre

But this is science: no representational step within the system itself

58
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Intrinsic logics

A computational description of a system can take part in two different AR cycles:

Computing Theory Computing Theory

mp m;" My i '”';.
Abstract R4 Ry \bstract R+ R
; +  Physical dynami - Pl Physical dynamic
p IVSICAal dvnamics . ‘I)’ E] IVSICal dviiamics I)'.
1. Compute cycle 2. Computational description

Cycle 2. is used in developing a computer.
It can also be used to describe the dynamics of a physical system.

59
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Intrinsic logics

The computational theory is not basic: it requires a physics/chemistry/etc to base
on (eg. to define available degrees of freedom).

Theory of computation C

1 : !
“...; ’ "y
Rre HT c
Scientific Theory T
| ’
”"[:El & 1y,
~ |
\bstract R Ry
Physical N i .
1 Physical dynamics 1
I P = p
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Intrinsic logics

Once a computational theory is well developed, along with the scientific theory,
they can both be used to instantiate.
This is the desired outcome of a well-characterised novel substrate:

Theory of computation C

| ! ‘){J ————{ 11y,
[‘)T.(' [Il r
Ry e Scientific Theory T || Rre
l'”l'] > mp]
N AT
Ry R+
bstrac s oy
Abstract Rr Rr
Physical ) ) .
¥ Physical dynamics .
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Intrinsic logics

Different substrates support different computational models.
So: use the substrate to inform the logic, based on experiments.

Don’t impose a logic on the system: use what the substrate is good at to construct
unconventional program logic for unconventional systems.

Theory of computation C

N
\HB} — e — . ”P
H'T,(' HT‘('
Rrc Scientific Theory T || Rre
|"”[1] > H.P;‘]
. +=T
R,r R}
bstract oy Pl
Abstra R-r R,r
Physical X . N
¥ Physical dynamics =
[ [) S I) |
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Quantum computing

Can quantum computers compute some things faster than classical computers?
If so, what problems can they do this for?

Why?
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Quantum computing

Can quantum computers compute some things faster than classical computers?
If so, what problems can they do this for?

Why?
What does an answer to these questions look like?

Examples:
Quantum computers store and process many bits of data at once

Quantum algorithms weave patterns of amplitudes

Quantum computing is like classical probabilistic computing with negative
probabilities

None are particularly appealing. What is the true answer?
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Quantum computing

My answer:

We don’t know.
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Quantum computing

My answer:

We don’t know.

And we don’t know because we don’t have a solution to the problem of
interpretation of QM.
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Quantum computing

To give an explanation about quantum processes is to give a description in a
higher-level language.

Quantum computing is a story about quantum processes (cf textbooks).

However — so far we're stuck at the lowest level of refinement (CNOT etc):

My
v L 1
{/*\} —
I Aul' f
YMz M |
s e ar Teleportation: circuit and Pyquil (Rigetti)

pq.Program()

s.inst(H(1), CNOT(1,2)) #Creating BOe
LAnst(H(®),Z(@),NOT(@,1),H(8))
51 D, 0).meas r({1,1).4f_then(l, X(2)).if_then(@, Z(2))
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Quantum computing

How do we go up the refinement stack? By finding higher-level processing
concepts for QC (e.g. “quantum queueing”).

Novel HLLs for quantum computing will be novel HLLs for fundamental quantum
processes.

“Shut up and calculate” is no good for a high-level intrinsic logic. We need a
human-readable explanation.

The problem of generating high-level languages for quantum computers is now
identical with the problem of developing realist interpretations/causal models for
quantum theory.
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Conclusions

Computing is physical. To use the language of computation in physics, need to keep
the physical system part of the framework.

The physical world is not isomorphic with a computational representation of it. The
world is not a bit string.

Put physics into the foundations of CS — AR theory does not reduce/replace
physics with computational arguments.

Computing is the use of physical system to predict abstract computational evolution.

For non-standard computing systems, the challenge is to produce intrinsic
computational logics.

These intrinsic logics can then also be used as high-level languages for the physics
of the system.

Quantum computing is the most immediate application for HLLs.
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