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Abstract: Dividing the world into subsystems is an important component of the scientific method. The choice of subsystems, however, is not defined
apriori. Typically, it isdictated by our experimental capabilities, and, in general, different agents may have different capabilities. Here we propose a
construction that associates every agent with a subsystem, equipped with its set of states and its set of transformations. In quantum theory, this
construction accommodates the traditional notion of subsystems as factors of a tensor product, as well as the notion of classical subsystems of
guantum systems. We then restrict our attention to systems where al physical transformations act invertibly. For such systems, the future states are a
faithful encoding of the past states, in agreement with a requirement known as the Conservation of Information. For systems satisfying the
Conservation of Information, we propose a dynamical definition of pure states, and show that all the states of all subsystems admit a canonical
purification. This result extends the purification principle to a broader setting, in which coherent superpositions can be interpreted as purifications of
incoherent mixtures. As an example, we illustrate the general construction for subsystems associated with group representations.
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WHAT IS A SUBSYSTEM?

The notion of subsystem is fundamental in physics.
But how are subsystems defined in a general theory?
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WHAT IS A SUBSYSTEM?

The notion of subsystem is fundamental in physics.
But how are subsystems defined in a general theory?

Subsystems are often taken as a primitive notion:
cf.

e categorical quantum mechanics

e operational-probabilistic theories

In these frameworks, there is a basic operation that forms composite
systems from subsystems: (A, B) — A ® B

Composite systems come with a
preferred decomposition into subsystems.
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QUANTUM SUBSYSTEMS

In quantum theory, subsystems are associated to operator algebras.

Examples:

* local observables on a tensor product Hilbert space

A= {o L e H) O=0,8T-0,¢ L(HA)}
* noise algebra generated by Kraus operators of a CPTP map

* local algebras associated to spatial regions in QFT
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WHAT ABOUT GENERAL THEORIES?

Problem: the quantum notion of subsystem relies on the fact
that observables are linear operators,

and therefore can be multiplied.
In general theories,

the multiplication of observables is not defined.

Reasons for going beyond quantum theory:

* quantum axiomatizations.

Broader definition of subsystems likely to yield more powerful axioms.
Some old axioms could become easy consequences of the definition.
e unifying perspective on different physical theories.
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PREVIOUS WORKS

Previous works:

* Barnum, Ortiz, Somma, Viola: generalized entanglement
International Journal of Theoretical Physics 2005, 44, 2127-2145.

e Del Rio, Krdamer, Renner: resource theories of knowledge
arXi1v:1511.08818 2015.

e Kramer PhD Thesis, Kramer, Del Rio:
operational locality in global theories
arXiv:1701.03280 2017.

e Brassard, Raymond-Robichaud:

subsystem states as equivalence classes
arXiv:1710.01380 2017
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CREDITS

To Cabello, Kleinmann, Miiller (...and FQXi),
for convincing me to embark into this approach.

Idea: derive quantum theory from the perspective of an agent
that tries to organize her empirical data about a chaotic external word.
Different subsystems are different ways to organize the data.

To implement this idea, it is natural to
start from a single, undifferentiated system
and define subsystems afterwards.
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A PRE-OPERATIONAL FRAMEWORK

Ingredients:
e Asystem S (the universe of discourse)

e St(S) = set of states of the system,
no particular structure assumed (e.g. no convexity)

 Transf(S) = set of physical transformations,
closed under sequential composition,
and containing the identity transformation.
In short, a monoid.

¢ Transformations act on states
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INTERPRETATIONS

Option 1: objective interpretation
St(S)/ Transf(S) are the possible states/dynamics
of the system,
they represent “the world as it is”

Option 2: subjective interpretation
St(S) represent our beliefs of the system
[e.g. about outcomes of possible experiments]
Transf(S) represent our beliefs on the possible evolutions.

What follows is compatible with both interpretations.
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AGENTS AND THEIR ADVERSARIES

Agent: agent A is specified by a set of actions Act(A;S)
Subset of Transf(S),
assumed to be a monoid.

Adversaries: intuitively, an adversary controls a
“part of the world outside the agent’s lab”.
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AGENTS AND THEIR ADVERSARIES

Agent: agent A is specified by a set of actions Act(A;S)
Subset of Transf(S),
assumed to be a monoid.

Adversaries: intuitively, an adversary controls a
“part of the world outside the agent’s lab”.

Mathematical modelling: if B is an adversary of A, then

AoB=BoA

VA € Transf(A),VB € Transf(B)
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THE MAXIMAL ADVERSARY

Maximal adversary A”: the agent who can do all the operations
that commute with Transf(A)

Act(4; S) = Act(A:; S)' = {B ' AoB = BoA,VA € Act(A; S)}

The most powerful adversary
we can conceive for agent A,
given our physical model of the system.

Caveat:

All this looks like the usual construction of commuting operator

algebras in quantum theory, but it is not:
in quantum theory, the actions are CPTP maps, not operators.
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THE PROBLEM

We want to define “A’s subsystem”,
i.e. the degrees of freedom that are exclusively under A’s control,
i.e. the degrees of freedom that are

inaccessible to her maximal adversary.

Call the subsystem Sa.

We have to define the sets St(Sa) and Transf(Sa)
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LOCALLY IDENTICAL STATES

Intuition: sometimes, two different states of the global system S
correspond to the same local state of system Sa

Question: when is it the case?

Answer: at least,
if 77/) = B(]ﬁ for some adversarial action 13

then (]5 and 1 should correspond to the same state
of Sa
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PARTITIONING THE STATE SPACE

Degraded versions of 1):  Deg()) = {B’dﬂ ,B € Transf(S)}

Observation: if Deg(¢) N Deg()) # ()

then » and 1) correspond to the same state of system Sa
More generally:

St(S)
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PARTITIONING THE STATE SPACE

Degraded versions of 1): Deg(iﬂ) - {B’di B e Transf(S)}

Observation: if Deg(¢) N Deg()) # ()

then 0 and 1) correspond to the same state of system Sa

>St(8)
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PARTITIONING THE STATE SPACE

Degraded versions of 1): Deg(iﬂ) - {B’di B e Transf(S)}

Observation: if Deg(¢) N Deg()) # ()

then 0 and 1) correspond to the same state of system Sa
More generally:

St(S)
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THE STATES OF Sa

States of Sa: equivalence classes of states of S
under the relation

= A/ ?,Z) if exists finite sequence (1,9, ..., Yn)

such that 1/,?1 — (,'b : ’l/Jn = ”17[) , and Deg("l/,f.j,) M Deg("l[)i_l_l)

cf. Kramer and Del Rio: convergence through a monoid
arXiv:1701.03280 2017.
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PARTITIONING THE TRANSFORMATIONS

For a transformation 7, the degraded versions are

Deg(7) = {51 oToBy, By B)e€ Act(S;A)}

Interpretation:
all these transformations act “in the same way” on A’s system.
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THE TRANSFORMATIONS OF 5

Question: which transformations can be interpreted as
acting “only on A’s system”?

Answer: the transformations that commute with the actions of
the adversary

Act(A’; S) = Act(4; S)"

Transformations of the subsystem:

/ : . W/
equivalence classes of transformations in Act(A; S)
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EXAMPLE 1:

BIPARTITE SYSTEMS
[N
QUANTUM THEORY

irsa: 18040089 Page 22/49



BIPARTITE QUANTUM SYSTEMS

Global system

Heoe=H i QI Hp

St(S) = {p € L(Hs),p > 0,Tr[p| = 1]}
Transf(S) = {c L(Hs) = LlHs) C i CPTP}

Agent
Act(A; S) = {A@In.. A:L(Ha) = L(H4), Adis CPTP}
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EXAMPLE 2:

A
SUBSYSTEM
OF
A SINGLE QUANTUM SYSTEM

irsa: 18040089 Page 24/49



SUPERPOSITIONS VS MIXTURES

Global system

= (=T e, Tl =1]

Transf(S) = {U c L(?—{),(ﬂ'U — [.5‘}
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THE COMMUTANT

Theorem

The commutant of the phase-covariant channels
are the basis-preserving channels,
i.e. the channels satisfying

B(|n)(n|) = |n){(n] Vne{l,...,d}

The monoid of the phase covariant channels
and the monoid of the basis-preserving channels

are the commutant of one another.
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THE CLASSICAL SUBSYSTEM

Heuristically, an agent without phase reference
has only access to a classical system.

And indeed, the equivalence relation yields

St(S,) ~ {p =y ) P O, Zp” = 1}

Transf(S4) ~ {P = [Pn), Pun 20V¥m,ne {1,...,d}, ¥ Pun=1¥ne {1,...,d}}

m
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PARTIAL TRACE
AND
NO-SIGNALLING
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PARTIAL TRACE & NO-SIGNALLING

Let B be the maximal adversary of A, namely B= A’

Formally, we can define Trp || := 1]

(equivalence class under the degradation relation)

Trivial fact: no signalling holds

Trp|Bp| := Trp|p] VB € Act(B; S) Vp € St(S4)

In this framework,
no-signalling is due to the way subsystems are formed.
Its validity is independent on whether the subsystems are

space-like or not.
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THE
CONSERVATION
OF
INFORMATION
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CONSERVATION OF INFORMATION

Informally,
the conservation of information is the condition that
one can always reconstruct the past from the future.

cf. Susskind, Bousso

ey
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LOGICAL VS PHYSICAL INVERTIBILITY

A transformation 7 € Transf(S) is logically invertible
if the function

T: St(S) = St(S), w— Ty

1S injective.

A transformation 7~ € Transf(.S) is physically invertible
if there exists a transformation 7! € Transf (S)
such that

T loT =1
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SYSTEMS SATISFYING
INFORMATION CONSERVATION

System S satisfies the

Logical (Physical) Conservation of Information
if all transformations in Transf(S)

are logically (physically) invertible.

Fact:
If S satisfies the physical conservation of information,

then the transformations of S form a group.
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SUBSYSTEMS

Suppose that

system S satisfies the Physical Conservation of Information,
and that the actions of agent A form a group Ga

Adversarial actions: commutant group Gp=Ga’

Equivalence relations:

p~pY <= o=UpY UpE€EGg
ST =85 =Unol] oVg UniVn s

cf. Brassard Raymond-Robichaud arXiv:1710.01380
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EXAMPLE 1:

PURE STATE
QUANTUM MECHANICS
AND
CONNECTED LIE GROUPS
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COMPACT LIE GROUPS

Global system

{\a; W, ) eH, |||u>||:1}
Transf(S) = {u; U(p) = Upm}

Agent

Suppose that agent A can perform all the unitary
channels corresponding to a projective representation
of a compact Lie group, such as

U:G—> L(H), g~ U,
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[SOTYPIC DECOMPOSITION

U can be decomposed into irreps, as

U, = P (u(é")@IM,.)
jelrr(U)

The commutant consists of unitary operators of the form

Y= @ (I’R,j X V])

j€lrr(U)

where V/ is an arbitrary unitary on the multiplicity space.
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THE COMMUTANT

Theorem

If the Lie group G is connected,
the commutant of the group
of unitary channels of the form

Uy(p) = ngU; g.& G
are the unitary channels of the form

V(p) = VpV! Vel
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THE SUBSYSTEM

States:

St(S4) = {p — @ pip; : pj € QSt(R;), Rank(p;) < min{d-;g_j,d,/\,@}}
jelrr(U)

Not a convex set,
except when dy, > dp, Vi e lrr(U)

Transformations:

Culp)= @ Upuf, U elin(R),UiU; = Ig,
jelrr(U) '
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EXAMPLE 2:

SINGLE QUBIT
PHASE FLIPS
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THE MAXIMAL ADVERSARY

Act(A; S) =S;US,

where

S1 are the unitary channels of the form
Us(p) = UgpUl, Uy =€ |1)(1] +]0)(0]
and

S; are the unitary channels of the form

Vo(p) = UgpU, , Up = €' ]0)(1] + [1){0)
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THE SUBSYSTEM

State space: a circle O

Not convex, and not even a set of density matrices!

Transformations: only the identity.
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EXAMPLE 3:

GENERAL COMPACT LIE GROUP
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COMPACT LIE GROUPS

Global system

St(5) = {\"#’0(’0’/’! , W eH, vl = 1}
Transf(S) = {u, U(p) = Upm}

Agent
can perform all the unitary
channels corresponding to projective representation

U:.G—> L(H), g~ U,
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THE MAXIMAL ADVERSARY

Theorem

The adversarial group G A

is isomorphic to the semidirect product A x U’

where A is an Abelian subgroup of the group
that permutes the irreps of U
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THE SUBSYSTEM

The states are vectors of density matrices,
indexed by irreps, weighted by probabilities,

(p_j P )jEIrr(U)

and quotiented by the permutations in A.

The transformations are vectors of unitary channels,
such as

(Z’(j)jelrr((,f) Z/(_,* o U_,pUj ’ UJ- - L(’R})
quotiented by the permutations in A.
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PURIFICATION
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SUMMARY

1) Operational construction of subsystems
set of operations = commutant —% quotient

This construction includes the usual subsystems,
and much more.

2) Conservation of information + cyclic state

— purification

Reference for this talk: arXiv:1804.01943
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