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Abstract: Motivated by the conceptual puzzles of quantum theory and related areas of physics, | describe a rigorous and minimal &€ogproof of
principle&€e theory in which observers are fundamental and in which the physical world is a (provably) emergent phenomenon. Thisis areversal of
the standard view, which holds that physical theories ought to describe the objective evolution of a unique external world, with observers or agents
as derived concepts that play no fundamental role whatsoever.

Using insights from agorithmic information theory (AIT), | show that this approach admits to address several foundational puzzles that are difficult
to address via standard approaches. This includes the measurement and Boltzmann brain problems, and problems related to the computer simulation
of observers. Without assuming the existence of an externa world from the outset, the resulting theory actually predicts that there is one as a
consequence of AIT & in particular, a world with simple, computable, probabilistic laws on which different observers typically (but not always)

agree. This approach represents a consistent but highly unfamiliar picture of the world, leading to a new perspective from which to approach some
questions in the foundations of physics.
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‘ Outline for this talk (10:30 — 11:30)

1. Motivation

2. Postulates of the theory >
|
3. How does an external world emerge?
4. What about more than one observer?
__ 1.Motvaton |
From observers to physics via algorithmic information theory Markus P. Mller
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The talk later today (14:30 — 15:30)

e 1. lllustration of formalism via the Sleeping Beauty Problem
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Amnesia
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e 2. Quantum theory: Bell violation and

no-signalling as generic predictions

e 3. Conceptual comments and conclusions

In large parts independent from this earlier talk.
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Systematic conceptual problems

1. Motivation
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Systematic conceptual problems ‘

* Quantum theory: measurement problem, Bell’'s Theorem,
“no-go results for facts of the world”
« Cosmology: probabilities in a “big” universe (Boltzmann brains),
why low-entropic initial conditions, measure problem
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Systematic conceptual problems ‘

* Quantum theory: measurement problem, Bell’'s Theorem,
“no-go results for facts of the world”
« Cosmology: probabilities in a “big” universe (Boltzmann brains),
why low-entropic initial conditions, measure problem

* Future technology: computer simulation of observers,
simulation hypothesis, ...
* Philosophy: Hume’s problem of induction, Goodman’s “new
riddle”, hard problems in the Philosophy of Mind
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Systematic conceptual problems ‘

* Quantum theory: measurement problem, Bell’'s Theorem,
“no-go results for facts of the world”
« Cosmology: probabilities in a “big” universe (Boltzmann brains),
why low-entropic initial conditions, measure problem

 Future technology: computer simulation of observers,
simulation hypothesis, ...
* Philosophy: Hume’s problem of induction, Goodman’s “new
riddle”, hard problems in the Philosophy of Mind

* Naive human curiosity: why is there a “world” with (simple,
probabilistic, computable) “laws” in the first place?
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Systematic conceptual problems ‘

* Quantum theory: measurement problem, Bell’'s Theorem,
“no-go results for facts of the world”
« Cosmology: probabilities in a “big” universe (Boltzmann brains),
why low-entropic initial conditions, measure problem

* Future technology: computer simulation of observers,
simulation hypothesis, ...
* Philosophy: Hume’s problem of induction, Goodman’s “new
riddle”, hard problems in the Philosophy of Mind

* Naive human curiosity: why is there a “world” with (simple,
probabilistic, computable) “laws” in the first place?

Claim: These all point in a particular direction: an approach where
not a “world”, but observers/observations are fundamental.

Fundamental: P(future observations | past observations).

| ] |
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Systematic conceptual problems

* Quantum theory: measurement problem, Bell’s Theorem,
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Systematic conceptual problems

* Naive human curiosity: why is there a “world” with (simple,
probabilistic, computable) “laws” in the first place?

Claim: These all point in a particular direction: an approach where
not a “world”, but observers/observations are fundamental.

Fundamental: P(future observations | past observations).
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Systematic conceptual problems

* Philosophy: Hume’s problem of induction, Goodman’s “new
riddle”, hard problems in the Philosophy of Mind

Claim: These all point in a particular direction: an approach where
not a “world”, but observers/observations are fundamental.

Induction: P(future observations | past observations).

| | |
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Boltzmann brain problem

Cosmologists argue about this:
y | ST
1 i .\- i : Ty

"“Wow! | hope I'm not, like, a disembodied brain

randomly formed complete with false memaories of
an existence I never really had, floating in a sea of

chaos and disorder. That would really ruin my day...

https://wallacegsmith.wordpress.com/
2013/06/10/invasion-of-the-boltzmann-
brains/
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Systematic conceptual problems ‘

« Cosmology: probabili{ies in a “big” universe (Boltzmann brains),

Claim: These all point in a particular direction: an approach where
not a “world”, but observers/observations are fundamental.

Fundamental: P(future observations | past observations).

| | |
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Boltzmann brain problem

Cosmologists argue about this:

Sketch of argumentation:

¢ Fix a cosmological model X that
predicts a very large universe.

e Count Npp (# of Boltzmann brains)
and compare to N,,.; (# of naturally
evolved brains).

e If Ngp > N,. then a “BB-obser-
vation” should be highly probable:
“What the...? I'm in space?! Aargh...”

“Wow! | hope I'm not, like, ardisembodied bfain ° Thatss l"lOt What we see, hence x |S
randomly formed complete with false memories of fa|s|f|ed

an existence I never really had, floating in a sea of

chaos and disorder. That would really ruin my day...

https://wallacegsmith.wordpress.com/
2013/06/10/invasion-of-the-boltzmann-
brains/
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Boltzmann brain problem

Cosmologists argue about this:

Sketch of argumentation:

¢ Fix a cosmological model X that
predicts a very large universe.

e Count Npzp (# of Boltzmann brains)
and compare to N,,.; (# of naturally
evolved brains).

e If Ngp > N,. then a “BB-obser-
vation” should be highly probable:
“What the...? I'm in space?! Aargh...”

“Wow! | hope I'm not, like, a disembodied brain e That’s not what we see. hence X is
randomly formed complete with false memories of f | f d ’
aisitieq.

an existence I never really had, floating in a sea of

chaos and disorder. That would really ruin my day...

Is this argumentation valid?

https://wallacegsmith.wordpress.com/ —
2013/06/10/invasion-of-the-boltzmann- Seems to rely On more than
brains/ 13 1]
statements about “the world
1. Motivation _ : : I _ | _ ; :
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Systematic conceptual problems ‘

* Quantum theory: measurement problem, Bell’'s Theorem,
“no-go results for facts of the world”
« Cosmology: probabilities in a “big” universe (Boltzmann brains),
why low-entropic initial conditions, measure problem

* Future technology: computer simulation of observers,
simulation hypothesis, ...
* Philosophy: Hume’s problem of induction, Goodman’s “new
riddle”, hard problems in the Philosophy of Mind

* Naive human curiosity: why is there a “world” with (simple,
probabilistic, computable) “laws” in the first place?

Claim: These all point in a particular direction: an approach where
not a “world”, but observers/observations are fundamental.

Fundamental: P(future observations | past observations).

| ] |
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General approach

Approach:
e Drop any assumption of an "external world".
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General approach

Approach:
e Drop any assumption of an "external world".
e Start with the first-person conditional probabilities

P(future observations | past observations),

privately for every single observer.
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General approach

Approach:
e Drop any assumption of an "external world".
e Start with the first-person conditional probabilities

P(next state of observer | previous states of observer),

privately for every single observer.
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General approach

Approach:
e Drop any assumption of an "external world".
e Start with the first-person conditional probabilities

P(next state of observer | previous states of observer),

privately for every single observer.

e Postulate P=algorithmic probability, motivated by
structural arguments. See what follows, and
compare with actual physics.
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Disclaimer ‘

e “Observer” is a technical / information-
theoretic notion. Not (directly) related
to “consciousness” etc.

e Not meant as a “TOE”. Predicts its
own limitation. Useless for most things.

e “Reality” of world is not denied, but only
its fundamentality. Reproduces standard
view to good approximation.

1. Motivation 7
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Outline

1. Motivation

2. Postulates of the theory

n
3. How does an external world emerge?
4. What about more than one observer?

From observers to physics via algorithmic information theory Markus P. Mller

Pirsa: 18040078 Page 23/96



Postulates of the theory

Absolutely minimal ingredients:

all | see and know
and remember,
encoded: 101101...

I3

o

|7 2. Postulates of the theory _ |
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Postulates of the theory ‘

Absolutely minimal ingredients:
e An observer is in some state x (at any given moment).
e |t will be in some other state y next.

e Some future states y are more probable than others.

all | see and know
and remember,
encoded: 101101...

X4

|7 2. Postulates of the theory _ |
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Postulates of the theory ‘

Absolutely minimal ingredients:
e An observer is in some state x (at any given moment).
e |t will be in some other state y next.
e Some future states y are more probable than others.

— stochastic process.

all | see and know
and remember,
encoded: 101101...

|7 2. Postulates of the theory _
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Postulates of the theory ‘

Absolutely minimal ingredients:
e An observer is in some state x (at any given moment).
e |t will be in some other state y next.
e Some future states y are more probable than others.

— stochastic process.
Agency, quantumness, a “world”: not postulated, but (partially) derived.
all | see and know

and remember,
encoded: 101101...

L4

| 2. Postulates of the theory i _ . | _
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Postulates of the theory

An observer’s state can be represented by a binary string (like
x1 = 011010). One (subjective) moment after the other, this
yields a sequence x = (1, xs,..., 2, ), and the probability
of the next state y is

P(ylzi,xa, ..., 20),

where P is conditional algorithmic probability.

all | see and know
and remember,
encoded: 101101...

b

| 2. Postulates of the theory '

From observers to physics via algorithmic information theory

Markus P. Mller

Pirsa: 18040078 Page 28/96



Postulates of the theory ‘

An observer’s state can be represented by a binary string (like
x1 = 011010). One (subjective) moment after the other, this
yields a sequence x = (1, x2,...,T,), and the probability

of the next state y is
P(ylzi,xa, ..., 20),

where P is conditional algorithmic probability.

¢ No assumption that this comes from incomplete knowledge /
quantum state /... of any “external world”.

The P describes fundamental irreducible chances.
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Postulates of the theory ‘

An observer’s state can be represented by a binary string (like
x1 = 011010). One (subjective) moment after the other, this
yields a sequence x = (1, xs,..., 2, ), and the probability

of the next state y is
P(ylzi,xa, ..., 20),

where P is conditional algorithmic probability.

¢ No assumption that this comes from incomplete knowledge /
quantum state /... of any “external world”.
The P describes fundamental irreducible chances.

¢ Not the actual 0-1-sequence is relevant, but the computability
structure that relates the different strings. Analogy: in GR, the
actual coordinates don’t matter, but the differentiable structure.

2. Postulates of the theory i | l
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What is algorithmic probability?

2. Postulates of the theory
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What is algorithmic probability?

Probability measures on “histories”:  P(z1,...,x,) =7

all | see and know
and remember,
encoded: 101101...

I3

|7 2. Postulates of the theory _ |
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‘ What is algorithmic probability?

Probability measures on “histories”:  pu(z1,...,x,) =7

(Boring) example: pu(zy) == 27201 g g 4(1011) = 272471 = 279,

all | see and know
and remember,
encoded: 101101...

|7 2. Postulates of the theory |
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‘ What is algorithmic probability? ‘

Probability measures on “histories”:  p(x1,...,2,) =7
(Boring) example: (1) := 2721 e g, 4(1011) = 272471 =279,

w(zy, .. ) = p(xy) - pla) - oo p(ay)

all | see and know
and remember,
encoded: 101101...

|7 2. Postulates of the theory _
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‘ What is algorithmic probability? ‘

Probability measures on “histories”:  p(x1,...,x,) =7
(Boring) example: pi(x1) = 27271 g, p(1011) =2 241 =27,
(g, ..o xy) = () - p(as) - .. p(xy,).
Measure: Zu(afl) =1, Z W e T e =T

€Ty Ln+1

Semimeasure: Same with “<“ instead of “=".

all | see and know
and remember,
encoded: 101101...

!. 1"*"
/oo asssssssssssssssssnnsnns

X4

2. Postulates of the theory |
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‘ What is algorithmic probability? ‘

Measure: Z i =L Z gl i i = s
1

Tn 41

Semimeasure: Same with “<“ instead of “=".

A (semi)measure is computable if there is a computer program that,
oninput z1,...,2, and m € N outputs an (1/m)—approximation
to wu(xy,...,xz,).

all | see and know
and remember,
encoded: 101101...

e |
M, =110 NMEE, — 01001011

, " "

[ B
ey
¢

J L
Iassasssssssssssssssssnnsnnsn
T3 T4 L5

| 2. Postulates of the theory _ |
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‘ What is algorithmic probability? ‘

Measure: Z g =1, Z et 2 aa ) = sy )
1|

Tn41

Semimeasure: Same with “<“ instead of “=".

A (semi)measure is computable if there is a computer program that,
oninput z1,...,2, and m € N outputs an (1/m)—approximation
to wu(xy,...,xz,).

A (semi)measure is enumerable if there is a computer program that,
oninput x,...,x, and m € N outputs some approximation

‘m) (. . ‘m) . m)
7 )(:Ll, ...,T,) such that /1,,('”) < pu and lim pl™ =y,
' —r 00
2. Postulates of the theory
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‘ What is algorithmic probability? ‘

Measure: Z i =L Z gl i i = s
1

Ln41

Semimeasure: Same with “<“ instead of “=".

A (semi)measure is computable if there is a computer program that,
oninput z1,...,x, and m € N outputs an (1/m)—approximation
to wu(xy,...,xz,).

A (semi)measure is enumerable if there is a computer program that,
oninput wy,...,z, and m € N outputs some approximation
,u,("”)(;r:l, ...,Zy) such that ;,z,("”') < and lim /1,.('”"-) = L.

Tn— 00

A universal enumerable semimeasure M is an enumerable semi-
measure such that for every enumerable semimeasure ;. there exists
some constant ¢ > 0 suchthat M(zy,...,z,) > ¢ pu(xy,...,z,).

| | |
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‘ What is algorithmic probability? ‘

Measure: Z i =L Z gl i i = s
1

Ln41

Semimeasure: Same with “<“ instead of “=".

A ( eml)measure is computable if there is a computer program that,

o) el |\ SV WY P - | A NN o \
to 4 Pick any universal enumerable semimeasure M

Al and normalize it. hat
on This defines algorithmic probability P.

[.I!(?. T s oy Sucrtr et Jr ~ o arra ”73&77— —T

A universal enumerable semimeasure M is an enumerable semi-
measure such that for every enumerable semimeasure ;. there exists
some constant ¢ > 0 suchthat M(zy,...,z,) > ¢ pu(xy,...,z,).

| | |
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‘ What is algorithmic probability?

Alternative definition:
reads bits
sequentially

Computer
(including
work tapes)

(O Oy ... writes strings
sequentially
: - oo [ ] tomms romms e e s PP
& [ofo[i[i[ e
110]7 " array of
AREE > outpul tapes
it " £ | it i il i ‘ 1 { ()Ii' } kEN
- ” :
V.

Universal monotone Turing machine U

| 2. Postulates of the theory
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What is algorithmic probability?

Alternative definition:

<0

1{1{o]of1]o

0

0

reads bits
sequentially

Computer
(including
work tapes)

() Oy wriles strings
sequentially
. : oo [ Y ) tmms e e
< o]0 [ [/
S11101
{f i ] iF
’ ia H

' input
psnnn tape

array of
> output tapes
{Ok}ren

/

M :=distribution of outputs
if input is chosen at random.
Is universal enumerable.

“Occam’s razor”:
MU (:I:l_a Ry -7—:714) 2 2—'1((.1’1 ,...,;1:.,,,)11
where K(x) is the length of the

shortest computer program
that outputs x.

Favors compressibility!

Universal monotone Turing machine U

2. Postulates of the theory
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’ What is algorithmic probability?

Alternative definition:
<& o]t ]o[o[1JofiJofo] b My :=distribution of outputs

tape

Tﬁl}]‘.ﬁfﬂ,,’?ﬂ';‘.].\, if input is chosen at random.
Is universal enumerable.

Computer
(including
work tapes)

Q: Won'’t the resulting theory depend on the choice
of universal machine U / univ. enum. semimeasure M?
A: No, but non-trivial why not. Maybe ask me later.

{Oktren that outputs X.

Favors compressibility!
Universal monotone Turing machine U

| 2. Postulates of the theory
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An open problem ‘

An observer’s state can be represented by a binary string (like
x1 = 011010). One (subjective) moment after the other, this
yields a sequence x = (1, x2,...,T,), and the probability

of the next state y is
P(ylzi,xa, ..., z0),

where P is conditional algorithmic probability.

2. Postulates of the theory
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An open problem ‘

An observer’s state can be represented by a binary string (like
x1 = 011010). One (subjective) moment after the other, this
yields a sequence x = (1, x2,...,T,), and the probability

of the next state y is Play.... 500
P(y’mh seey ;1’.?-,,,) = P('L'l J [ ) )

where P is conditional algorithmic probability.

2. Postulates of the theory

From observers to physics via algorithmic information theory

Markus P. Mller

Pirsa: 18040078 Page 44/96



An open problem ‘

An observer’s state can be represented by a binary string (like
x1 = 011010). One (subjective) moment after the other, this
yields a sequence x = (1, x2,...,T,), and the probability

of the next state y is Play.... 500
P(y’mh seey ;1’.?-,,,) = P('L'l J [ ) )

where P is conditional algorithmic probability.
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An open problem ‘

An observer’s state can be represented by a binary string (like
x1 = 011010). One (subjective) moment after the other, this
yields a sequence x = (1, x2,...,T,), and the probability

of the next state y is Play.... 500
P(y’mh seey ;1’.?-,,,) = P('L'l J [ ) )

where P is conditional algorithmic probability.

Conceptually, it would be more consequential to define P
only to depend on the present, not the past. In some sense,
the “past” is only what an observer presently remembers...

P(y|zn).

2. Postulates of the theory
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An open problem ‘

An observer’s state can be represented by a binary string (like
x1 = 011010). One (subjective) moment after the other, this
yields a sequence x = (1, zs,..., 2, ), and the probability

of the next state y is P(z Ty 1)
P(y|x R Y AR AL S 4
(e ) P(xy,...,x,)
where P is conditional algorithmic probability.

Conceptually, it would be more consequential to define P
only to depend on the present, not the past. In some sense,
the “past” is only what an observer presently remembers...

P(y|z,).

Conceptually (much) clearer, but consequences much
harder to work out. Don’t know how to do it (yet).

2. Postulates of the theory |
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Why algorithmic probability?

Several possible arguments:
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Why algorithmic probability? ‘

Several possible arguments:

1. Extrapolating Solomonoff induction
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Why algorithmic probability? ‘

Several possible arguments:

1. Extrapolating Solomonoff induction

Sol. Induction (1964): after seeing bits by,...,b,,
predict the next bit  with prob. P(blb; ...b,).

2. Postulates of the theory
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Why algorithmic probability? ‘

Universal
Sol. Induction (1964): after seeing bits by,...,b, , IaEEREEI T

predict the next bit b with prob. P(blb, ...b,). Bakion by

Several possible argumen  Gives quickly the correct
probabilities in all computable

1 Extrapolating Solomoil probabilistic environments.

2. Postulates of the theory
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Why algorithmic probability? ‘

Universal
Sol. Induction (1964): after seeing bits by,...,b, , SRS

predict the next bit b with prob. P(blb; ...b,).

Several possible arguments:

1. Extrapolating Solomonoff induction

e |Laws of physics computable:
Given a description of an experiment as input,
an algorithm can compute the expected outcome statistics.

2. Postulates of the theory _'
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Why algorithmic probability? ‘

Universal
Sol. Induction (1964): after seeing bits by,...,b, , ISEEREEI T

predict the next bit  with prob. P(blb; ...b,). e

Several possible arguments:

1. Extrapolating Solomonoff induction

e Laws of physics computable:
Given a description of an experiment as input,
an algorithm can compute the expected outcome statistics.

e This is enough to guarantee: Solomonoff induction will do at
least as good as our best physical theories in prediction
(in principle, asymptotically, for many observations).

2. Postulates of the theory : '
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Why algorithmic probability? ‘

Several possible arguments:

1. Extrapolating Solomonoff induction

Universal
Sol. Induction (1964): after seeing bits by,...,b, , ISEEREEI T

predict the next bit  with prob. P(blb; ...b,).

e Laws of physics computable:
Given a description of an experiment as input,
an algorithm can compute the expected outcome statistics.

e This is enough to guarantee: Solomonoff induction will do at
least as good as our best physical theories in prediction
(in principle, asymptotically, for many observations).

¢ |dea: postulate that Solomonoff induction is “the law”!
This will then have to be consistent with physics (given our data).

| [ . Posuaes ot neory | |* |
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Why algorithmic probability?

2. A structural motivation

Physics is nothing but what makes some future observations
more likely than others.

Algorithmic probability is an essentially unique “canonical
propensity structure”.

2. Postulates of the theory
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Outline

1. Motivation

2. Postulates of the theory

3. How does an external world emerge?

4. What about more than one observer?

3. How does physics emerge?
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Prediction 1: Principle of persistent regularities ‘

, f(bit string ) =0 or 1
Fix any computable test . " / /4
I!noll I!yesll
", P [ \_/-h’ - 5 (’“" -1'-‘:”\ \/ﬁ - : e’ '\\
1011011 111110111 101 1100100110 ? time
... history so far.  Future steps
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Prediction 1: Principle of persistent regularities ‘

Fix any computable test f.

f(bit string x)

n

4

Suppose the answer has been "yes" all along:
) "\ﬁl\_\ ) -z,-_\_._\ ) '«,:* ) -\—,\_:_ E O '~
« 0 & ¢« : )
) y ), ) 4 . |
V4 V4 V4 V4 : Y 4
1011011 111110111 101 1100100110 . ?
yes yes yes listor yes r. Future

From observers to physics via algorithmic

information theory

3. How does physics emerge?
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f
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Prediction 1: Principle of persistent regularities ‘

, f(bit string ) =0 or 1
Fix any computable test . " / /4
. . I!n n " n
Suppose the answer has been "yes" all along: - yes
) "\ﬁl\_\ ) -z,-_\_._\ ) '«,:* ) -\—,\_:_ E O '~
(5 (@ (@ (& A
1011011 111110111 101 1100100110 & ? i
et . | time
istor , steps
yes yes yes listor yes r. Fut' probably
yes
Theorem: Then, with probability close to one,
answer will be "yes" in the future.
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Prediction 1: Principle of persistent regularities ‘

, f(bit string ) =0 or 1

Fix any computable test . " / /4
. . Iln n n n
Suppose the answer has been "yes" all along: - yes
) "\ﬁl\_\ o~ Qo Qr E O '~
(5 (@ (@ (& i )
1011011 111110111 101 1100100110 ? i
et . | time
istor , steps
yes yes yes listor yes r. Fut' probably
yes

Theorem: Then, with probability close to one,
answer will be "yes" in the future.

Intuitive reason: This makes sequence of strings more compressible.

| | |
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Prediction 1: Principle of persistent regularities

Rigorous mathematical formulation:

Theorem 8.3 (Persistence of regularities). Let A be a dead-
end free observer graph, and [ an open computable A-test.
For bits ay,...,an,b € {0,1}, define the measure p as

ey = e tT2Y W2y =
plblagaz = an ) i="P{ filxii ) =0 i(xi)=a)l, -,
o+ 1y
/ (xl ) — Oy }1
and similarly define the semimeasure m with P replaced by
M. Then we have®® m(0|17) < 2-KM+OWM) and for the
measure p we have the slightly less explicit statement

n—00

p(1]1") — 1, (10)
but the convergence is rapid since Y~ p(0|1™) < oo. Thus,
c.g., p(1]1") > 1 — L for all but finitely many n. Moreover,

n

the probability that f(x}" Y = 1 for all n € N is non-zero.

3. How does physics emerge?
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Prediction 1: Principle of persistent regularities

This is already indicates how Boltzmann brains are exorcized:

3. How does physics emerge?
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Prediction 1: Principle of persistent regularities

This is already indicates how Boltzmann brains are exorcized:

f := computable test whether observations are typical for a planet-
like environment.

Suppose the answer has been "yes" all along:

-

Y » Y A Y » axR
QV: '\'zf( E& !l);(
V4 4 J y 4

1011011 111110111 101 1100100110 ? tlme
yes yes yes listor yes r. Future steps
|
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Prediction 1: Principle of persistent regularities

But it is not quite enough — cf. Goodman’s New Riddle of Induction:

3. How does physics emerge?
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But it is not quite enough — cf. Goodman’s New Riddle of Induction:

f := computable test whether observations are typical for a planet-
like environment.
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Prediction 1: Principle of persistent regularities

But it is not quite enough — cf. Goodman’s New Riddle of Induction:

f := computable test whether observations are typical for a planet-

like environment.

;o f
/ { NOT f

if observed calendar shows year <
if observed calendar shows year >

(cf. Goodman’s green/blue versus bleen/grue).
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Prediction 1: Principle of persistent regularities

But it is not quite enough — cf. Goodman’s New Riddle of Induction:

f := computable test whether observations are typical for a planet-
like environment.

'

- f if observed calendar shows year < 2050
© 7| NOT f if observed calendar shows year > 2050.

(cf. Goodman’s green/blue versus bleen/grue).

Theorem applies to both f and f. Contradiction?! No.

Resolution: Since K(f) < K(f), the f-regularity stabilizes earlier
than the f -regularity.

3. How does physics emerge?
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Prediction 1: Principle of persistent regularities

This is already indicates how Boltzmann brains are exorcized:

f := computable test whether observations are typical for a planet-
like environment.

Suppose the answer has been "yes" all along:

1011011 111110111 101 1100100110 & ? tim
— : - t e
yes yes yes listor yes r. Futyfprobablyh, S'¢PS
yes
Boltzmann brain experience ("what the... I'm
suddenly in space... argh!!") is highly unlikely.
|
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Prediction 1: Principle of persistent regularities

But it is not quite enough — cf. Goodman’s New Riddle of Induction:

f := computable test whether observations are typical for a planet-
like environment.

F f if observed calendar shows year < 2050
“ 71 NOT f if observed calendar shows year > 2050.

(cf. Goodman’s green/blue versus bleen/grue).

Theorem applies to both f and f. Contradiction?! No.

Resolution: Since K(f) < K(f), the f-regularity stabilizes earlier
than the f -regularity.

Careful quantitative analysis of K (see paper)
confirms exorcism of the Boltzmann brains.

| 3. How does physics emerge?
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Prediction 1: Principle of persistent regularities

But it is not quite enough — cf. Goodman’s New Riddle of Induction:

f := computable test whether observations are typical for a planet-
like environment.

f f if observed calendar shows year < 2050
771 NOT f if observed calendar shows year > 2050.

(cf. Goodman’s green/blue versus bleen/grue).

Theorem applies to both f and f Contradiction?! No.

Resolution: Since K(f) < K(f), the f-regularity stabilizes earlier
than the f -regularity.

Careful quantitative analysis of K (see paper)
confirms exorcism of the Boltzmann brains.

Will the different regularities “fit together” coherently? Yes! —>
| | |
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Prediction 2: Simple, computable, probabilistic “world”

Theorem. Consider any computable probabilistic process that
has description length L on a universal computer.
Suppose it generates outputs x1,x2,x3,... according
to the (computable) distribution p(z1,. .., x,).
Then, with P-probability at least 2~ we have

n—>0Q0

P(y|lzy,...,xn) — plylz1,...,2Zn),

l.e. the outputs of this process will asymptotically be a
perfect description of the observer’s states.

3. How does physics emerge?

Markus P. Mlller
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Prediction 2: Simple, computable, probabilistic “world”

Theorem. Consider any computable probabilistic process that
has description length L on a universal computer.
Suppose it generates outputs 1, x2,x3,... according
to the (computable) distribution (1, ..., 2,).

Then, with P-probability at least 2~ we have

n—0oQ

P(U|.Il, 20 3:1:1?,_) — H’(y":lfln oo ._,;'L'-”_,),

l.e. the outputs of this process will asymptotically be a
perfect description of the observer’s states.

. -ED- r E::' -
looks as if v

it came from r

v
observer state,

P-distributed computational process,
output p-distributed.

| 3. How does physics emerge?
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Prediction 2: Simple, computable, probabilistic “world”

Theorem. Consider any computable probabilistic process that
has description length L on a universal computer.
Suppose it generates outputs 1, x2,x3,... according
to the (computable) distribution (1, ..., 2,).

Then, with P-probability at least 2~ we have

n—0oQ

P(U|.Il, 20 3:1:1?,_) — H’(y":lfln oo ._,;'L'-”_,),

l.e. the outputs of this process will asymptotically be a
perfect description of the observer’s states.

. -En- r E::' -
looks as if v

it came from r

v
observer state,

P-distributed computational process,
output /-distributed.

| 3. How does physics emerge?
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Prediction 2: Simple, computable, probabilistic “world”

Theorem. Consider any computable probabilistic process that
has description length L on a universal computer.
Suppose it generates outputs 1, x2,x3,... according
to the (computable) distribution (1, ..., 2,).
Then, with P-probability at least 2~ we have

n—0oQ

Py|z1,--- @) —— gz, - 2n),

l.e. the outputs of this process will asymptotically be a
perfect description of the observer’s states.

* It is contingent which process (and thus ) will emerge, but simpler
ones are highly preferred (simpler = smaller L = higher probability)

3. How does physics emerge?
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Prediction 2: Simple, computable, probabilistic “world”

Theorem. Consider any computable probabilistic process that
has description length L on a universal computer.
Suppose it generates outputs x1, T2, x3,... according
to the (computable) distribution p(z1, ..., x,).
Then, with P-probability at least 2~ we have

n—0oQ

P({U|.I.1, SR TCs 5"[‘”;) ‘Fﬁ) I‘I'(!J"l‘lﬂ LS S 'J‘l.”)’

l.e. the outputs of this process will asymptotically be a
perfect description of the observer’s states.

* It is contingent which process (and thus ) will emerge, but simpler
ones are highly preferred (simpler = smaller L = higher probability)

* Thus, observer’s probabilities will equal the marginal distribution of
some random variable that’s part of a probabilistic process with
computable laws of short description (a simple algorithm).

|7 | 3. How does physics emerge?
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Prediction 2: Simple, computable, probabilistic “world”

Theorem. Consider any computable probabilistic process that
has description length L on a universal computer.
Suppose it generates outputs *1,x2,x3,... according
to the (computable) distribution p(z1,...,x,).
Then, with P-probability at least 2~ we have

| ST e il T e
l.e. the outputs of this process will asymptotically be a
perfect description of the observer’s states.

mTLanul]lublulu]

Don’t think too naively of “tapes”,
“bits”, discreteness etc. — it's an
abstract computational process.

g(t)

ofofr]1
1u]1
1|0
!

JA

[.f'| P 1 TR B T | )

(z1,22,23,24)

| | 3. How does physics emerge?
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Prediction 2: Simple, computable, probabilistic “world”

Theorem. Consider any computable probabilistic process that
has description length L on a universal computer.
Suppose it generates outputs *1,x2,x3,... according
to the (computable) distribution p(z1,...,x,).
Then, with P-probability at least 2~ we have

| ST e il T e
l.e. the outputs of this process will asymptotically be a
perfect description of the observer’s states.

mTLanul]lublulu]

Don’t think too naively of “tapes”,
“bits”, discreteness etc. — it's an
abstract computational process.

g(t)

ofofr]1
1u]1
1|0
!

JA

[.f'| P 1 TR B T | )

(z1,22,23,24)
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Prediction 2: Simple, computable, probabilistic “world”

Theorem. Consider any computable probabilistic process that
has description length L on a universal computer.
Suppose it generates outputs *1,x2,x3,... according
to the (computable) distribution p(x1,...,x,).
Then, with P-probability at least 2~ we have

n—0oQ

P(y|;’1ﬁ_‘1, IRy :’L‘.,,_,_) — ;_1,(;(1\;:1.71, o0 ,;‘I..-'-n,)a

l.e. the outputs of this process will asymptotically be a
perfect description of the observer’s states. W —

¢ There are generic features of (simple) computational processes,
e.g. that they start in some simple initial state. This seems to be

consistent with what we see in physics ("low-entropic initial conditions").

|_ 3. How does physics emerge? |

Markus P. Mller
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Outline

1. Motivation

2. Postulates of the theory

3. How does an external world emerge?

4. What about more than one observer?

3. How does physics emerge?
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Outline

1. Motivation

2. Postulates of the theory

3. How does an external world emerge?

4. What about more than one observer?

4. More than one observer?
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Prediction 3: An emergent notion of objectivity

Apriori, different observers make their own "private" observations.

Abby Bambi
AlLLA A BB B
Py |xy, ... x0)) P(y” |z, ..., x))

3. How does physics emerge?
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Prediction 3: An emergent notion of objectivity

Apriori, different observers make their own "private" observations. They
are completely unrelated, and live in their own "external worlds".

i-_"_'._,._,._r,. s < B-world

(]

IV 7 , - e B 3 How does physics emerge? 7
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Prediction 3: An emergent notion of objectivity

Apriori, different observers make their own "private" observations. They
are completely unrelated, and live in their own "external worlds".

i-_"_'._,._,._r,. s < B-world

(]

But suppose that A sees something in her external world
that seems like another observer B to her...

[,, — . T ] : 3. How does physics emerge? [
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Prediction 3: An emergent notion of objectivity

Apriori, different observers make their own "private" observations. They
are completely unrelated, and live in their own "external worlds".

A-world

J

_____ My g L E s

Y it = i T el P e et s et |

oA H L
o = P=f P~f ~f P~f ) P~f I~

But suppose that A sees something in her external world
that seems like another observer B to her...

3. How does physics emerge?
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Prediction 3: An emergent notion of objectivity

Apriori, different observers make their own "private" observations. They
are completely unrelated, and live in their own "external worlds".

A-world

J

_____ My g L E s

Y it = i T el P e et s et |

oA H L
o = P=f P~f ~f P~f ) P~f I~

But suppose that A sees something in her external world
that seems like another observer B to her...

Does what A sees really correspond to the
first-person perspective of another observer?

| 3. How does physics emerge?
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Prediction 3: An emergent notion of objectivity

How to formalize this:

x = 101100...

Choose some (simple) computable
function fp that, at any time step,
"reads out" some binary string
(interpreted as B's current state)

A-world

0
1
1
0
1
0
0
|:-j_:

J/Bencodes “what other thing
in her world A is looking at”.

3. How does physics emerge?
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Prediction 3: An emergent notion of objectivity

How to formalize this:

x = 101100...

Choose some (simple) computable
function fp that, at any time step,
"reads out" some binary string
(interpreted as B's current state)

A-world

1
1
0
1
0
0
|'£I'

/B encodes “what other thing
in her world A is looking at”.

Two probability distributions:
v(xy,22,...,2,) = prob. that Bis in states x1,...,x, acc. to A-world

P(xy,...,x,) = algorithmic probability that B is in states x1,..., 2,
(the real private chances for B!)

| | 3. How does physics emerge?
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Prediction 3: An emergent notion of objectivity

Let's consider a colourful example:

A-world

If Abby has a chance of about 100% of seeina Bambi see the sun ¥

rise tomorrow, then will Bambi have a chance of about 100% of
seeing the sun rise tomorrow? P

v(xy,xa,...,2x,) = prob. that Bis in states ¥1,...,x, acc. to A-world

P(xq,...,x,) = algorithmic probability that B is in states x1,...,x,
(the real private chances for B!)

| | 3. How does physics emerge?
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Prediction 3: An emergent notion of objectivity

Let's consider a colourful example:

A-world

If Abby has a chance of about 100% of seeina Bambi see the sun ¥

rise tomorrow, then will Bambi have a chance of about 100% of
seeing the sun rise tomorrow? P

Theorem: With 1/-probability one,

P(ylzy,...,z) — v(ylz1,...,2x).
So the answer is "yes", asymptotically.

(In other words: P =~ v if B is “old enough” in A-world.)

| | 3. How does physics emerge?
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‘ Surprise 1: Probabilistic zombies

* “Objective reality” is a theorem, not an assumption:
v—> 00 :
P(ylxy,...,x) — v(ylry, ..., xk).

Sometimes premises of theorem not satisfied =——p “zombies”!
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‘ Surprise 1: Probabilistic zombies

* “Objective reality” is a theorem, not an assumption:
v —r 00 ‘
P(ylxy,...,x) — v(ylry, ..., xk).

Sometimes premises of theorem not satisfied =——p “zombies”!

P
O

but ),

A B is a probabilistic

zombie for A.
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‘ Surprise 1: Probabilistic zombies

* “Objective reality” is a theorem, not an assumption:
v —r 00 ‘
P(ylxy,...,x) — v(ylry, ..., xk).

Sometimes premises of theorem not satisfied =——p “zombies”!

A-world
e
1
JL

L

but O

state/ ‘ (k
history A B is a probabilistic
zombie for A.

prob. of B’s state according to A-world

Theorem: if K(x) < K(r) thenzombie,ie. P # v.

| | |
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‘ Surprise 1: Probabilistic zombies

® K (x) too small: A “points to” something in his world that is
too simple (e.g. a single bit, written on a blackboard)

® /{(v)too large: A “points to” something in a too complicated way
(example: Boltzmann brains, because very hard to localize.)

but
state/ 92)
history A B is a probabilistic
zombie for A.

prob. of B’s state according to A-world

Theorem: if K(x) < K(r) then zombie,i.e. P # v.

| [ I
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Surprise 2: Brain emulation

Get also concrete criteria for
when simulation of an agent
corresponds to an “actual first-
person perspective” (similarly
as in the zombie case).

Turns out: makes big difference

if simulation is “open” or “closed”
(feed in outside data or not).

More details in paper.

God at His compurer
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Conclusions

* Yes, we can start with the first-person perspective, and obtain a
notion of "emergent external world", consistent with known physics.

= Far from the usual regime of physics; useless for most things.

+ Allows to address fundamental problems rigorously that we tend to
address with much less rigor: "why a world with simple laws at all",
Boltzmann brain problem, etc.

= Not the final word (see open problem etc.), but fun.

== Proof of principle: can have physical theory of completely new kind
(first person first) that is consistent, rigorous, and has explanatory
and predictive power (for some questions, but not for others).

Full version: arXiv:1712.01826
Short version (not as good, v2 soon): arXiv:1712.01816
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Conclusions

* Yes, we can start with the first-person perspective, and obtain a
notion of "emergent external world", consistent with known physics.

= Far from the usual regime of physics; useless for most things.

+ Allows to address fundamental problems rigorously that we tend to
address with much less rigor: "why a world with simple laws at all",
Boltzmann brain problem, etc.

= Not the final word (see open problem etc.), but fun.

== Proof of principle: can have physical theory of completely new kind
(first person first) that is consistent, rigorous, and has explanatory
and predictive power (for some questions, but not for others).

Full version: arXiv:1712.01826
Short version (not as good, v2 soon): arXiv:1712.01816

Thank you!
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