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Operational theories

An operational theory has three categories of objects corresponding to
three types of experimental procedures.!

» Preparations P;
» Transformations 7 and

» Measurements M.

s, Phys. Rev. A 71, 052108 (2005).
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Quantum theory

» Preparations: pure quantum states 1, mixed states p
» Transformations: unitary operators U, quantum channels 7

» Measurements: projectors P, POVM elements E, Quantum
instruments L

Probability assignment is the Born rule,

Pr(k|ap. T, _;’VI) — tr[Ek",uT(ﬂ-p)].
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Ontological models?
Operational theories should match observations insofar as they describe

physics.

An ontological model of an operational theory? is a set of ontic states A
and (conditional) probability measures such that:

wAP)=1 VP

Z n(k|A, M) =1 VM,
k

/ dp(A|P)n(k|x, M) = Pr(Ik\’P.,M) vk, P, M
JA

rb transformations into preparations for notational simplicity.
uanta 3, 67 (2014)
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Frame representations®

Let F={F\: A€ A} and D= {D, : A € A} be frames for a vector space
V' with inner product (.,.) satisfying

M = / d\ (F\,MYD\, YMEe V.
By linearity,
(E,p) = /df\(F,\~fJ><E~ Dy) = /d/\if(Mﬂ)ﬂ-(EM) = (u(*|p), n(E|*)) .

Prepare a state p < sample A € A with quasiprobability p(A|p)

d Emerson, NJP 11, 063040 (2009)
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Frame representations®

Let F={F\: A€ A} and D= {D, : A € A} be frames for a vector space
V' with inner product (.,.) satisfying

M = / d\(Fy\,MYDy YM e V.
By linearity,
(E,p) = / dA (Fx,p) (E,Dy) = / dAp(Alp)u(E|X) = (u(+(p), n(E|*)) .
Prepare a state p < sample A € A with quasiprobability p(A|p)

Measure {£y, .. ., Ex} < return k with quasiprobability z( Ex|A)

d Emerson, NJP 11, 063040 (2009)

ormations Joel J. Wallman

Pirsa: 18040076 Page 7/33



Frame representations®

Let F={F\: A€ A} and D= {D, : A € A} be frames for a vector space
V' with inner product (.,.) satisfying

M = / d\(Fy\,MYDy YM € V.
By linearity,
(E,p) = / dA(Fx,p) (E,Dy) = / dA(Alp)u(E|X) = (u(+(p), n(E|*)) .
Prepare a state p < sample A € A with quasiprobability p(A|p)

Measure {£y, .. ., Ex} < return k with quasiprobability z( Ex|A)
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Ontological models from quasiprobability representations

A fixed pair of dual frames IF, D gives an ontological model for:

» the set of states with nonnegative distributions,

S(F) = {p : u(x|p) > 0}.

» the set of POVM elements with nonnegative distributions,

M(D) = {E : u(E|%) > 0}.
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The qubit Wigner function
Let D = {%(I + xX + xzY + zZ) : x,z = £}.

Nonnegative states and POVM effects

N,
N,

-
o

b

RS-
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Contextuality and quasiprobabilities

Generalized contextuality: any two operational objects that generate the
same statistics when varied over all other operations are ontologically
identical.>

Any preparation and measurement noncontextual model can be obtained
by restricting some quasiprobability representation to the preparations and
measurements for which it is nonnegative.

s, PRA 71, 052108 (2005)
s, PRL 101, 020401 (2008), Ferrie and Emerson, NJP 11, 063040 (2009)
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Contextuality and quasiprobabilities

Generalized contextuality: any two operational objects that generate the
same statistics when varied over all other operations are ontologically
identical.>

Any preparation and measurement noncontextual model can be obtained
by restricting some quasiprobability representation to the preparations and
measurements for which it is nonnegative.

Any quasiprobability representation is a preparation and measurement
noncontextual ontological model for the preparations and measurements it
represents nonnegatively.®

s, PRA 71, 052108 (2005)
s, PRL 101, 020401 (2008), Ferrie and Emerson, NJP 11, 063040 (2009)
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Transformations in quasiprobability representations

Transformations often folded into preparations and measurements.

Can define a quasiprobability representation of a linear map 7 by’
w(N|T,A) = (Fx, T(Dy)),

so that
Tip) = / dXdX (A p)p(N'|T, A) Dy

Choi-Jamiotkowski isomorphism: as tr(AB) = tr([A @ BT]®), u(N|T,\)
is a quasiprobability representation of 71 @ /(®).

d Emerson, NJP 11, 063040 (2009)
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Contexts for transformations

For preparations, the only contexts are different convex combinations.

For transformations, a channel can be implemented as a convex
combination of other channels, or a composition of channels.

Convex linearity is manifestly respected.

Composition is also respected:
;_.'()\"|'TV. )\) — <FAH, T(V[D;\]»

_ /A dN' (Fyr, T(Dx)) {Fxr, V(D))
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The importance of being idle

When are any transformations represented nonnegatively?

Suppose you leave a system alone (for an instant), how does the ontic
state evolve? It doesn't.

So for the identity channel to be represented nonnegatively, need
(A, X)) = u(NZ, A).

Satisfied if and only if A has d? points.
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Contexts for transformations

For preparations, the only contexts are different convex combinations.

For transformations, a channel can be implemented as a convex
combination of other channels, or a composition of channels.

Convex linearity is manifestly respected.

Composition is also respected:
u(XN'|TV,A) = (Fxr, T(V[DA]))

- A AN (Fyr, T(Dx)) (Far, V(Dx))
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8-state model®

Let D = {3(/ + xX + yY + 2Z) : x,y,z = +}.
The frame has 8 elements and so the dual is not unique! Set F = D/4.

All Clifford transforma-
tions permute the frame
elements.

Nonnegative states and POVM effects

Gives a noncontextual rep-
resentation of the Clifford
group, not the semigroup.

e, Wallman, and Emerson, arXiv:1802.06121
and Bartlett, PRA 85, 062121 (2012)
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8-state model®

Let D = {3(/ + xX + yY + 2Z) : x,y,z = +}.
The frame has 8 elements and so the dual is not unique! Set F = /4.

All Clifford transforma-
tions permute the frame
elements.

Nonnegative states and POVM effects

Gives a noncontextual rep-
resentation of the Clifford
group, not the semigroup.

E.g., applying a random
Pauli matrix vs applying a

random Clifford.®
e, Wallman, and Emerson, arXiv:1802.06121
and Bartlett, PRA 85, 062121 (2012)
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Rebit Wigner function'®
Let D = {3(/ + xX + zZ) : x,z = %}

The frame has 4 elements and so the dual is not unique! Set F = 1/2.
Applying / or Y randomly maps (x, z) — +(x, z)
Applying X or Z randomly maps (x, z) — +(x, —2).

The operations are identical on rebit states!

. Guerin, Bian, and Raussendorf, Phys. Rev. X 5, 021003 (2015).
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A foundational principle

Generalized contextuality (Spekkens): any two operational objects that
have the same operational statistics when varied over all other operations
are ontologically identical.!!

Leibniz's principle: any two distinct objects have a distinct property.

Empiricist’s version: any two distinct objects can be distinguished by
measuring some property.

Objection: if operational objects are mixed due to information loss to the
environment, measure the environment.

s, PRA 71, 052108 (2005)
nd Spekkens, NJP 17, 033002 (2015)
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A foundational principle

Generalized contextuality (Spekkens): any two operational objects that
have the same operational statistics when varied over all other operations
are ontologically identical.!!

Leibniz's principle: any two distinct objects have a distinct property.

Empiricist's version: any two distinct objects can be distinguished by
measuring some property.

Objection: if operational objects are mixed due to information loss to the
environment, measure the environment.

“n~ oeneralized contextuality to mixed operations is a no-fine-tuning
~ - rather than an appeal to Leibniz's principle.!?

s, PRA 71, 052108 (2005)
nd Spekkens, NJP 17, 033002 (2015)
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Noncontextuality for unitary transformations

No operational way to distinguish between applying U; then U, and
applying UsU;.

Contexts for unitary operations: composition.

Transformation noncontextuality for a group G:

(AU U, A) = / dX (N | Uz, Npu(N'|Ur, N)
A
That is, p(*|U, *) is a representation of G.

Nonnegativity = u(*|U, *) is a permutation representation.
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Pure operations are generalized noncontextual'3

Pure operations consist of pure states, unitary transformations and
projection-valued measures.

Preparations: ¢ — 6(¢') over CP9~1
Unitaries: U : §(¢) — d(UoUT)
PVMs: Mg : 6(é) — 6(MgolMi/ Pr(k)) with probability Pr(k)

Contexts: composition of unitaries, repeated measurements, measurements
with common outcomes.

etti and Bugajski, J. Phys. A 28, 3329 (1995).
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Constructing noncontextual models for unitary groups

Let G C U(d) be a (finite) group. Any noncontextual ontological model of
(& is equivalent to some permutation representation 7.

Can associate the elements of the representation space V to operators
(quasiprobability representation) or pure states under the corresponding
action of G.

Example: let G(X;, H;, CZ; «) and

Fo=2" S0 (~1y19Z[ZX[x].

zxeZl:x-z=0

The image of Fg under G is a frame, the ontic space is a subset of the
- uadratic functions.
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Contextuality is a resource... for classical simulations

Best-case simulation cost is O(log dim V)

Can simulate an additional unitary h by:14
» Finding a map such that h(Dy) = [, dX u(X'|h, A)Ds.
» Adding an additional variable x € C (initialized to 1).

» Mapping A — A with probability Pr(\'|A) and
Kk — k(N hy,A)/ Pr(X|A).

A natural probability distribution is

1(X']h, M)

PAYIY) = T v, DT

n, Wallman, and Bartlett, PRL 115, 070501 (2015).
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Example

All stabilizer states can be written as

W o Z i) (=1)9() |x)

XEA
Let A = {A, I, q}.
Applying a Clifford gate permutes the (A, /, q).
cosf + isin@P can be implemented by applying / or P with probabilities

(1+ [tan®|)~! and (1 + |cotf]) ! respectively (or sometimes trivially).
Needs O(2™) samples to converge for m /8 gates.
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Example

All stabilizer states can be written as

) o Z i) (—1)9Cx) |x)

XEA
Let A = {A, I, q}.
Applying a Clifford gate permutes the (A, /, q).
cos + isin@P can be implemented by applying / or P with probabilities

(1+ [tan®|)~! and (1 + |cotf]) ! respectively (or sometimes trivially).
Needs O(2™) samples to converge for m /8 gates.

“aly, for @ € (0,7/8], apply / and (/ + iP)/+/2 with probabilities
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Optimized scalings

Gate set Example gate | scaling
1 0 -

T-gates (D e”"“) 20.23
Cyclotomic Cliffords LD 20.15m

y mic Cliffor 0 ir/s
n-th roots of Hadamard vVH 20.46m
V-basis (I +2iY)//5 | 2022m
b —Vb
Fib ' te set P
ibonacci anyon gate sets (\/E X )

Jones-Kauffman anyon gate sets (é 2) 20.077m
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Sparse representations

Suppose the magic gates are Mp = exp(ifP) = cosf! + isin P for some
Pauli P.

/7& Cm MP — Cm—l - MP [ was | U
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Sparse representations

Suppose the magic gates are Mp = exp(ifP) = cosf! + isin P for some
Pauli P.

/7/\ Cm MP - Cm—l — MP [ was | U

The last Mp gate is mapped to Mp: when propagated past the last
Clifford gate.

/74 MPm—l ] Cr':rl—], MP ﬂi I(.-":!
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Sparse representations

"First” pass: make the [ norm of

. Mp, = E a; C;

-

!

Mp

less than 2.
Corresponds to setting Pr(7) o< d(«;).

Sufficient to make the [y norm of
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Sparse representations

Can make the /g norm 3.
If Po and P; commute: Py = Z/ and P; = IZ.

Then MzM;z = (1 —a_ —ay )l + a, CZ + a_XXCZXX where
ay = 1/2 — exp(£2i0)/2.
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Sparse representations

Can make the /g norm 3.
If Po and P; commute: Pp = Z/ and P; = IZ.

Then MzM;z = (1 —a_ —a; )l + a, CZ + a_XXCZXX where
ay = 1/2 — exp(£2i6)/2.

If Po and P; anticommute:

Mp, Mp, = cos 81 + i cos @ sinB(Pg + P1) + sin® 6Py Py
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