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The principle of cut-motility:

For any physical theory purporting to have universal
applicability, describing an experimental phenomenon typically
involves making a cut between (i) the systems that are modeled
explicitly within the theory and are the objects of interventions

(preparations, measurements, transformations) (ii) the systems
that make up the devices that implement these interventions.

A theory is said to satisfy the principle of cut-motility if its
predictions are independent of the placement of the cut.
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The principle of cut-motility:

For any physical theory purporting to have universal
applicability, describing an experimental phenomenon typically
involves making a cut between (i) the systems that are modeled
explicitly within the theory and are the objects of interventions
(preparations, measurements, transformations) (ii) the systems
that make up the devices that implement these interventions.

A theory is said to satisfy the principle of cut-motility if its
predictions are independent of the placement of the cut.

The placement of the cut is a conventional choice of the theorist,

possibly chosen for convenience but with no physical
significance.
Comparable to principle of general covariance
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“The dividing line between the system to be observed and the
measuring apparatus is immediately defined by the nature of the
problem but it obviously signifies no discontinuity of the physical
process. For this reason there must, within limits, exist complete
freedom in choosing the position of the dividing line.”

---W. Heisenberg

“[...] the principle of the psycho-physical parallelism is violated,
so long as it is not shown that the boundary between the
observed system and the observer can be displaced arbitrarily in
the sense given above.”

---J. Von Neumann
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The principle of cut-motility:

For any physical theory purporting to have universal
applicability, describing an experimental phenomenon typically
involves making a cut between (i) the systems that are modeled
explicitly within the theory and are the objects of interventions

(preparations, measurements, transformations) (ii) the systems
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A theory is said to satisfy the principle of cut-motility if its
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The placement of the cut is a conventional choice of the theorist,

possibly chosen for convenience but with no physical
significance.
Comparable to principle of general covariance
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The foundational credentials of
the principle of cut-motility

Makes evident the existence of a measurement
problem in the textbook interpretation of
quantum theory
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The textbook interpretation of quantum theory

Representational completeness of . The rays of Hilbert space correspond
one-to-one with the physical states of the system.

Measurement. If the Hermitian operator A with spectral projectors {P,} is
measured, the probability of outcome kis (y|P, |y). These probabilities are
objective -- indeterminism.

—LHt
Evolution of isolated systems. It is unitary, ) = Ulp) = e 777 |ap)
therefore deterministic and continuous.

Evolution of systems undergoing measurement. If Hermitian operator A with
spectral projectors {P,} is measured and outcome k is obtained, the physical
state of the system changes discontinuously,

W) — |YP.) = w
1) — |k) (| P[0
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Inconsistencies of the textbook interpretation

By unitary evolution postulate

By the collapse postulate (applied to isolated system that

(applied to the system) includes the apparatus)
Indeterministic and discontinuous Deterministic and continuous
evolution evolution
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The quantum merurement problem
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If the measurement apparatus is treated externally
al 1) 45| |) —|71) with probability |a|?
— | |) with probability |b|?
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The quantum measurement problem

.\»\
.

If the measurement apparatus is treated externally
al 1) 45| |) —|71) with probability |a|?
— | |) with probability |b|?

If the measurement apparatus is treated internally
@] "ready”) - U(|1)®|"ready”)) = | 1) @] “up")
| l) ®|“ready”) — U(]|)®|"“ready”)) =1])®
U is a linear operator U(aly) + blo)) = aU|y) + bU|p)

(a| ) +0| 1) ®|"ready") — Ula| 1) ® | “ready”) + b| |) ® | “ready” )]
=alT)®|"“up”)+0b| |)®|“down")

ildOWn!! )
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The textbook interpretation of quantum theory

Representational completeness of . The rays of Hilbert space correspond
one-to-one with the physical states of the system.

Measurement. If the Hermitian operator A with spectral projectors {P,} is
measured, the probability of outcome kis (y|P, |y). These probabilities are
objective -- indeterminism.

~LiHt
Evolution of isolated systems. It is unitary, V) = Ulh) = e 777 |ap)
therefore deterministic and continuous.

Evolution of systems undergoing measurement. If Hermitian operator A with
spectral projectors {P,} is measured and outcome k is obtained, the physical
state of the system changes discontinuously,

V) — (VL) = w
| l,[. ) ’ ‘1 k) (d!”ﬁ(\[l/’)
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Inconsistencies of the textbook interpretation

By unitary evolution postulate

By the collapse postulate (applied to isolated system that
(applied to the system) includes the apparatus)
Indeterministic and discontinuous Deterministic and continuous
evolution evolution
Determinate properties Indeterminate properties
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The foundational credentials of
the principle of cut-motility

Resolves the longstanding debate about whether
coherences between eigenspaces of conserved
guantities are fact or fiction
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Optical coherence: a convenient myth?
K. Molmer, Phys. Rev. A. 55, 3195 (1997)

Standard assumption for field: P = |C\£>< )
. |(r|2/2a,n
) = — " |n)
7_12::0 'n,!

coherence is fact
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Optical coherence: a convenient myth?
K. Molmer, Phys. Rev. A. 55, 3195 (1997)

Standard assumption for field: P = |C\£>< )

S |“|2/2():”
Q) = n
= 3 )

coherence is fact {

But if we quantize the atoms in the gain medium, and
e assume incoherent mixture of energy eigenstates

e apply energy conservation

» For a given n, atoms and field evolve to an entangled state
e)n) — a(t)le)n) + b(t)]g)ln + 1)
p = la(t) 2 [n) (n] + [ [n+ 1) fn + 1]
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Optical coherence: a convenient myth?
K. Molmer, Phys. Rev. A. 55, 3195 (1997)

Standard assumption for field: P = |C\£> <CX|
x© . |u|2/2a,‘n,

= In)
nZZ: 0 m

coherence is fact

But if we quantize the atoms in the gain medium, and
* assume incoherent mixture of energy eigenstates (thermal state)
e apply energy conservation

o0

p= ) pnn)(n|  where pp ="
0

n=—

Thus, coherence is fiction!
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Other areas in which the coherence controversy has arisen

Nonlocality of a single photon

D. M. Greenberger, M. A. Horne and A. Zeilinger, Phys. Rev. Lett. 75 (1995) 2064.
L. Hardy, Phys. Rev. Lett. 75 (1995) 2065.

Bose-Einstein condensation

J. Javanainen and S. M. Yoo, Phys. Rev. Lett. 76 (1996) 161.

W. Hoston and L. You, Phys. Rev. A 53 (1996) 4254.

S. M. Yoo, J. Ruostekoski and J. Javanainen, J. Mod. Opt. 44 (1997) 1763.
Y. Castin and J. Dalibard, Phys. Rev. A 55 (1997) 4330.

Superconductivity

P. W. Anderson, in The Lesson of Quantum Theory, eds. J. D. Boer, E. Dal, O. Ulfbeck
(Elsevier, Amsterdam, 1986), pp. 2333.

R. Haag, Il Nuovo Cimento XXV (1962) 2695.

D. Kershaw and C. H. Woo, Phys. Rev. Lett. 33 (1974) 918.

Whether there are superselection rules for charge, baryon number, etc.
G. C. Wick, A. S. Wightman and E. P. Wigner, Phys. Rev. 88 (1952) 101.
Y. Aharonov and L. Susskind, Phys. Rev. 155 (1967) 1428.
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The proposed resolution
Bartlett, Rudolph, and Spekkens, Int. J. Quantum Information 4, 17 (2006)

Quantum states only describe the properties of a system
relative to some external system

Consequently, whether or not coherences are applicable
depends on the external system to which one is comparing
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What does it mean to say that
the spin is up along the z axis?

A

{ |

\\\ 5:’
R

It means spin up relative to another physical

system, such as gyroscopes in the lab, that define
the z axis (i.e. act as a Cartesian reference frame)
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What does it mean to say that
a mode has a particular phase?
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Implicated RF treated externally

ps € L(Hs)

,L. ;S

R
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Implicated RF treated externally Implicated RF treated internally

ps € L(Hg) ors € L(HRr) ® L(Hs)
J_’ ) ;5::' , '\\‘J_. ;S :'
R S - R \\ﬁ ’,,/

5-——--’
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What does it mean to say that
a mode has a particular phase?

It means that it has that phase relative to another
physical system, such as another oscillator in the lab
(i.e. one that acts as a phase reference)
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Implicated RF treated externally Implicated RF treated internally

ps € L(Hg) ors € L(HRr) ® L(Hs)

n""\ / *\
A , .J—» <D
R R NR .

So, the two states need ahl R
~
not be the same k R ‘ L=

-
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Implicated RF treated externally Implicated RF treated internally

vacuum

, -———
R \ ,” = "'\.\

,’ TN
¢ common ¢ ‘\
h,, = source " ¢ \

\ I
[ 1 signal ? \
R ‘\S |/ . : \\ S , signal

'N\/——pD \& R 'v/ D

N > -

N _———-

reference
reference

oscillator J . !
U oscillator tj
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Implicated RF treated externally Implicated RF treated internally

Asymmo;{)ic under phase shifts vacuum

o)s= 3. VA" LN T
n=0 >\ _'\

¢ common / \
- ™ / q) \
P = source | \
' S| 1signal ‘?fvﬂv \ IS Il |
R ‘ad A , signal
; ‘\ / \

D Nl ND

reference f
oscillator 6.7 Symmetric under phase shifts FEfErEnce

00 oscillator U
a5 = Y paln)s(n|

n=0 vacuum

R, ——— — -
~
_-\
N
common \
/ \
source q) \

l g |
?‘fvﬁv \ ! S ‘,,; signal
\
4
\‘R \::Bf\__,D

reference

oscillator U
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The foundational credentials of
the principle of cut-motility

Clarifies what is the correct definition of the free
operations in certain resource theories
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The resource theory of
speakable coherence
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Speakable versus unspeakable coherence
Marvian and RWS, PRA 94, 052324 (2016)

RIS )
vy =% 9) =

0) +

V2

2)
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What should be taken as the free operations?

“Incoherence-preserving operations”

A generalization of the proposal of:
Baumgratz, Cramer, and Plenio, PRL 113, 140401 (2014)

pel = E(p)el

where [ = set of incoherent states 0 = ZI, Pi |Z> <l|
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What should be taken as the free operations?

“Incoherence-preserving operations”

A generalization of the proposal of:
Baumgratz, Cramer, and Plenio, PRL 113, 140401 (2014)

pel = E(p)el

where [ = set of incoherent states 0 = ZI, Pi |Z> <l|

|
Equivalently, , D 1

EoD=Do&oD |7’= 5J

where ;L
D(-) = 2, 1O Lﬁ L D _\
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What should be taken as the free operations?

“Dephasing-covariant operations”

Chitambar and Gour, PRA 94, 052336 (2016)
Marvian and RWS, PRA 94, 052324 (2016)

|

EoD—Dog 2 g}

where 7| = |
p() =S, Waowe €
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Dephasing covariant C Incoherence-preserving

E.g.
E(p) = 10){0[Tr(|4){+]p) + [L) 1| Tr(|=)(=]p)
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Two proposals agree on what are the free unitaries and the
free states

p =2l
V=3 e m)(ll

‘ 1 Theorem:
If pand V are incoherent, then
E £ is dephasing-covariant

lv

The category of incoherence-preserving operations is not cut-motile

Pirsa: 18040073 Page 35/80



Pirsa: 18040073

The foundational credentials of
the principle of cut-motility

Solves the Maxwell’s demon challenge to the
second law

C. H. Bennett, Int. J. Theor. Phys. 21, 905 (1982)
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The foundational credentials of
the principle of cut-motility

Resolves an apparent challenge to Curie’s
principle involving quantum collapse

RWS, http://pirsa.org/16060060/
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The foundational credentials of
the principle of cut-motility

Makes evident the existence of a measurement problem in the textbook
interpretation of quantum theory

Resolves the longstanding debate about whether coherences between
eigenspaces of conserved quantities are fact or fiction

Clarifies what is the correct definition of the free operations in certain
resource theories

Solves the Maxwell’s demon challenge to the second law (Bennett)

Resolves an apparent challenge to Curie’s principle involving quantum
collapse

Further prospects: Debates about background independence? Debates about
real versus complex field?
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What the principle of cut-motility implies
for how to define
epistemically restricted classical theories
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. Statistical theory for Epistemically restricted
Classical theory y P y

the classical theory theory for the classical theory
Mechanics Liouville mechanics Epistemically restricted Liouville
mechanics
= Clifford subtheory of quantum
mechanics
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Statistical theory for Epistemically restricted

Classical theory the classical theory theory for the classical theory
Mechanics Liouville mechanics Epistemically restricted Liouville
mechanics
= Clifford subtheory of quantum
mechanics
Bits Statistical theory of bits Epistemically restricted statistical

theory of bits (a.k.a. toy theory)
~ Clifford subtheory for qubits
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. Statistical theory for Epistemically restricted
Classical theory y P y

the classical theory theory for the classical theory
Mechanics Liouville mechanics Epistemically restricted Liouville
mechanics
= Clifford subtheory of quantum
mechanics
Bits Statistical theory of bits Epistemically restricted statistical

theory of bits (a.k.a. toy theory)
~ Clifford subtheory for qubits

Trits Statistical theory of trits Epistemically restricted statistical
theory of trits (toy theory for trits)
= Clifford subtheory for qutrits
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. Statistical theory for Epistemically restricted
Classical theory y P y

the classical theory theory for the classical theory
Mechanics Liouville mechanics Epistemically restricted Liouville
mechanics
= Clifford subtheory of quantum
mechanics
Bits Statistical theory of bits Epistemically restricted statistical

theory of bits (a.k.a. toy theory)
~ Clifford subtheory for qubits

Trits Statistical theory of trits Epistemically restricted statistical
theory of trits (toy theory for trits)
= Clifford subtheory for qutrits

There are two senses in which this scheme defines foil theories
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A fact about operational quantum theory:

Jointly-measurable observables = acommuting set of observables
(relative to matrix commutator)
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Continuous degrees of freedom
Configuration space: R™ 3 (z1,22,...,%n)

Phase space: §2 = RQn > (‘rla'pla L2y P2y -+ - - :mﬂ-ap‘ﬂ-) =m
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Continuous degrees of freedom

Configuration space: R™3 ($1;$2; ceey il“-n)

Phase space: {2 = R2™ (x1,p1, 22,02y, Tn,Pn) =M
Functionals on phase space: F': 2 — R

Xi.(m) = xy,
Py(m) = py
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Continuous degrees of freedom
Configuration space: R™ 3 (z1,22,...,2n)
Phase space: {2 = R2™ (x1,p1, 22,02y ., Tn,Pn) =M
Functionals on phase space: F': 2 — R
Xi.(m) = xy,
Py(m) = py
Poisson bracket of functionals:

N — s (OF G _ 9F G\,
[, Gl0m) = ¥ieq (Fx, 95 — apax,) (M)
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Continuous degrees of freedom

Configuration space: R™ > (z1,22,...,7n)
Phase space: Q = R2" 3 (21,p1, 22,02, -, Tn,Pn) =M
Functionals on phase space: F': 2 — R
Xi.(m) =z,
Py(m) = py,
Poisson bracket of functionals:

N — s (OF G _ 9F 9G
[, Gl0m) = Y1 (Fx, 98 — apax,) (M)

The linear functionals / canonical variables are:
F — CL]_X]_ + blPl + ree + (]"TLX'H« _I_ b"]’LPn. (];1, bl, ey CL?'L’ b?’L E R
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Discrete degrees of freedom Z;=1{0,1,...,d—1}
Configuration space:(Z d)n =) (331, Ly. .., ilf?’t-)

Phase space: 2 = (Z )2 3 (x1,P1,22,P2, .-, Tn, Pn) = M
Functionals on phase space: F' : 2 — 7,

Xi.(m) = xy,
Py(m) = py,
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Discrete degrees of freedom Z;=1{0,1,...,d—1}
Configuration space:(Z d)n =) (1151, Ly .., ilf?’t-)
Phase space: $2 = (Z)?" 3 (x1,P1,22,P2, .-, Tn, Pn) = M
Functionals on phase space: F' : 2 — 7,

Xi.(m) = xy,

Py(m) = py,

Poisson bracket of functionals:
[F,G](m) =¥ 1 (Flm+ez] — F[m])(G[m+ ep,] — G[m])
—(F[m +ep]) — F[m])(G[m + eq;] — G[m])

Pirsa: 18040073 Page 50/80



A canonically conjugate pair [Fa G] =1
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A canonically conjugate pair [Fa G] =1

e.g. {Xl,P]}',{XQ,PQ}, and {X1+X2:Pl}'
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A canonically conjugate pair [Fa G] =1

e.g. {Xl,Pl}',{XQ,PQ}, and {X1+X2:Pl}'

A commuting pair [F,G] =0

e.g. {X1, X2}, {X1, P2}, and {X1 — Xp, P| + P}

The principle of classical complementarity:

An observer can only have knowledge of the values of a commuting
set of canonical variables and is maximally ignorant otherwise.
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Valid epistemic states for one canonical system

q known p known 49— P known Nothing
known

\“ LLLLLL > 'I) \ﬂ\\”: Y \ﬂ\‘\ﬂ D P
q

q q q
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Valid epistemic states for one canonical system

q known

P known

2
q 1
0

P

¢+ P known

2
0

(_{1
0
01 2
P
q,]
0 |
01 2
P
2
(11
0
1 2

Nothing
known

2
0
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Valid epistemic states for one canonical system

q known P known q + p known
1 ' 1 Nothing
( ( (¢
1 0 1 0 1 0 known
0 1 0 1 0 1 .
P P P 0
01
1 1 1 p
( ( (
y 0 ! 0 J 0
0 1 0 1 01
p p D
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Valid reversible transformations

Those that preserve the Poisson bracket / symplectic inner product:

The group of symplectic affine transformations (Clifford group)

for m € 2
m+— Sm + a

where [Su, Sv] = [u,v] Symplectic
and a € §2  Affine (Heisenberg-Weyl)
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Symplectic Affine

. -
?)‘l‘ 71‘ :’I‘ “\,‘\)
> 2 NN TNy
q q
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Symplectic

q~—q q—p q—=q 9= q+p qgr—p qrrq+p

Affine p > p p—~q p—q+p PP p—q+p p—q
q—q q1 ql ql“"—) q!l A ql*_ll* ql_"l
p+>p 0 o [N 0 o| [¥ o| NI ol [W
01 0 1 01 01 01 0 1
p p p p p p
qrrq+1 114 (4 14712, 1A\ A 14 Iz 1A\
prp qO‘l’_i Tordy AR g 1o 1ol
01 01 0 1 01 01 01
p p P P p P

9—q9 g1 1 1 1% 118 1 ba
p—p+1 o€ qo"'—->' qo<——> q0 qo$—+ qo—-ﬁ
01 01 01 01 01 01
P P P P P P

qq+1 g1 q1 q sl gl % qil qiy=
p'_}p—l_]- 0 0 0 0 0 (__‘P 0*/
0 1 01 01 01 0 1 01
p p p p p p
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Collapse Rule in Epistemically Restricted Liouville mechanics

[ P But this would violate the
epistemic restriction!

Measure () find q

|Q B’
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Collapse Rule in Epistemically Restricted Liouville mechanics

Measure (Q 4/

A’ B’
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Collapse Rule in Epistemically Restricted Liouville mechanics

Measure (Q 4/

A’ B’

__________ > P ) U' p
\ Hap = PAQB \ A

q q
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Collapse Rule in Epistemically Restricted Liouville mechanics

Measure () 4/ find ¢ Hi
| 1P
Q \
q
A | B

__________ > P ) U' p
\ Hap = PAQB \ A

q q
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The logically possible epistemic state space

(1,0)
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The valid epistemic state space

(1,0)
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: . . 0
The valid epistemic state space o

: ]
: | | )
: ° 1
=
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A common suggestion: Why not take the convex closure of the state space?
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A common suggestion: Why not take the convex closure of the state space?

A: Such mixtures don’t satisfy the
classical complementarity
principle

A: Because this would violate the
principle of cut-motility!

The requisite dice and controlled
operations are not available
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Epistemically restricted theories

* Evolving any system with a |
! symplectic W

symplectic affine transformation

affine
m— Sm <+ a |

where [Su, Sv] = [u, v]

and a € 2

* Preparing epistemic states satisfying classical vlp )
complementarity principle _/

—

- Marginalizing over any system [ \
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Clifford subtheories of quantum theory

Assuming the principle of cut-motility, the set of all valid (possibly
irreversible) transformations are those that are expressible as:
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. Statistical theory for Epistemically restricted
Classical theory y P y

the classical theory theory for the classical theory
Mechanics Liouville mechanics Epistemically restricted Liouville
mechanics
= Clifford subtheory of quantum
mechanics
Bits Statistical theory of bits Epistemically restricted statistical

theory of bits (a.k.a. toy theory)
~ Clifford subtheory for qubits

Trits Statistical theory of trits Epistemically restricted statistical
theory of trits (toy theory for trits)
= Clifford subtheory for qutrits
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Insight into a longstanding puzzle concerning
contextuality and computation?
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. Statistical theory for Epistemically restricted
Classical theory y P y

the classical theory theory for the classical theory
Mechanics Liouville mechanics Epistemically restricted Liouville
mechanics

= Clifford subtheory of quantum

mechanics ADMITS OF
NONCONTEXTUAL MODEL

Bits Statistical theory of bits Epistemically restricted statistical
theory of bits (a.k.a. toy theory)
~ Clifford subtheory for qubits

Trits Statistical theory of trits Epistemically restricted statistical
theory of trits (toy theory for trits)
= Clifford subtheory for qutrits

ADMITS OF
NONCONTEXTUAL MODEL
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The longstanding puzzle

There seem to be explicit examples of contextuality in the
Clifford subtheory of qubits

Ex: the Peres Mermin proof

And yet, any computation within the Clifford subtheory of
qubits is efficiently classically simulatable by the Gottesman-
Knill theorem
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The longstanding puzzle

There seem to be explicit examples of contextuality in the
Clifford subtheory of qubits

Ex: the Peres Mermin proof

And yet, any computation within the Clifford subtheory of
qubits is efficiently classically simulatable by the Gottesman-
Knill theorem

The apparent conclusion:

Admitting of a noncontextual model may be a sufficient condition
for efficient classical simulatability, but it is not a necessary
condition

i.e., contextuality is not always a resource for computation
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BUT...
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Consider the experimental scenario that allows one to
test the principle of noncontextuality

Kunjwal and RWS, PRL 115, 110403 (2015)

Y

P(XY|ST)

T T

is constrained by
noncontxtuality

X l inequalities
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For Peres-Mermin

Krishna, RWS, Wolfe,
NJP 19, 123031 (2017)

9 binary-outcome sources
preparing the mixed states onto
the eigenspaces of these
observables
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9 binary-outcome measurements
associated to these observables
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