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Abstract: <p>Starting from the well known Laplace-Runge-Lenz vector of the Kepler problem, | will introduce a notion of dynamical (hidden)<br>
symmetries. These are genuine phase space symmetries that stand in contrast to the more familiar symmetries of the configuration space<br>
discussed in truncated versions of Noether's theorem. Proceeding to a relativistic description, | will demonstrate that such symmetries --
encoded<br>

in the so caled Killing-Yano tensors -- play a crucia role in the study of rotating black holes described by the Kerr geometry. Even more
remarkably, | will show that one such special symmetry is enough to guarantee complete integrability of particle and light motion in general rotating
black hole spacetimesin an arbitrary<br>

number of spacetime dimensions. Recent developments on the separability of test fields in these spacetimes will also be discussed.</p>
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Plan of the talk

|. Introduction: Hidden symmetries

ll.  Miraculous properties of Kerr geometry

lll. Principal Killing-Yano tensor
|.  Families of Killing-Yano tensors
II. Kerr-NUT-AdS spacetimes
lll. Killing towers of symmetries

I\VV. Particles and fields: Integrability and Separation of variables
|. Complete integrability of geodesic motion
Il. Scalar, Dirac, and Maxwell perturbations

V. Summary

Friends:

M. Cariglia, P. Connell , V.P. Frolov, G.W. Gibbons, T. Houri, P. Krtous,
H.K. Kunduri, D.N. Page, J.E. Santos, M. Vasudevan, C.M. Warnick,
Y. Yasui
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Laplace-Runge-Lenz vector

Central force:

Bl

Kepler problem:

= B
F=_——7p
| [

—

A =9 x L—mkf

Laplace-Runge-Lenz vector

Wikipedia
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Laplace-Runge-Lenz vector

Central force:

E. L

Kepler problem:

= E
F=__7¢
I._

—

A =px L —mkfr

Laplace-Runge-Lenz vector

Wikipedia

* motion maximally superintegrable
T T 4 W3 2 )
A-L=0 A =m°k° + 2mEL"
» dynamical symmetry
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Hamiltonian dynamics

Symplectic manifold:

closed 2-form)

Hamiltonian vector flow generated Y_-\ o
&) / —

AR
by function f: W 3/

Darboux coordinates: £ = (z*, p,) st w = dp, N dz"

W = 3‘*"1/)'(]5\ A d¢P  (non-degenerate,
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Hamiltonian dynamics

Symplectic manifold:

closed 2-form)

Hamiltonian vector flow generated 2L \B
by function f: X O/ff

Darboux coordinates: £ = (z*, p,) st w = dp, N dz"

Noether’s theorem (phase space)

Let Hamiltonian H preserved by an infinit. transf. ot . (52),,
Then, there exists a conserved quantity Q: :

) gt |
{Q7 H} — 0 Xg = oz )(—+(p,, (

ox! dp,

W = lw m(]f'\ A (]E“ (non-degenerate,
.) 4

Page 7/35



Dynamical symmetries

Spec: Phase space is a cotangent bundle of manifold M, T*(M).
Then there exists a canonical projection:

m: T* (M) - M=

Can distinguish isometries from dynamical symmetries:

vector field on M isometry

m(XQ) {

not well defined on M  dynamical symmetry
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Dynamical symmetries

Spec: Phase space is a cotangent bundle of manifold M, T*(M).
Then there exists a canonical projection:

m: T*(M) - MES

Can distinguish isometries from dynamical symmetries:

T (Xq) = vector field on M isometry
_ not well defined on M  dynamical symmetry

Laplace-Runge-Lenz:

X — (9 ik _ 5t i ;,-) d ()-,' 2 i 5 | L L.r".r’") 9,
41 — (TP —OL.T-D—DX — OL.D” — D D — MKOL.~ + MK v—
A e AT oxk Kt i Ky r3 ) oph

T [, " 0 TR ;% RN - ~ DO gk 0 dynamical
& AN )= (2.1,. pr—0x-p—px )—

Oxrk | symmetry
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Symmmetries in GR

Particle motion /7 — l(},wp; 9 geodesics:
2. LV T ( T
pl Vu.[) =

a) Linear in momentum conserved quantities:
‘(7_, = R |V e ()' ...Killing vector
| L — lul <::> | (pt \V) F= equation

(.’;\f = p'V.(K"p,) =" p"V (. K.+ K¢p'V,p, =0
e
0

3, k™ 4
Xco, = K —— — )
=L, dxt dxH % dp,

Proof:

Hamiltonian vector field:

W*(XCK) :K”‘?)j = K ...isometry
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b) Higher-order conserved quantities

N T
De— e l;pl“...p“_l) <:‘_":>

v K — 0 ...Killing tensor
(/-’L Vi... Vp) It equation
Walker & Penrose, Comm. Math. Phys. 18 |, 265 (1970). (Stackel 1895).
: , 0 :
W:;(X('h) :1)[\“]”.“”_111);” ---f);f,,,l ...dynamlcal

dr”  symmetry

Pirsa: 18030117 Page 11/35



Pirsa: 18030117

Hidden symmetries

Explicit symmetries

...Killing vectors (isometries)

Hidden symmetries

...Killing tensors (dynamical symmetries)

...Killing-Yano tensors (even more “fundamental”’ —
they square to Killing tensors)

Ku,l/ = fuafya

Although we derived these as symmetries of the particle
motion, they have far-reaching consequences for the

properties of the spacetime and the dynamics of fields in it.

Page 12/35



Kerr geometry

Unique vacuum solution of Einstein equations describing a
rotating black hole

c‘)

Ergosphere

Event horizc)
B

‘ Roy Patrick Kerr

» Discovered in 1963 by Kerr (4 years before Wheeler coins the
term “black hole”).

« Possesses two parameters: mass and rotation (no hair theorem)

» Provided cosmic censorship, Kerr solution is a final configuration
of gravitational collapse — generic in our Universe.
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* Field equations decouple and separate

Scalar field, Dirac, electromagnetic, and gravitational
perturbations decouple and separate variables (Carter 1968,
Teukolsky 1972, Chandrasekhar & Page 1976, Wald 1978)

Enables to study:
 black hole shadow
plasma accretion
black hole stability
Hawking evaporation

* Kerr-Schild form: the metric can be written as a linear in
mass deformation of the flat space M7

- Special algebraic type of the Weyl tensor
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Principal tensor

“All” the above properties can be attributed to the existence
of a single object called:

Principal tensor = a (non-degenerate) closed conformal
Killing-Yano 2-form

v(_:h(rb = Yeca &) e 9(:()5(:

For example: Carter’s constant corresponds to the “square”
of principal tensor i

- C =
[X(.'b — h‘r:('h'b 4 5.(](1()]1-

Special algebraic type: follows from integrability conditions of
the above object
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What about black holes in higher dimensions?
(motivated by string theory, brane world scenarios, GR)

» Myers-Perry generalization of the Kerr metric (1986)

rotates in [(D-1)/2]
orthogonal planes

Robert C. Myers  Malcolm J. Perry
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Families of Killing-Yano tensors

for a general differential p-form

le = (exterior + divergence + harmonic) parts |

Conformal Killing-Yano (CKY) tensor

| 1 1 :
| Vxk = - X Jdk — X Aok
| p+1 D-p+1

Killing-Yano (KY) tensor:  divergence part is missing

closed CKY tensor: exterior part is missing

Under Hodge duality divergence part transforms into
exterior part and vice versa —

*(closed CKY) = KY]
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Principal Killing-Yano tensor

= (non-degenerate) closed CKY 2-form

VA\'h:Xb/\S. v4\'h”{, e 2X[u &b]

It follows |
dh =0 =57

non-degenerate: full matrix rank, eigenvalues are
functionally independent (can be used as coordinates)
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Kerr-NUT-(A)dS spacetimes é

In all dimensions admit the principal
Killing-Yano tensor

V.P. Frolov, DK, PRL 98, 011101 (2007); DK, V.P. Frolov,
Class. Quant. Grav. 24 | F1-F6 (20017).
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The metric

In canonical coordinates { (0 ’lﬁ-{,‘} the metric reads:

= g a... b — DT e (Tl o
= d el = (WHw" + W'w") + cw w” ;
; Darboux basis:
. . Euclidean & non-
TR, D=2n+¢. degenerate h
BN s A - J
=1

where | ; dz, i — G~
N R S NI = ST

V Wu j=0 j=0
(7 il 7. 7. 17) y - 2
—1 = E I!]_ (1,' ‘—l;r = lrl ’:;
1 i 14| i
ViFEM
Ly
X ) : - .
{ =k
D e = [[2 - = ok : .
(L,” r—f (1‘ ('{! "jr) \.‘, - Cj l“ hﬂ. Y == r.,
. =] N g
v k=¢ e
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Towers of hidden symmetries

Lemma ([Krtous ef al., 2007b]). [{f kY and k'*) be two closed CKY tensors. Then
thetr exterior product k = kW A k% is also a closed CKY tensor.

B =Bnr. . b

—

closed CKY tensors: | ~"’

total of 7 factors

Killing-Yano tensors: | f") = xh'. T(Hl-/“:}n:;---”,-1+l =0.

Killing tensors: ‘ KU = 1 f'-“ f.u__n €1...cD-25-1
. ab = (D_.z}_l)[(][J__) acl...CP—-%5—1 b -

,l 1) E .41“) I[\..(J'”u.’ﬂ u};}u';;} ) _+_ .___:1|:7,']u;{|wfl ' v [\J[[}

| )

0

p=1
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Tower of explicit symmetries

Primary Killing vector: |§ = l(o) = ——V - h

Secondary Killing vectors: l(l) = K(,) : s
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Tower of explicit symmetries

Primary Killing vector: |§ = l(o) = ——V - h

Secondary Killing vectors: l(}) — K(,) 3 s

Since all symmetries generated from a single object h, they
all mutually (Schouten-Nijenhuis) commute:

Ly, Kyl =0, [la), ;] =0.

—— sroveR—— r——F
[KY), ]\(”Lb(_s ]\((_‘("(}[ 7 ]\f)(,i — ]\f(_(l V']\f);’f)} =
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Complete integrability of geodesic motion

Definition. A motion in M" is completely integrable if there exist D functionally
independent integrals of motion which are in imvolution, that is, they mutually
Poisson commute of one another [Arnol’d, 1989], [Kozlov, V. V., 1983].
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Complete integrability of geodesic motion

Definition. A motion in M? is completely integrable if there exist D functionally
independent integrals of motion which are in imvolution, that is, they mutually
Poisson commute of one another [Arnol’d, 1989], [Kozlov, V. V., 1983].

D=2n+¢ constants of motion:

» Killing vectors \Ifk — l(k) U W -+ €

» Moreover we have Killing tensors:

ab

: (7). a. b ]
ki =Klhuw=u-KY.u.] n

D.N. Page, DK, M. Vasudevan, P. Krtous, Complete Integrability of
Geodesic Motion in General Higher-Dimensional Rotating Black-Hole
Spacetimes, PRL 98 (2007) 061102.
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Separability of scalar perturbations

(O-m*)$ =0

Early results:

» 5D case: direct generalization of Carter’s result in Myers-
Perry coordinates

Frolov, Stojkovic, PRD 68 (20013) 064011

« Higher-dimensional attempts restricted to “special rotating
black holes with enhanced symmetry (e.g. 2 sets of equal
rotation parameters)

E.g. Vasudevan, Stevens, Page, CQG 22 (2005) 339.
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Key observations:

» Separation occurs in canonical coordinates (not in Myers-
Perry) that are completely fixed by the principal tensor.

» Miraculous indentities have to be pulled out of the hat.

* A slightly “more involved” separation of variables occurs:
Elementary separation:

Z ha=twhere .= oo ] =k e g = caiSt. Z =1
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Separability of Dirac fields
(1D w8 =0

» Solution found in R-separable form:

Yv=R ('rxp(’/f Z . Vi 1_,-"f',wL_) ® v, rR=1] (-rh- | f._,‘x:-r,\) '")
v

/

‘- . /\
K< A

Oota, Yasui, PLB 659 (2008) 688.
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Separability of Dirac fields
(Y*Dg +m)¥ =0

« Solution found in R-separable form:

'(fi’ — (‘)Xp(?? Z}‘_ \DA“L) ® 3 R H (J'h— * /._,\,\':.-",\)
v

1

!

v, /\
K< /\

Oota, Yasui, PLB 659 (2008) 688.

* Is intrinsically characterized by a complete set of operators
(this time constructed from closed CKY tensors):

S(k)

: . . | I
[\[‘ — [\l* — ‘\ - =1 (E(A)v” + 1(/5(/\)

M; = My =e* ARVU)V, -

Cariglia, Krtous, DK, PRD 84 (2011) 024008.
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Separability of Maxwell fields
V,F*® =0, dF=0

Traditional approach: uses Newmann-Penrose formalism

(separation for field strength). This does not quite work in higher
dimensions — only partial success (for near horizon geometries)
achieved.

For example: + Durkee, Reall, PRD83 (2011) 104044.
* Araneda, arXiv:1711.09872.
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Separability of Maxwell fields
V,F?® =0, dF =0

Traditional approach: uses Newmann-Penrose formalism
(separation for field strength). This does not quite work in higher
dimensions — only partial success (for near horizon geometries)
achieved.

For example: <+ Durkee, Reall, PRD83 (2011) 104044.
* Araneda, arXiv:1711.09872.

Breakthrough achieved by Lunin, by abandoning the
Newmann-Penrose paradigm

Aa L Babvbz 7 = (];[ I?f,) (‘X[)(!?L‘,t.{,)

O. Lunin, Maxwell’s equations in the Myers-Perry geometry,
JHEP 1712 (2017) 138.

Pirsa: 18030117 Page 31/35



Pirsa: 18030117

The ansatz can be covariantly written in terms of the

principal tensor. A
A® = BYV, Z

(gab + iﬂhab)Bbc o 53

The Maxwell equations can be written as a composition
of operators, which form a complete set of commuting
operators acting on Z. The corresponding separation
constants are the eigenvalues of these operators and
their common eigenfunction is the separated solution.

Frolov, Krtous, DK, arXiv:1802.09491.
Krtous, Frolov, DK, arXiv:1803.02485.
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Separability of Proca equations

vaa,b L m2Au, — 0 I:‘J>V(LA(1 B 0|

2 polarizations /f’ //"a

o

Im(M w)

M Re(p

mM mM

Describes superradiant instability due ultralight massive vector

particles. 1) Baryaknhtar, Lasenby, Teo, PRD96 (2017) 035019.
2) Cardoso, Dias, Hartnett, Middleton, Pani, Santos, JCAP

1803 (2018) 043.
V.P. Frolov, P. Krtous, DK, J.E. Santos, in preparation
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Miraculous properties of rotating black holes

Frolov, Krtous, DK, Living Review
Rel. 20 (2017) 6.

Worldline SUSY

Towers of

Hidden symmetries

Petrov D & isometris

Symmetry operators )

Parallel transport Separability of

ravitational : :
;g)erturbations??? e e
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1)

sSummary

Dynamical symmetries are genuine phase space
symmetries that play interesting role in many areas of physics.
They are hidden in configuration space and “escape”
traditional simplified formulations of Noether’s theorem.

In GR these are described by Killing and Killing-Yano
tensors. In particular, the principal Killing-Yano (PKY) tensor
plays a crucial role for various integrability properties of black
holes (geodesics, KG, Dirac, type D, Kerr-Schild form,...).

Long-standing open question was whether these symmetries
can also be exploited for higher-spin equations — to separate
EM & gravitational perturbations.

Very recently this problem was resolved for the EM and Proca
perturbations!

This perhaps gives hope that one could also separate the
gravitational perturbations in these spacetimes.
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