Title: Can science be wikified

Date: Mar 26, 2018 02:45 PM

URL: http://pirsa.org/18030102

Abstract:

Pirsa: 18030102

Pirsa: 18030102 Page 2/51

Can science be wikified? (and should it)

Ivar Martin

Knowen.org

Pirsa: 18030102 Page 3/51

Outline

• Does wikification makes sense?

Pirsa: 18030102 Page 4/51

Outline

- Does wikification makes sense?
- How do we get there?

Pirsa: 18030102 Page 5/51

Wikipedia

Everyone can read and edit

- 18B page views and 500M unique visitors/ month (Alexa rank 5)
- Number of articles: 5.5M (English only), 40K "high quality"
- 33M registered editors, 140K active editors
- 50% edits are done by 500 people, 0.7% (2009)

Source: Wikipedia

Pirsa: 18030102 Page 6/51

The Future of Science by Michael Nielsen on July 17, 2008

A failure of science online: Wikipedia

Wikipedia is a second example where scientists have missed an opportunity to innovate online. Wikipedia has a vision statement to warm a scientist's heart: "Imagine a world in which every single human being can freely share in the sum of all knowledge. That's our commitment."

. . .

Nowadays, Wikipedia's success has to some extent legitimized contribution within the scientific community. But how strange that the modern day Library of Alexandria had to come from outside academia.

Pirsa: 18030102 Page 7/51

Wikipedia appeal

- Universal central repository
- Generally good high-level articles
- Active participation (billions of users, thousands of contributors)
- As close as can get to

Pirsa: 18030102 Page 8/51

If Wikipedia were used for science

- Potential benefits
 - Universal resource, instead of zillions of journals
 - Existing context for new results
 - Fairer attribution
- Potential problems
 - Public quarrels
 - Fractionalized content ("hard forks")

— ...

Pirsa: 18030102 Page 9/51

Pirsa: 18030102 Page 10/51

• Mixed quality of material

Pirsa: 18030102 Page 11/51

- Mixed quality of material
- No tangible credit to contributor

Pirsa: 18030102 Page 12/51

- Mixed quality of material
- No tangible credit to contributor
- Not a place for original material

Pirsa: 18030102 Page 13/51

- Mixed quality of material
- No tangible credit to contributor
- Not a place for original material
- Transience (editing over)

Pirsa: 18030102 Page 14/51

- Mixed quality of material
- No tangible credit to contributor
- Not a place for original material
- Transience (editing over)
- Consensus: not (always) expertise based

Pirsa: 18030102 Page 15/51

- Mixed quality of material
- No tangible credit to contributor
- Not a place for original material
- Transience (editing over)
- Consensus: not (always) expertise based
- Content intended for non-experts

Pirsa: 18030102 Page 16/51

Pirsa: 18030102 Page 17/51

Incentives

- Improve visibility of work
- Enhance personal productivity and quality of work
 - Note taking, long-term preservation
- Improve collaborations
- Build reputation
 - Track/value all contributions

Pirsa: 18030102 Page 18/51

- Incentives
 - Improve visibility of work
 - Enhance personal productivity and quality of work
 - Note taking, long-term preservation
 - Improve collaborations
 - Build reputation
 - Track/value all contributions
- Access control
 - Public or Limited access

Pirsa: 18030102 Page 19/51

- Incentives
 - Improve visibility of work
 - Enhance personal productivity and quality of work
 - Note taking, long-term preservation
 - Improve collaborations
 - Build reputation
 - Track/value all contributions
- Access control
 - Public or Limited access
- Structure
 - Levels of refinement

Pirsa: 18030102 Page 20/51

- Incentives
 - Improve visibility of work
 - Enhance personal productivity and quality of work
 - · Note taking, long-term preservation
 - Improve collaborations
 - Build reputation
 - Track/value all contributions
- Access control
 - Public or Limited access
- Structure
 - Levels of refinement
- Al
 - Suggest connections to existing content
 - Analytics tools
 - · performance,
 - trends

Pirsa: 18030102 Page 21/51

- StackExchange model
 - Reputation, badges, karma

Pirsa: 18030102 Page 22/51

- StackExchange model
 - Reputation, badges, karma
- Blockchain model
 - Tokens (utility, work), convertible into \$

Pirsa: 18030102 Page 23/51

StackExchange model

Xiao-Gang Wen top 20% overall

I am a professor working on condensed matter theory. My current interest is in topological order, which correspond to patterns of long-range entanglement in many-body system.

Understanding patterns of many-body entanglement is related to some modern mathematics. For example, the math framework for 2D long-range entanglements happen to be unitary fusion category theory. For higher dimensions, we may need higher categories. The math framework for short-range entanglements with symmetry happen to be group cohomology theory of the symmetry group and cobordism theory.

Pirsa: 18030102 Page 24/51

StackExchange model

Pirsa: 18030102 Page 25/51

Pirsa: 18030102 Page 26/51

Pirsa: 18030102 Page 27/51

What is the structure of knowledge?

- Collections of facts -> connection of facts
 - Generalization/refinement
 - Efficient Compression (sparse recovery/ compressed sensing)

Pirsa: 18030102 Page 28/51

What is the structure of knowledge?

Collections of facts -> connection of facts

Pirsa: 18030102 Page 29/51

Knowledge hierarchies

Math

Mathematical Subject Classification - MSC2010: https://zbmath.org/classification/ Wolfram: http://mathworld.wolfram.com/

NLab: https://ncatlab.org/nlab/show/mathematics

Enc of Math: https://www.encyclopediaofmath.org/index.php/Talk:EoM:This_project#Categories

Physics:

https://physh.aps.org/about

PhySH: https://physh.aps.org/browse
PACS: https://www.aip.org/publishing/pacs/pacs-2010-regular-edition

NLab: https://ncatlab.org/nlab/show/physics

Medicine:

https://www.nlm.nih.gov/pubs/factsheets/mesh.html

Computer science

Computing classification system: http://dl.acm.org/ccs/ccs.cfm
 Computing research repository: http://arxiv.org/corr/subjectclasses

Economics

Journal of Econ Lit: https://www.aeaweb.org/jel/guide/jel.php

Dewey: https://en.wikipedia.org/wiki/List of Dewey Decimal classes Lib of Congress: https://www.loc.gov/catdir/cpso/lcco/

Pirsa: 18030102 Page 30/51

Is knowledge a tree?

Pirsa: 18030102 Page 31/51

Is knowledge a tree?

Can it be shaped into a tree?

Pirsa: 18030102 Page 32/51

Inspiration from RG/Machine learning

Pirsa: 18030102 Page 33/51

Inspiration from RG/Machine learning

Statistics > Machine Learning

An exact mapping between the Variational Renormalization Group and Deep Learning

Pankaj Mehta, David J. Schwab

(Submitted on 14 Oct 2014)

Pirsa: 18030102 Page 34/51

Inspiration

THE ART OF COMPUTER PROGRAMMING

THIRD EDITION

CONTENTS

Chap	ter 1 — Basic Concepts	
1.1.	Mgorithms	
1.2.	Mathematical Preliminaries	1
	.2.1. Mathematical Induction	1
	.2.2. Numbers, Powers, and Logarithms	
	.2.3. Sums and Products	3
	.2.4. Integer Functions and Elementary Number Theory	
	.2.5. Permutations and Factorials	
	.2.6. Binomial Coefficients	
	2.7. Harmonic Numbers	
	.2.8 Fibonacci Numbers	
	.2.9 Generating Functions	1
	2.10 Analysis of an Algorithm	
	2.11 Asymptotic Representations	10
	*1.2.11.1 The O-notation	10
	*1.2.11.2 Euler's summation formula	1
	*1.2.11.3 Some asymptotic calculations	1
1.3	αχ	1
	.3.1. Description of MIX	1
	3.2. The MIX Assembly Language	14
	.3.3. Applications to Permutations	16
	Some Fundamental Programming Techniques	1
	.4.1. Subroutines	1
	.4.2. Coroutines	11
	.4.3. Interpretive Routines	26
	1.4.3.1. A MIX simulator	- 21
	*1.4.3.2. Trace routines	2
	4.4. Input and Output	2
	.4.5. History and Bibliography	2
Chap	ter 2—Information Structures	2
2.1.	ntroduction , , , , , ,	2
2.2.	Inear Lists	2
	2.2.1. Stacks, Queues, and Deques	2
	1.2.2. Sequential Allocation	2
	2.2.3. Linked Allocation	25
	xviii	-

	. Circular Lists					2
	Doubly Linked Lists					2
2.2.6	. Arrays and Orthogonal Lists			,		2
.3. Tree	8					3
2.3.1	. Traversing Binary Trees					3
2.3.2	Binary Tree Representation of Trees		,	,	,	3
2.3.3	3. Other Representations of Trees					3
2.3.4	. Basic Mathematical Properties of Trees					3
	2.3.4.1. Free trees			,	,	3
	2.3.4.2. Oriented trees					3
	*2.3.4.3. The "infinity lemma"					3
	*2.3.4.4. Enumeration of trees					3
	2.3.4.5. Path length					3
	*2.3.4.6. History and bibliography	,		,		
2.3.5	. Lists and Garbage Collection					- 4
.4. Mult	tilinked Structures					
.5. Dyn	amic Storage Allocation		,			
	ory and Bibliography					4
Answers	to Exercises			,	,	4
Appendi	x A — Tables of Numerical Quantities		,	,		
1.	Fundamental Constants (decimal)					
	Fundamental Constants (octal)					
2.						

Pirsa: 18030102 Page 35/51

Why Tree or DAG structure is good

- depth is ~log N
- Easy to navigate
- Easy to learn
- "Plug-and-Play"

Pirsa: 18030102 Page 36/51

Pirsa: 18030102 Page 37/51

Pirsa: 18030102 Page 38/51

Seed from existing content

Chicken or Egg?

- Wikipedia
- Published articles
- Taxonomies/classification schemes

Pirsa: 18030102 Page 39/51

Seed from existing content

Chicken or Egg?

- Wikipedia
- Published articles
- Taxonomies/classification schemes
- Organically, new collaborative projects
 - Bottom up
 - Knowen

Pirsa: 18030102 Page 40/51

Experiment: knowen.org

Pirsa: 18030102 Page 41/51

Elements

- Nodes: (Text, data, scripts)
- Commits and commenting (cf. github)
- Structure: Tree/Directed acyclic graph (DAG)
- Access: public and private projects
- Reputation tracking

Also: collaborative editing, subscriptions, feedback mechanisms

Pirsa: 18030102 Page 42/51

Knowen.org

Pirsa: 18030102 Page 43/51

Public-Private Division

Public

Private

Pirsa: 18030102 Page 44/51

Collaboration tool - most projects are

private

Workflow:

- Formulate Idea create top level node
- Explore sub-branches of idea/ sub-ideas create
 subnodes
- get results/refine idea go back and forth between nodes

All along:

- Invite collaborators
- Track and comment on any changes
- Build reputation

Pirsa: 18030102 Page 45/51

Public

• Private

Pirsa: 18030102 Page 46/51

PublicPrivatePrivate Visible

Pirsa: 18030102 Page 47/51

Pirsa: 18030102 Page 48/51

Pirsa: 18030102 Page 49/51

Vision

- Global (decentralized) structured wiki-like science resource (knowen.org is an experimental prototype)
- Uses:
 - Outreach
 - Learning
 - Sharing results/methods/data
 - Raw material for packaging into books and reviews
- Reputation/priority recording
- Intelligent Automatic suggestions for content placement and search

Can exist in parallel with current article/journal infrastructure Sustained by community (cf blockchain), or nonprofits (cf arxiv)

Pirsa: 18030102 Page 50/51

Pirsa: 18030102 Page 51/51